
Photos placed in horizontal position
with even amount of white space

between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Irregular Big Data Computed Tomography on Multiple Graphics
Processors Improves Energy-Efficiency Metrics for Industrial Applications

Dr. Edward S. Jimenez
Team: Dr. Edward S. Jimenez, Laurel J. Orr, Kyle R. Thompson, Dr. Ryeojin Park, Eric L. Goodman

Hispanic Engineers National Achievement Awards Conference 2014

October 2014

SAND2014-20042PE

Computed Tomography

 Computed Tomography (CT) is an indirect 3D imaging technique.

 Input: Set of X-ray images acquired about a center of rotation.

 Output: Three-dimensional approximation of internal and external structure

 Reconstruction: Convolution- Backprojection Algorithm (Feldkamp-Davis-Kress)

 Geometry and Configuration of CT System determines magnification

 Reconstruction algorithm is O(n4)

Image Source: http://www.xviewct.com/assets/images/how-ct-works.gif

GPU

 Graphics Processing Units are coprocessors that handle image
manipulation and now are being used for general purpose computing.

 Capable of Teraflops!

 This massive computational capability of GPUs can be harnessed for many
applications.

 Parallel computing environment

 Fast dedicated memory

 Fast Cache

 CT Reconstruction from projection images requires many arithmetic and
trigonometric operations for every volumetric pixel (voxel).

CT on GPUs

 “Porting” CT reconstruction on GPUs has shown major bottlenecks.
 Usually not an issue with medical datasets.

 Memory uploads/downloads to device (GPU).

 What ratio of x-ray data to volume should be allocated?

 Traditional CPU-based code reconstructed one slice at a time
 Predicable memory access even when multi-threaded.

 GPU-based reconstruction
 Massively multithreaded environment creates scattered memory reads if large x-ray

data is utilized.

 Scattered Memory reads severely hinders performance!

 Suddenly reconstruction becomes an Irregular Problem!

Approach

 Maximize resources by blocking x-ray data and sub-volumes.
 Not necessarily a new idea…

 Counter Intuitive: Maximize x-ray data uploads to device!
 Partition x-ray images and batch small x-ray image subsets

 Volume: Use most GPU memory for direct volume storage.

 Utilize GPU-Specific Hardware/Features
 Massive parallelism

 Texture memory/Texture Cache

 Constant Memory

 Data prefetch to pinned memory for fast upload

 Dynamic Task Partitioning
 Ensures only relevant data is fetched and uploaded to the device

GPU Cache Hierarchy

L2 Cache

L1 Cache

Texture
Cache

Constant
memory

Device Memory
Register

Implementation
 CUDA Programming environment and C++

 Minimum requirements
 Fermi-based architecture or newer

 1 GB device memory

 At least one x-ray sub image and one image plane must fit together on device

 Allows for 1 – 8 GPUs per node

 Dynamic Partitioning determined by slice-to-texture ratio (STR)

 STR may not always be satisfied:
 Resource maximization vs. Awkward task size

 Reconstruction size – Too large or small?

 Tail-end reconstruction

Dynamic GPU Tasking
 For a given subvolume the amount of x-ray data necessary varies

 Due to the geometry of the system.

 Taken into account with STR to determine memory data allocation on device.

 Typically, reconstruction along center slices require less data.

 Using OpenMP 2.0, a CPU thread controls one GPU in the system

 Each GPU will usually be reconstructing sub-volumes of varying size

 Load balancing difficult if subvolume is fixed for all GPUs

 No synchronization necessary for CPU threads while algorithm is executing.

 No synchronization necessary between GPU threads either.

 One atomic operation to update reconstruction progress and determine next
subvolume to reconstruct.

FDK Kernel Layout

 Input: X-ray data, index, and size, subvolume data, index, and size,
system geometry

 Get thread ID and voxel positions p1, . . . , ps based on ID

 if Thread ID position within ROI then

 for Every slice j in slice block do

– Set register value to zero

– for Every image i in image subset do

» Determine texture interpolation coordinate in image i

» Update register value with texture fetch and scaling

– end for

– Update voxel pj in global memory with register value

 End for

 End if

Evaluation
 Supermicro workstation

 Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading

 512 GB RAM

 4 PCI-E 2.0 x16 slots

 2 NVidia S2090 Devices

 4 Tesla M2090 GPUs each (8 total)

 Connected via 4 PCI-E host interface cards

 M2090

 6 GB GDDR5 memory apiece

 16 streaming multiprocessors (SM)

 768 KB L2 Cache (load, store, and texture operations)

 32 Compute cores per SM

 48 KB L1 Memory (explicitly set, shared memory not used)

 8 KB Constant Memory and Texture Cache

 Two datasets tested
 64 Gigavoxels

 1 Teravoxel

Results: Throughput 64 GV/ 1 GPU

Results: Throughput 64 GV/ 8 GPUs

Results: Throughput 1 TV/ 1 GPU

Results: Throughput 1 TV/ 8 GPUs

Results: L1 Cache Hit-rates

Results: L2 and Texture Cache Hit-rates

Conclusion on Kernel Design

 Big Data CT Reconstruction kernels clearly benefit from an Irregular approach

 Massive parallelism has potential to destroy spatial locality

 Counter Intuitive approach may create performance gains

 Irregular approach improves voxel throughput by improving cache-hit rates

 Small X-ray data batches and large subvolume tend to perform best.

 Unfortunately this is only a portion of the problem

 This is a Big Data problem

 Moving information to and from storage media

 Host-side data

 Next Problem: Rest of the system cannot keep up.

Big Data CT

 Industrial-Scale Computed Tomography Datasets

 Differ from Medicine

 Medical datasets are typically less than a few gigabytes

 Industrial scale datasets are dozens of Gigabytes to several Terabytes!

