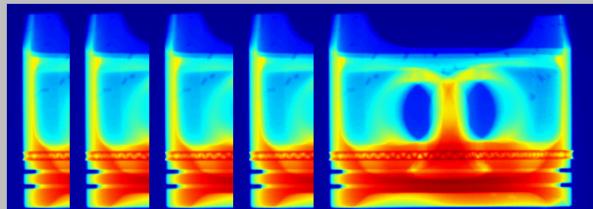
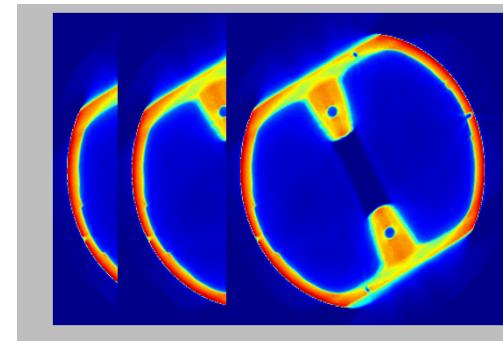


Exceptional service in the national interest



Irregular Big Data Computed Tomography on Multiple Graphics Processors Improves Energy-Efficiency Metrics for Industrial Applications

Dr. Edward S. Jimenez

Team: Dr. Edward S. Jimenez, Laurel J. Orr, Kyle R. Thompson, Dr. Ryeojin Park, Eric L. Goodman

Hispanic Engineers National Achievement Awards Conference 2014

October 2014

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Computed Tomography

- Computed Tomography (CT) is an indirect 3D imaging technique.
- Input: Set of X-ray images acquired about a center of rotation.
- Output: Three-dimensional approximation of internal and external structure
- Reconstruction: Convolution- Backprojection Algorithm (Feldkamp-Davis-Kress)
- Geometry and Configuration of CT System determines magnification
- Reconstruction algorithm is $O(n^4)$

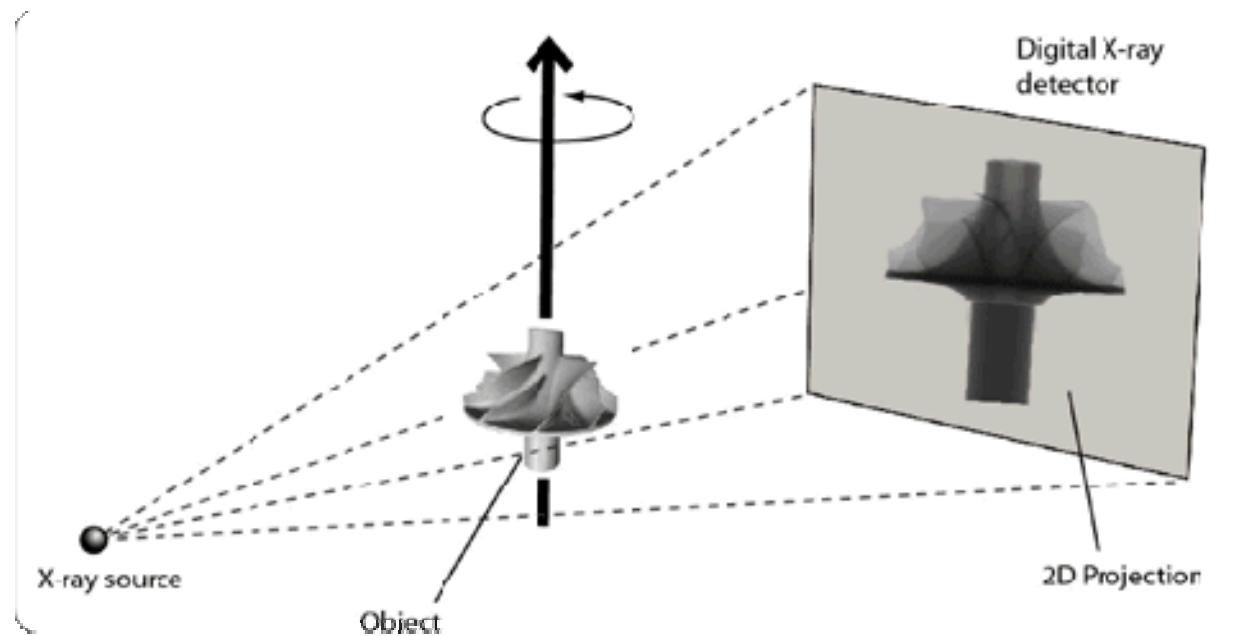


Image Source: <http://www.xviewct.com/assets/images/how-ct-works.gif>

GPU

- Graphics Processing Units are coprocessors that handle image manipulation and now are being used for general purpose computing.
- Capable of Teraflops!
- This massive computational capability of GPUs can be harnessed for many applications.
 - Parallel computing environment
 - Fast dedicated memory
 - Fast Cache
- CT Reconstruction from projection images requires many arithmetic and trigonometric operations for every volumetric pixel (voxel).

