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Abstract—This exploratory work investigates the feasibil-
ity of extracting linear attenuation functions with respect
to energy from a multi-channel radiograph of an object of
interest composed of a homogeneous material by simulating
the entire imaging system combined with a digital phantom
of the object of interest and leveraging this information along
with the acquired multi-channel image. This synergistic
combination of information allows for improved estimates
on not only the attenuation for an effective energy, but for
the entire spectrum of energy that is coincident with the
detector elements. Material composition identification from
radiographs would have wide applications in both medicine
and industry. This work will focus on industrial radiography
applications and will analyse a range of materials that
vary in attenuative properties. This work shows that using
iterative solvers holds encouraging potential to fully solve
for the linear attenuation profile for the object and material
of interest when the imaging system is characterized with
respect to initial source x-ray energy spectrum, scan geometry,
and accurate digital phantom.

[. INTRODUCTION

Full system characterization has been leveraged suc-
cessfully for various estimation tasks in works [1], [2]
related to SPECT imaging as well as for applications
in optical testing [3]. Past work described a simplistic
approach to estimate effective attenuation coefficients
which reasonably estimated effective attenuation val-
ues for various low-attenuation but failed for higher-
attenuation materials [4]. The main cause of the break-
down in this simplistic approach seemed to be mainly
related to the lack of consideration to the non-linearities
in the formation of the radiograph. Additionally, a more
sophisticated approach to approximate attenuation infor-
mation failed to consistently approximate materials due
to the presence of null-spaces in the simulated imaging
system [5].

II. APPROACH

We represent the discretized approximation to the ini-
tial energy profile of the source adjusted for attenuation
through air as:
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where each component p; is approximately equal to
Iy(e;) and ¢; is some sample point within the domain
of € and satisfies the following ordering:
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Therefore, the j** pixel of the radiograph may be ap-
proximated as:
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where z; is the length of the j* ray path from source
to the j*" pixel intersected with the digital phantom.
Note that each p; will vary slightly when accounting for
attenuation through air as the path length to each pixel
vary as well as variation due to path length though the
object of interest. Thus, leveraging every pixel in image
1, we have the following system of equations:
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where 0 is a zero vector with the same dimensionality

as vector p "and P € RNXNm, Solving Pe = I can be
done in a least-squares sense using any linear solver if
P is full-rank; if not, iterative approaches must be used.

This work extends the exploratory work in [5] where
using a direct search method (DSM) as a robust and
straightforward method to approximate the attenuation
profile of the object of interest by leveraging a multi-
channel imaging detector instead of a single-channel
detector that was studied previously [4], [5]. The esti-
mation method is then applied to each binned image
independently.

The DSM leveraged is the Nelder-Mead DSM [6], a
robust gradient-free algorithm. The search method will
approximate the attenuation profile for each channel as
the sum of the first five Legendre Polynomials:
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where ¢; for i € [0,1,2,3,4] are the parameters to be
optimized with respect to the objective function, p;(¢)
is the i" Legendre Polynomial where the domain for
the given energy bin is scaled to the interval [—1,1] to
preserve orthogonality and thus numerical stability.

III. IMPLEMENTATION

Even if Iy(e) is unfiltered, the matrix P will almost
certainly not be full-rank if one factors in attenuation
due to air.
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Figure 1. Simulated Spectrum
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Figure 2. Simulated Attenuation

The example in this work is simulated in Matlab
with attenuation data acquired from NIST [7]. An ideal
detector is assumed as one could simply adjust the input
spectrum to account for absorption in the scintillation
material and any other related interactions. The exam-
ple is assumed to be noise-free for this work with a
Bremsstrahlung radiation source consisting of a Tung-
sten target with energies up to 450 KeV unfiltered. The
object being imaged is an 11 sphere digital phantom
all composed entirely of a single material with uniform
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Figure 3. Simulated Radiograph

density and consistency with a spherical diameter of 2.5
cm arranged in a circular orientation. The radiograph is
acquired using a source-to-detector distance of 225.66cm,
an source-to-object distance of 188.3cm, a pixel pitch of
0.02cm and a 2048x2048 pixel detector.