 The reconstruction is large

 The fastest supercomputers cannot be used due to memory.

 Waiting days to years is not practical!

 Suboptimal GPU utilization.

 Industrial-Scale CT is really Big Data CT that impacts many areas.

 Non-Destructive Testing

 Materials Characterizations

 Quality Assurance

 Verification and Validation

Serial Implementation

Modularization

Results: GPU Speedups

Number GPUs Modular Time Modular Speedup Serial Time Serial Speedup

1 102.7 438x 113.9 395x

2 53.3 844x 59.8 752x

4 30.3 1486x 37.4 1204x

6 23.1 1946x 28.0 1608x

8 19.9 2260x 23.3 1927x

 Speedup is relative to single thread CPU time of 44,987 hours

Results: GPU Speedups

Number GPUs Modular Time Modular Speedup Serial Time Serial Speedup

1 102.7 39x 113.9 35x

2 53.3 76x 59.8 68x

4 30.3 133x 37.4 108x

6 23.1 175x 28.0 144x

8 19.9 203x 23.3 173x

 Speedup is relative to OpenMP CPU time of 4,039 hours

Overall Improvements

Pulling It All Together
 GPUs are fast.

 New Bottlenecks are cropping up.

 Modularization helps.

 There has been little work in energy efficiency.
 Are we trading one problem for another?

 Most facilities have limited energy capacity

 For Big Data, consumption metrics may be unsustainable.
 Same hindrance as Exascale Computing

 CPU-based vs. GPU-based comparisons
 Computation times are proven, what about efficiency?

 Serial-based vs. Modularized-based comparisons
 Does our approach help or hinder consumption?

Energy Efficiency

 What aspects contribute the most?

 Data transfer

 Computation

 I/O

 Looking at overall energy consumption is insufficient.

 Does not factor performance.

 Other popular metrics:

 Performance-per-Watt: Factors in power of the system.

 Energy-Delay: Greater emphasis on performance.

 Defined as KWH*H.

 Lower is better.

 Studying a single metric can be misleading!

Overall Energy Consumption

 Total energy used by an algorithm.
 Simple metric to grasp.

 Comparison between systems and algorithms is straightforward.

 However, this metric does not factor the time consumed during the
computation.

 Identical consumption is possible with dramatically different
computation times

Performance-Per-Watt

 This metric is measured as “million-instructions-per-second-per-watt”.

 Somewhat factors computation time

 This metric is typically used when energy consumption is vital.
 Systems that run on primarily batteries (e.g. notebooks, tablets, etc.)

 Not sufficient as one could sacrifice speed to increase this metric.

Energy-Delay

 The Energy-Delay metric is a relatively new metric.
 Total Energy (KWH) multiplied by computation time.

 Some forms of the energy delay product square or cube the
delay when greater emphasis on performance is desired.

 First proposed to evaluate trade-offs between circuit level
power savings techniques for digital designs.

Implementation

 Leveraging pinned host memory minimizes idling between
kernel launches applied to a given sub-volume.

 As mentioned, data writing is another source of GPU idle.
 Ideally, the modularized approach would minimize this idling.

 Is this savings moot with the complexity of the task on the CPU?

 Both implementations are written in a hybrid environment:
 C++

 CUDA (Ver. 5.0)

 OpenMP

Evaluation

 Metrics to be measured:
 Energy Consumption

 To be measured in kilowatt-hours (kWh).

 Performance-Per-Watt

 Presented as voxels-reconstructed (and stored)-per-second-per-watt.

 Modified from traditional MFLOPS-per-watt

 Reconstruction is known to be limited in memory bandwidth and
computation.

 Energy-Delay Product

 To ensure algorithm is not trading off speed for savings.

 Square weighting of delay as suggested by other works (Laros III et. Al.).

Evaluation Cont.
 Four CT implementations measured:

 Popular CPU-based Approach

 Leverages OpenMP for multi-threading and MPI for parallel processing

 Naïve GPU Implementation:

 Baseline

 No GPU-specific exploitation

 Brute force Port of CPU-like implementation

 Up to 8 GPUs

 Serialized Approach

 Up to 8 GPUs

 Modularized Approach

 Up to 8 GPUs

Evaluation Cont.
 System used:

 Supermicro server

 Dual octo-core Intel Xeon E-2687W @ 3.1GHz w/ Hyper threading

 512GB system memory

 8 NVidia Tesla M2090 GPUs

 Contained in 2 NVidia S2090 units

 Connected via 4 PCI-E 2.0 x16 host interface cards

 Storage Media

 8 x 3TB 6 Gb/s drives in RAID 0

 Controlled by an Intel Controller with 1 GB of DDR3 cache.

 Metrics obtained with several P3 International P4460 Kill-A-Watt Monitors

 GPUs disconnected for CPU measurements

Evaluation Cont.

 Two datasets used

 64 Gigavoxel Reconstruction
 4000x4000x4000 voxel volume

 1800 Projections

 High-end of current acquisitions

 1 Teravoxel Reconstruction
 10K x 10K x 10K voxel volume

 10,000 Projections

 “Future-proof” dataset.

Energy Consumption 64 GV

Energy Consumption 1 TV

Performance-Per-Watt 64 GV

Performance-Per-Watt 1 TV

Results: Energy-Delay 64 GV

Results: Energy-Delay 1 TV

Conclusions

 This work has shown that leveraging GPUs not only improves
computation time, but does so while improving multiple
energy metrics for FDK reconstruction.

 The computation community is approaching energy
limitations, intelligent algorithm design can help.

 Testing a heterogeneous cluster approach with promising
results!

 What other algorithms can benefit from this work?