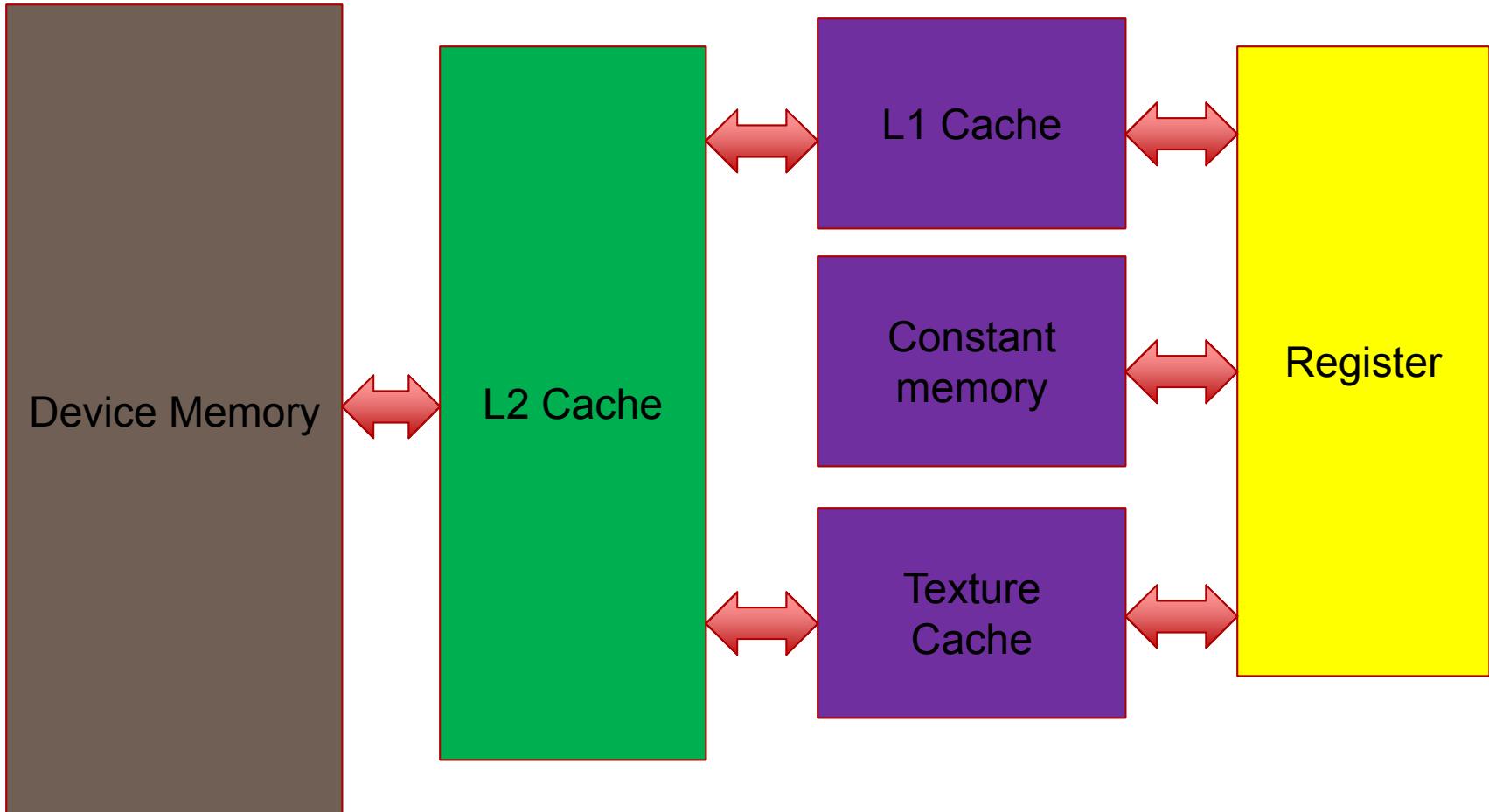
CT on GPUs

- “Porting” CT reconstruction on GPUs has shown major bottlenecks.
 - Usually not an issue with medical datasets.
 - Memory uploads/downloads to device (GPU).
 - What ratio of x-ray data to volume should be allocated?
- Traditional CPU-based code reconstructed one slice at a time
 - Predictable memory access even when multi-threaded.
- GPU-based reconstruction
 - Massively multithreaded environment creates scattered memory reads if large x-ray data is utilized.
 - Scattered Memory reads severely hinders performance!
 - Suddenly reconstruction becomes an Irregular Problem!

Approach

- Maximize resources by blocking x-ray data and sub-volumes.
 - Not necessarily a new idea...
- Counter Intuitive: *Maximize* x-ray data uploads to device!
 - Partition x-ray images and batch small x-ray image subsets
- Volume: Use most GPU memory for direct volume storage.
- Utilize GPU-Specific Hardware/Features
 - Massive parallelism
 - Texture memory/Texture Cache
 - Constant Memory
 - Data prefetch to pinned memory for fast upload
- Dynamic Task Partitioning
 - Ensures only relevant data is fetched and uploaded to the device

GPU Cache Hierarchy



Implementation

- CUDA Programming environment and C++
- Minimum requirements
 - Fermi-based architecture or newer
 - 1 GB device memory
 - At least one x-ray sub image and one image plane must fit together on device
- Allows for 1 – 8 GPUs per node
- Dynamic Partitioning determined by *slice-to-texture ratio (STR)*
- STR may not always be satisfied:
 - Resource maximization vs. Awkward task size
 - Reconstruction size – Too large or small?
 - Tail-end reconstruction

Dynamic GPU Tasking

- For a given subvolume the amount of x-ray data necessary varies
 - Due to the geometry of the system.
 - Taken into account with STR to determine memory data allocation on device.
 - Typically, reconstruction along center slices require less data.
- Using OpenMP 2.0, a CPU thread controls one GPU in the system
 - Each GPU will usually be reconstructing sub-volumes of varying size
 - Load balancing difficult if subvolume is fixed for all GPUs
- No synchronization necessary for CPU threads while algorithm is executing.
- No synchronization necessary between GPU threads either.
- One atomic operation to update reconstruction progress and determine next subvolume to reconstruct.

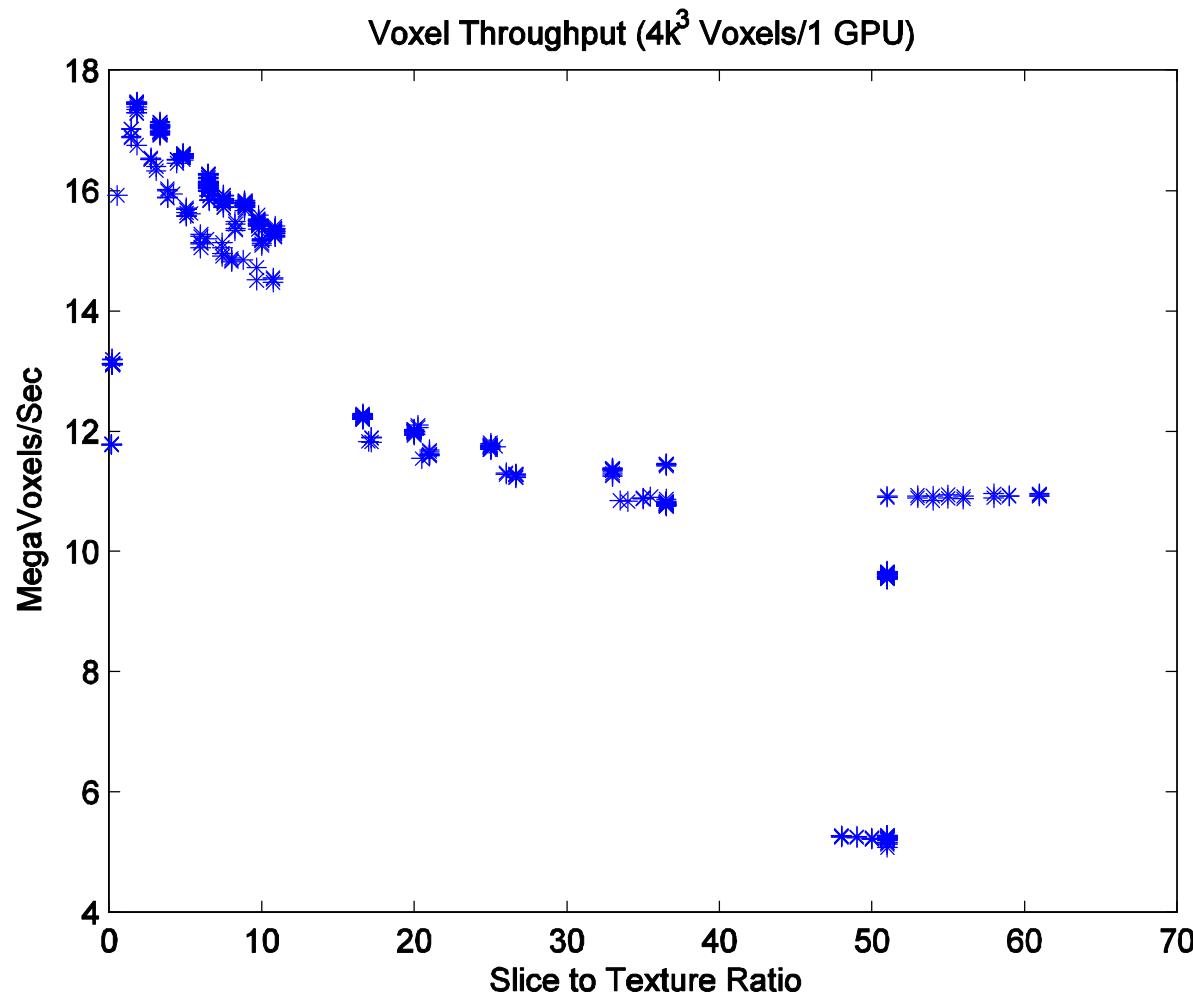
FDK Kernel Layout

- **Input:** X-ray data, index, and size, subvolume data, index, and size, system geometry
- Get thread ID and voxel positions p_1, \dots, p_s based on ID
 - **if** Thread ID position within ROI **then**
 - **for** Every slice j in slice block **do**
 - Set register value to zero
 - **for** Every image i in image subset **do**
 - » Determine texture interpolation coordinate in image i
 - » Update register value with texture fetch and scaling
 - **end for**
 - Update voxel p_j in global memory with register value
 - **End for**
 - **End if**