This work will leverage the built-in Matlab Nelder-
Mead DSM algorithm in the Matlab function fminsearch
with generous maximum iterations of approximately
2.0 x 10° and maximum function evaluations of approx-
imately 4.0 x 10'! to ensure that some local minima is
reached; if either limitation is reached, a new initial guess
will be given and the computation will be restarted.

IV. EVALUATION

For this summary, this work attempts to solve for the
attenuation profile for objects composted of:

m Copper
Polyethylene
Tin

Water

Lead

We will show three implementations of Nelder-Mead.
The first is an unconstrained optimization. The second is
an optimization method where only generally decreasing
solutions are allowed. The last is constrained to be gen-
erally decreasing as well as strict boundary conditions in
which the lower boundary must be the most attenuative
value and the higher boundary corresponds to the lowest
attenuation in the channel. Visual comparisons will be
made for each estimated profile with its true solution.
Lastly, convergence rates of the DSM will be presented.

V. RESULTS
A. Unconstrained

Figures 4, 5, 6, 7, and 8 are the estimates for each
material using an unconstrained Nelder-Mead DSM
approach. The unconstrained approach yielded decent
visual approximations thus potentially indicating that
there may not exist many local minima that deviate
significantly from the true solution. The computation



time for each estimate was approximately 90 minutes. It _Polyethylene Attenuation Estimate

is clear that for higher attenuative materials (Pb, Sn, can W ,
Cu), there exist artifacts in the approximations that are
not representative of real-world attenuation profiles. For
all estimation methods, it seems that the low channels
are at least partially occupying a null-space region of the
imaging operator.
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Figure 5. Unconstrained estimate for Copper 10°F
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Figure 8. Unconstrained estimate for Lead

B. Generally Decreasing Constraint

Figures 9, 10, 11, 12, and 13 are the estimates for each amount, and in the case of Tin, the estimate was worse
material using the generally decreasing constraint. This with respect to the presence of artifacts in the higher
constraint did not improve estimates by any appreciable channels.
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Figure 10. Decreasing constraint estimate for Copper

C. Boundary and Decreasing Constraints

Figures 14, 15, 16, 17, and 18 are the estimates for each
material using the decreasing and boundary constraints.
These estimates are the best fitting estimates visually.
Although not completely eliminated, the artifacts are
significantly suppressed. In the cases of the higher at-

tenuative materials, the estimates are extremely close.
In particular, the k-edge in Lead is fully resolved!. This

350

400

requires additional investigation as it may just be a
coincidence since the k-edge is near an interface point
between energy channels for this example.
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Figure 14.

Figure 15.

Figure 16. Decreasing and boundary constraint estimate for Polyethylene
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Decreasing and boundary constraint estimate for Tin
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Figure 18. Decreasing and boundary constraint estimate for Lead

D. Rate-of-Convergence

Since the DSM algorithm is executed for each channel
for each material, convergence rates for channels 1,5, and
10 for Pb estimation are presented as the performance
was equivalent across all materials for each channel.
Note that figures 19, 20, and 21 show convergence rates
for channels 1, 5, and 10 respectively and none of these
channels required more then 2500 iterations, well below
the threshold set above; this was generally representative
across all materials, none of which reached the iteration
or function evaluation limits. Wall-time computational
performance ranged from 5-15 minutes per channel
across all materials.

VI. CONCLUSION

We have drastically improved attenuation profile es-
timation from radiographs compared to [5] and [4]
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Figure 19. Relative error with respect to DSM iterations for thel 1°* profile
estimation of Pb.
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Figure 20. Relative error with respect to DSM iterations for the 5" profile
estimation of Pb.
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Figure 21. Relative error with respect to DSM iterations for the 10** profile
estimation of Pb.

by leveraging a multi-channel imaging detector. The
estimation and identification of materials present in a
radiograph or x-ray image has wide applications to
non-destructive evaluation, medicine, quality assurance,
and security. Our method leverages additional informa-
tion including the pixel information and combines it to
improve the performance of the estimation task. The
performance is dependent on the quality of the char-
acterization of the entire imaging system. If the imaging
system is characterized accurately, it has been shown in

previous work that the information could improve many
estimation tasks [1]-[3]. Due to the exploratory nature of
this work, the future work is extensive; this includes the
addition of system and photon noise and fluorescence,
object segmentation/support estimation, experimental
evaluation and validation.
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