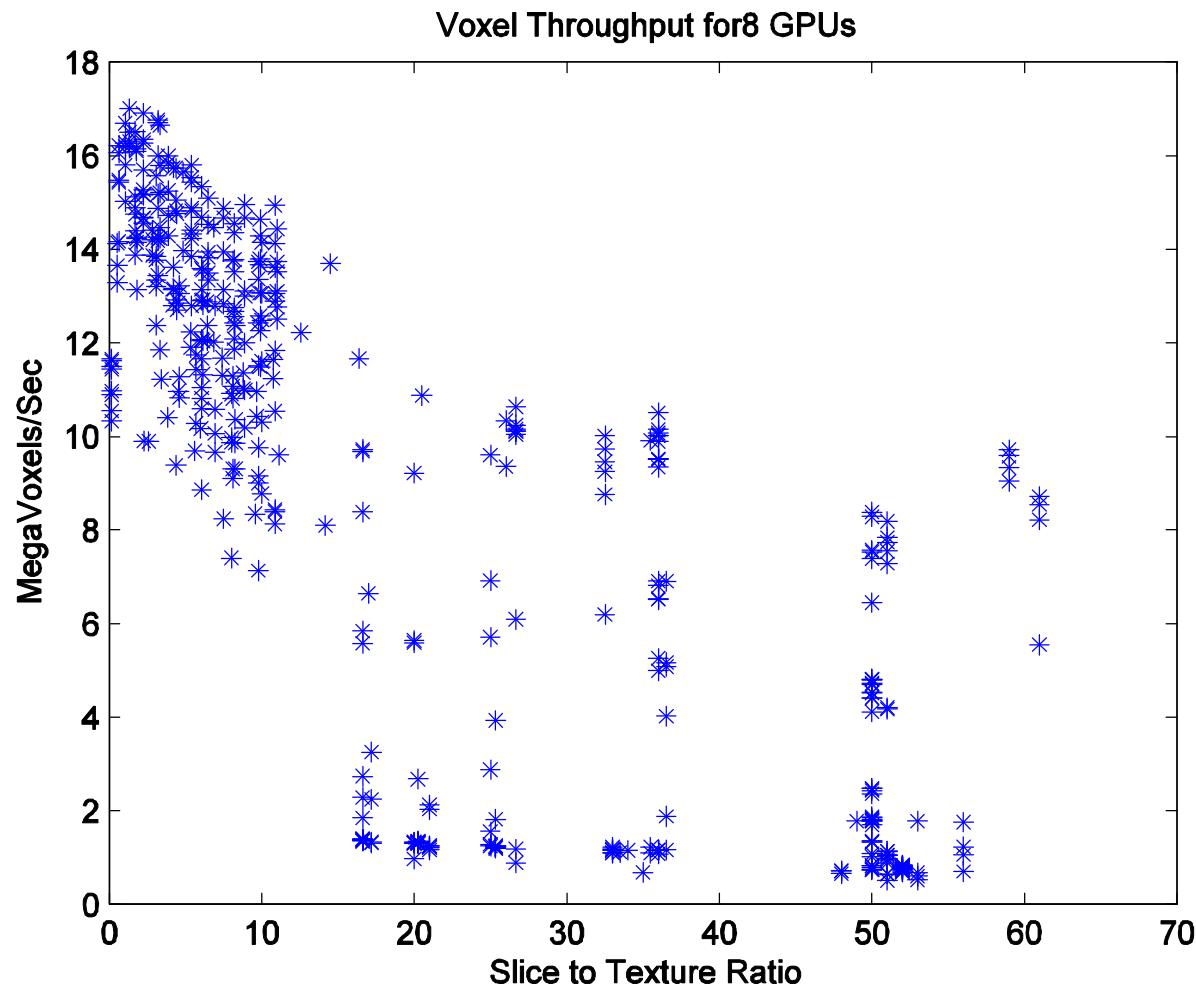
Evaluation

- Supermicro workstation
 - Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading
 - 512 GB RAM
 - 4 PCI-E 2.0 x16 slots
- 2 NVidia S2090 Devices
 - 4 Tesla M2090 GPUs each (8 total)
 - Connected via 4 PCI-E host interface cards
- M2090
 - 6 GB GDDR5 memory apiece
 - 16 streaming multiprocessors (SM)
 - 768 KB L2 Cache (load, store, and texture operations)
 - 32 Compute cores per SM
 - 48 KB L1 Memory (explicitly set, shared memory not used)
 - 8 KB Constant Memory and Texture Cache
- Two datasets tested
 - 64 Gigavoxels
 - 1 Teravoxel

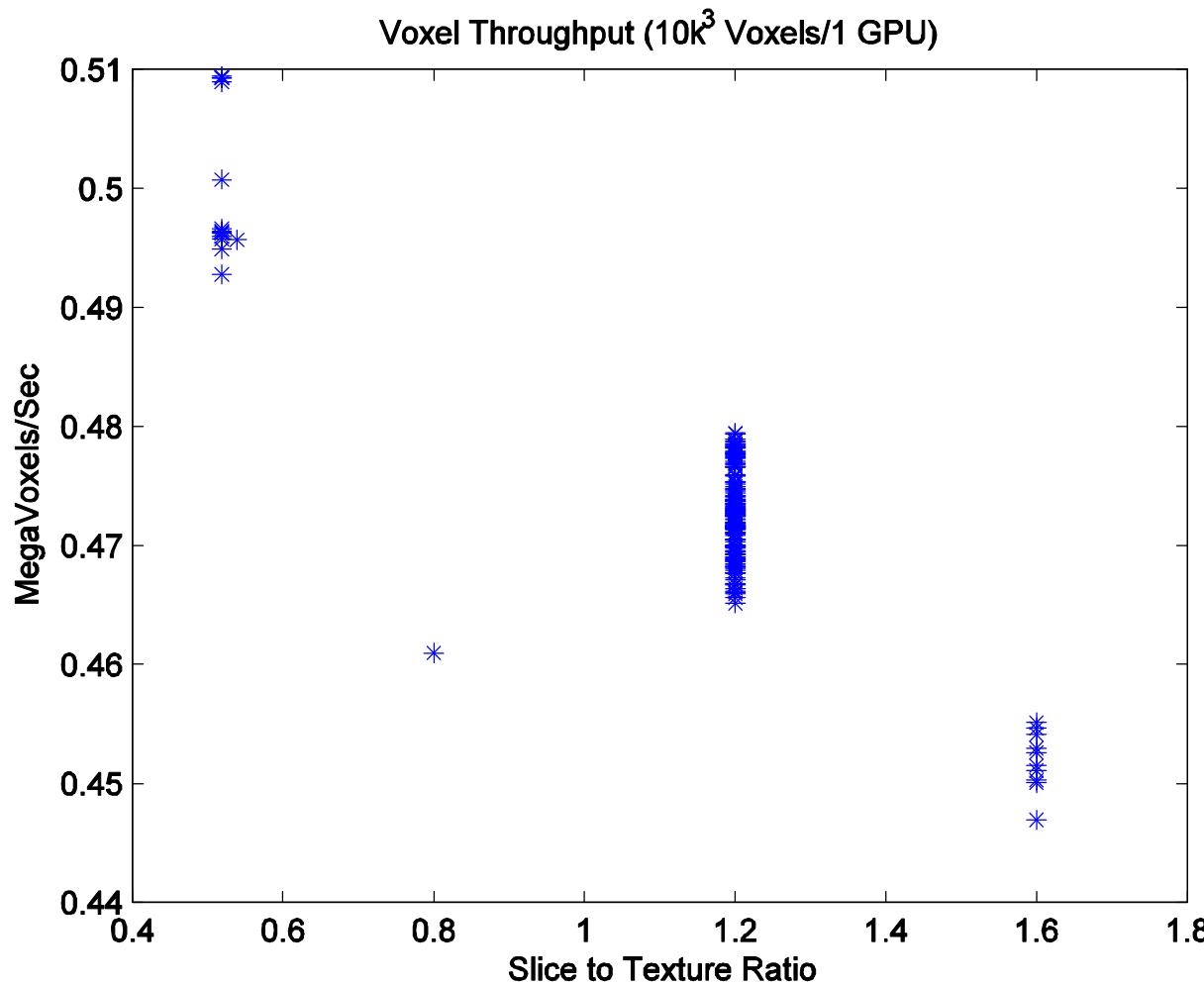
Results: Throughput 64 GV/ 1 GPU



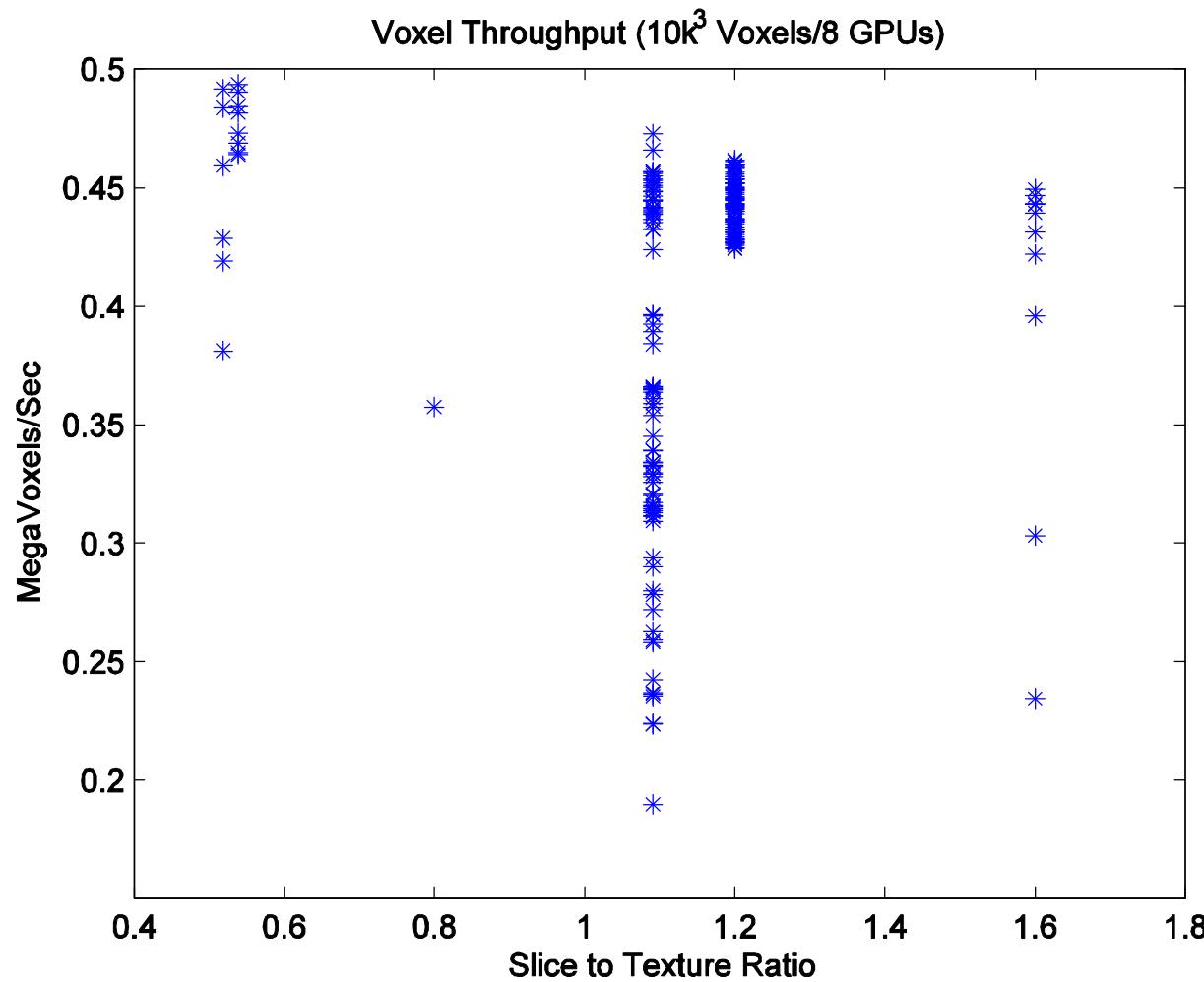
Results: Throughput 64 GV/ 8 GPUs



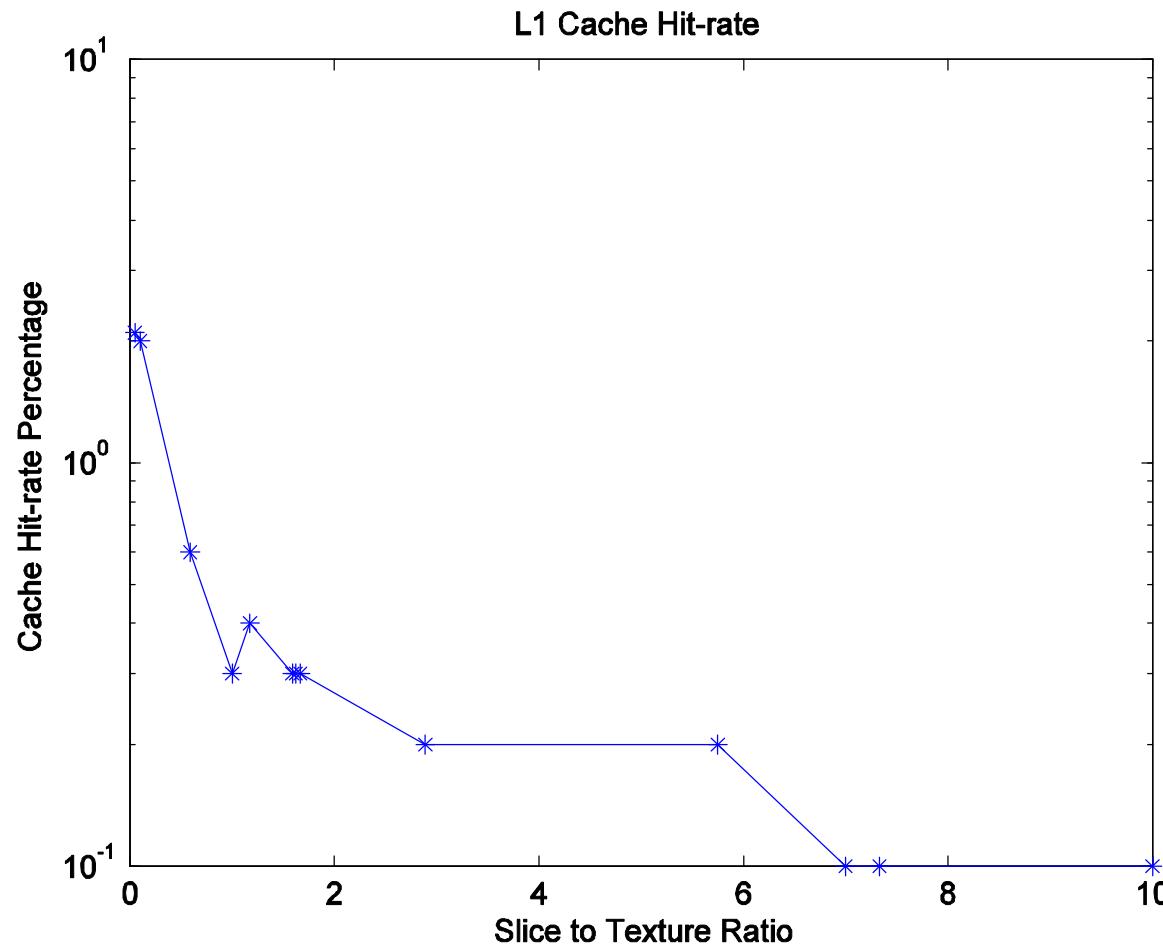
Results: Throughput 1 TV/ 1 GPU



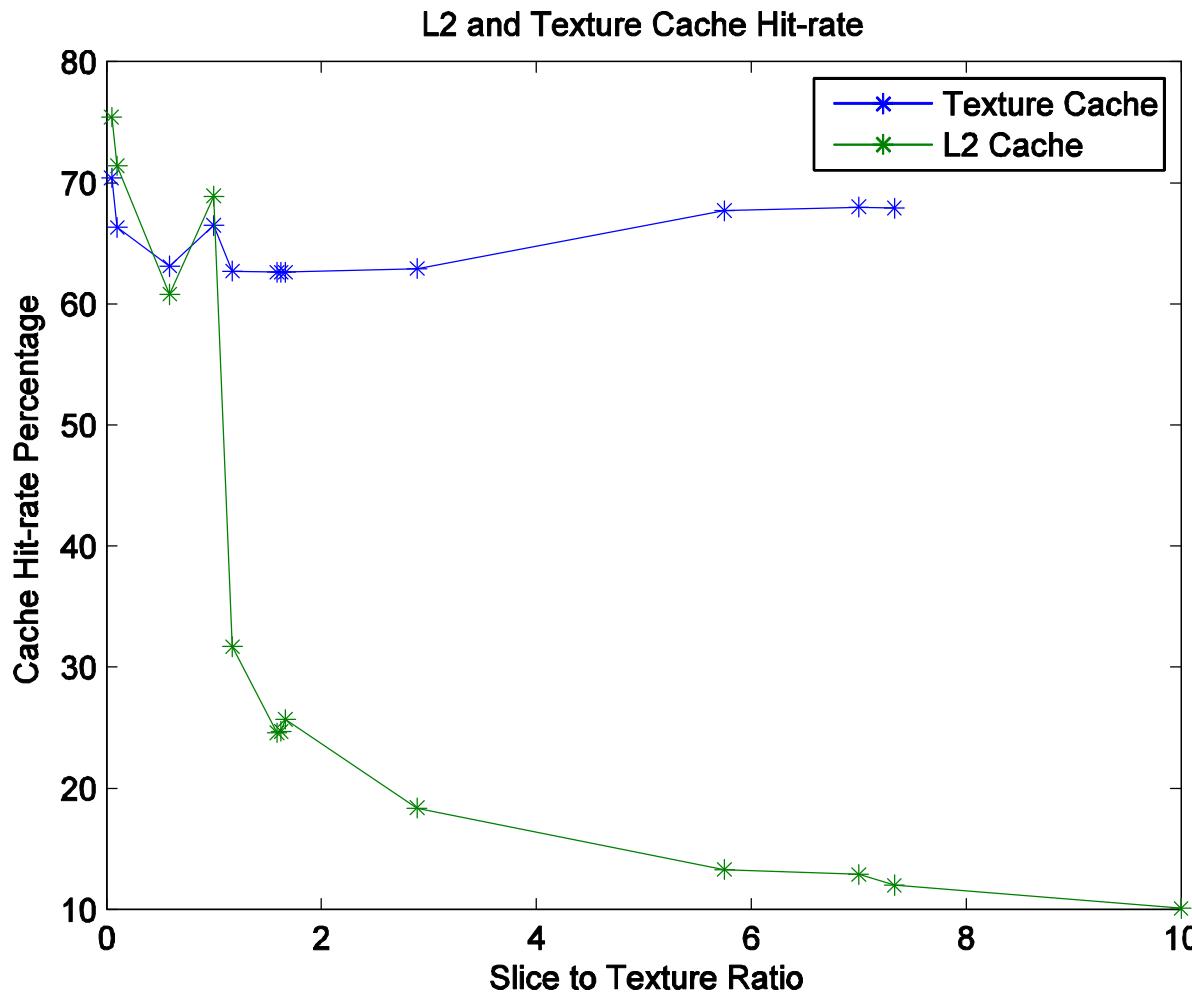
Results: Throughput 1 TV/ 8 GPUs



Results: L1 Cache Hit-rates



Results: L2 and Texture Cache Hit-rates



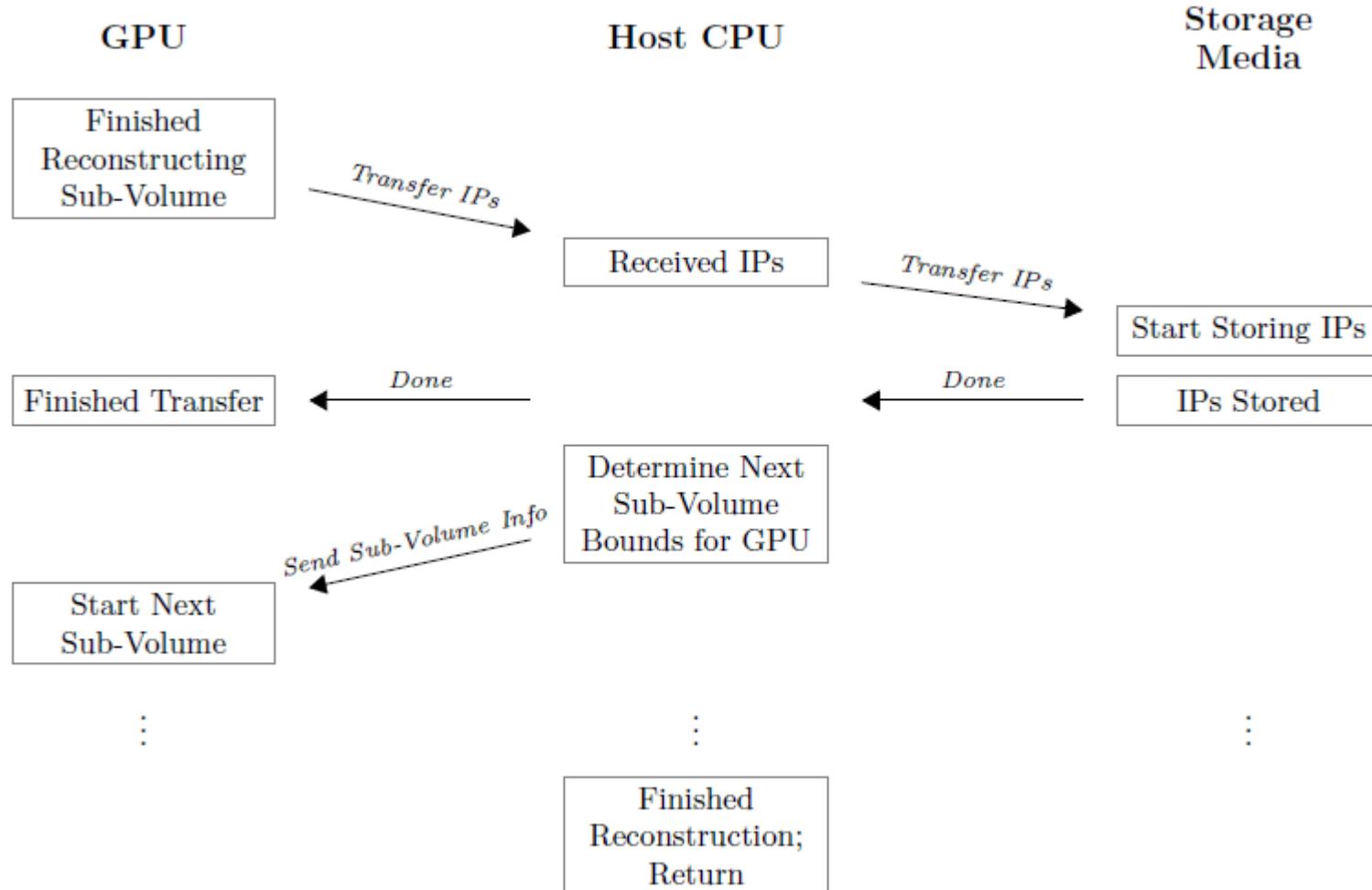
Conclusion on Kernel Design

- Big Data CT Reconstruction kernels clearly benefit from an Irregular approach
 - Massive parallelism has potential to destroy spatial locality
 - Counter Intuitive approach may create performance gains
 - Irregular approach improves voxel throughput by improving cache-hit rates
 - Small X-ray data batches and large subvolume tend to perform best.
- Unfortunately this is only a portion of the problem
- This is a Big Data problem
 - Moving information to and from storage media
 - Host-side data
- Next Problem: Rest of the system cannot keep up.

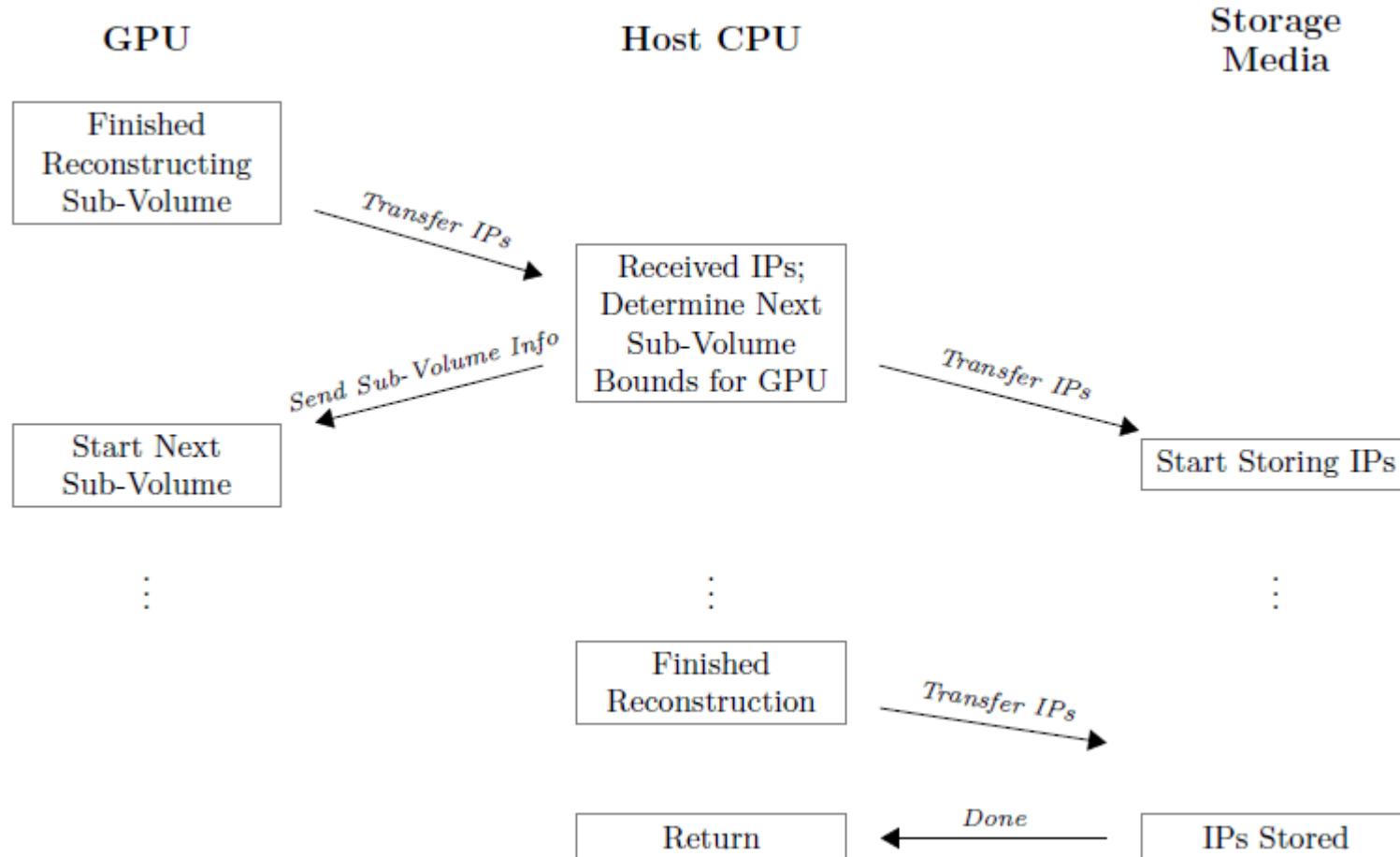
Big Data CT

- Industrial-Scale Computed Tomography Datasets
 - Differ from Medicine
 - Medical datasets are typically less than a few gigabytes
 - Industrial scale datasets are dozens of Gigabytes to several Terabytes!
- The reconstruction is large
 - The fastest supercomputers cannot be used due to memory.
 - Waiting days to years is not practical!
 - Suboptimal GPU utilization.
- Industrial-Scale CT is really Big Data CT that impacts many areas.
 - Non-Destructive Testing
 - Materials Characterizations
 - Quality Assurance
 - Verification and Validation

Serial Implementation



Modularization



Results: GPU Speedups

- Speedup is relative to single thread CPU time of 44,987 hours

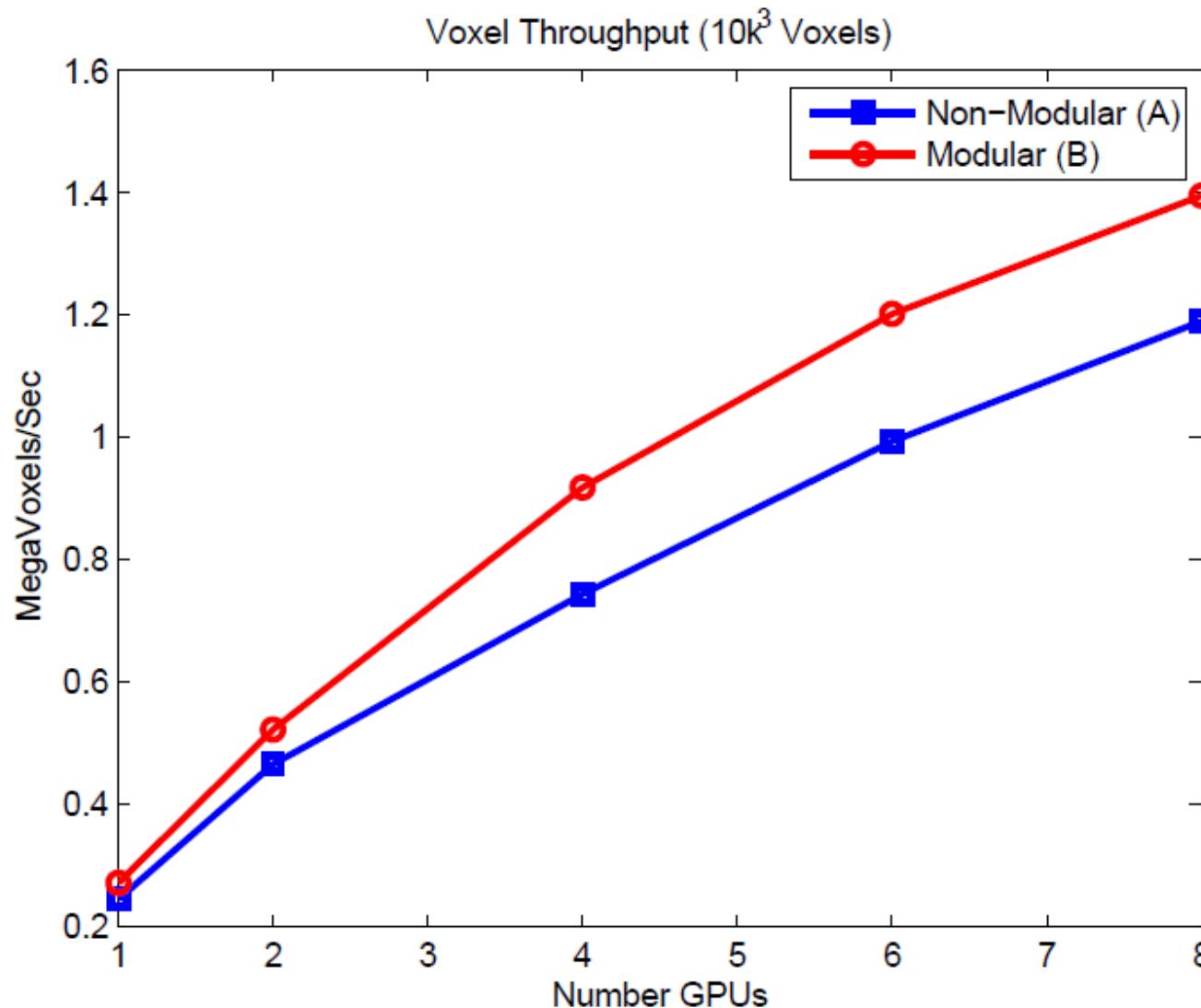
Number GPUs	Modular Time	Modular Speedup	Serial Time	Serial Speedup
1	102.7	438x	113.9	395x
2	53.3	844x	59.8	752x
4	30.3	1486x	37.4	1204x
6	23.1	1946x	28.0	1608x
8	19.9	2260x	23.3	1927x

Results: GPU Speedups

- Speedup is relative to OpenMP CPU time of 4,039 hours

Number GPUs	Modular Time	Modular Speedup	Serial Time	Serial Speedup
1	102.7	39x	113.9	35x
2	53.3	76x	59.8	68x
4	30.3	133x	37.4	108x
6	23.1	175x	28.0	144x
8	19.9	203x	23.3	173x

Overall Improvements



Pulling It All Together

- GPUs are fast.
 - New Bottlenecks are cropping up.
 - Modularization helps.
- There has been little work in energy efficiency.
 - Are we trading one problem for another?
 - Most facilities have limited energy capacity
- For Big Data, consumption metrics may be unsustainable.
 - Same hindrance as Exascale Computing
- CPU-based vs. GPU-based comparisons
 - Computation times are proven, what about efficiency?
- Serial-based vs. Modularized-based comparisons
 - Does our approach help or hinder consumption?

Energy Efficiency

- What aspects contribute the most?
 - Data transfer
 - Computation
 - I/O
- Looking at overall energy consumption is insufficient.
 - Does not factor performance.
- Other popular metrics:
 - Performance-per-Watt: Factors in power of the system.
 - Energy-Delay: Greater emphasis on performance.
 - Defined as $KWH \cdot H$.
 - Lower is better.
- Studying a single metric can be misleading!

Overall Energy Consumption

- Total energy used by an algorithm.
 - Simple metric to grasp.
- Comparison between systems and algorithms is straightforward.
- However, this metric does not factor the time consumed during the computation.
- Identical consumption is possible with dramatically different computation times

Performance-Per-Watt

- This metric is measured as “million-instructions-per-second-per-watt”.
- Somewhat factors computation time
- This metric is typically used when energy consumption is vital.
 - Systems that run on primarily batteries (e.g. notebooks, tablets, etc.)
- Not sufficient as one could sacrifice speed to increase this metric.

Energy-Delay

- The Energy-Delay metric is a relatively new metric.
 - Total Energy (KWH) multiplied by computation time.
- Some forms of the energy delay product square or cube the delay when greater emphasis on performance is desired.
- First proposed to evaluate trade-offs between circuit level power savings techniques for digital designs.

Implementation

- Leveraging pinned host memory minimizes idling between kernel launches applied to a given sub-volume.
- As mentioned, data writing is another source of GPU idle.
 - Ideally, the modularized approach would minimize this idling.
 - Is this savings moot with the complexity of the task on the CPU?
- Both implementations are written in a hybrid environment:
 - C++
 - CUDA (Ver. 5.0)
 - OpenMP

Evaluation

- Metrics to be measured:
 - Energy Consumption
 - To be measured in kilowatt-hours (kWh).
 - Performance-Per-Watt
 - Presented as voxels-reconstructed (and stored)-per-second-per-watt.
 - Modified from traditional MFLOPS-per-watt
 - Reconstruction is known to be limited in memory bandwidth and computation.
 - Energy-Delay Product
 - To ensure algorithm is not trading off speed for savings.
 - Square weighting of delay as suggested by other works (Laros III et. Al.).

Evaluation Cont.

- Four CT implementations measured:
 - Popular CPU-based Approach
 - Leverages OpenMP for multi-threading and MPI for parallel processing
 - Naïve GPU Implementation:
 - Baseline
 - No GPU-specific exploitation
 - Brute force Port of CPU-like implementation
 - Up to 8 GPUs
 - Serialized Approach
 - Up to 8 GPUs
 - Modularized Approach
 - Up to 8 GPUs

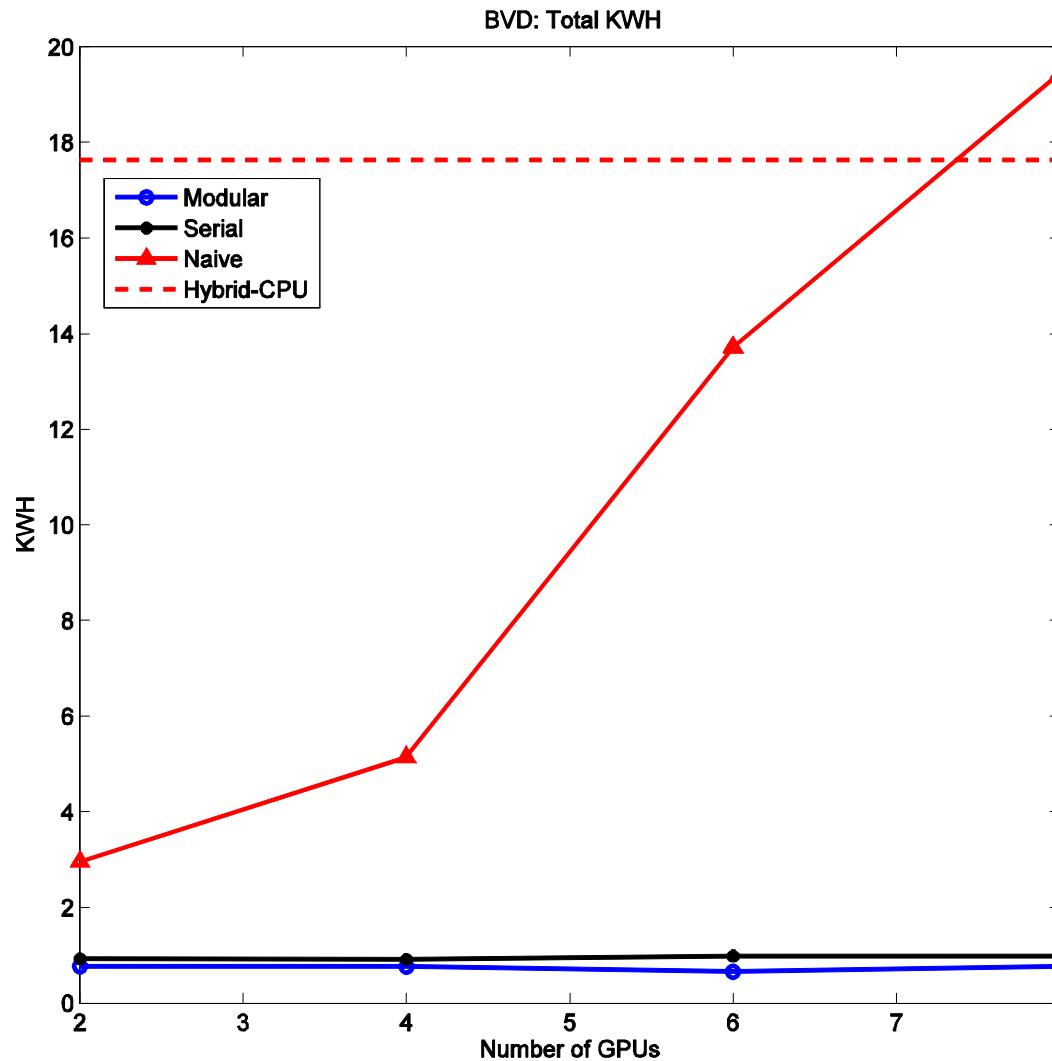
Evaluation Cont.

- System used:
 - Supermicro server
 - Dual octo-core Intel Xeon E-2687W @ 3.1GHz w/ Hyper threading
 - 512GB system memory
 - 8 NVidia Tesla M2090 GPUs
 - Contained in 2 NVidia S2090 units
 - Connected via 4 PCI-E 2.0 x16 host interface cards
 - Storage Media
 - 8 x 3TB 6 Gb/s drives in RAID 0
 - Controlled by an Intel Controller with 1 GB of DDR3 cache.
 - Metrics obtained with several P3 International P4460 Kill-A-Watt Monitors
 - GPUs disconnected for CPU measurements

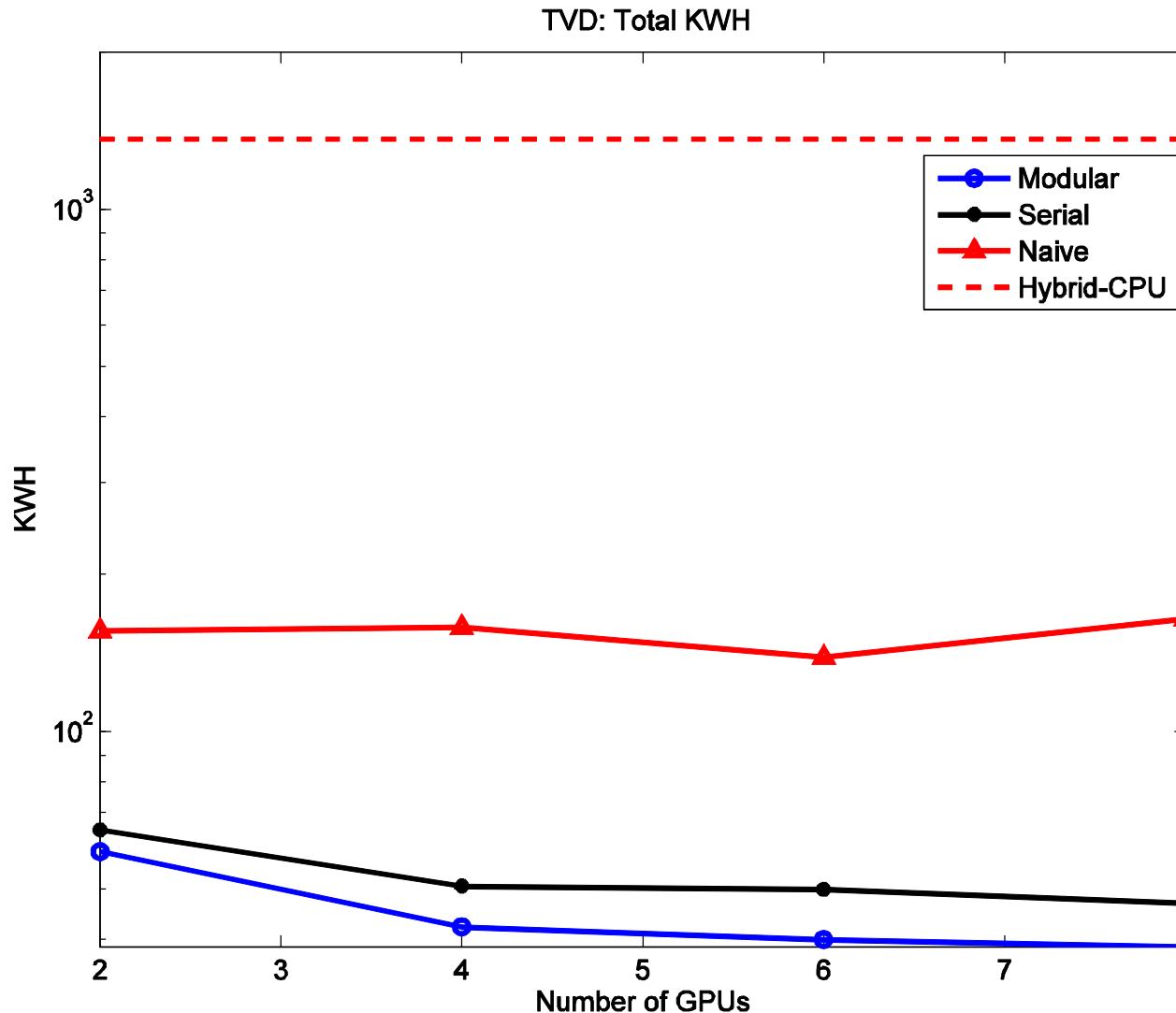
Evaluation Cont.

- Two datasets used
- 64 Gigavoxel Reconstruction
 - 4000x4000x4000 voxel volume
 - 1800 Projections
 - High-end of current acquisitions
- 1 Teravoxel Reconstruction
 - 10K x 10K x 10K voxel volume
 - 10,000 Projections
 - “Future-proof” dataset.

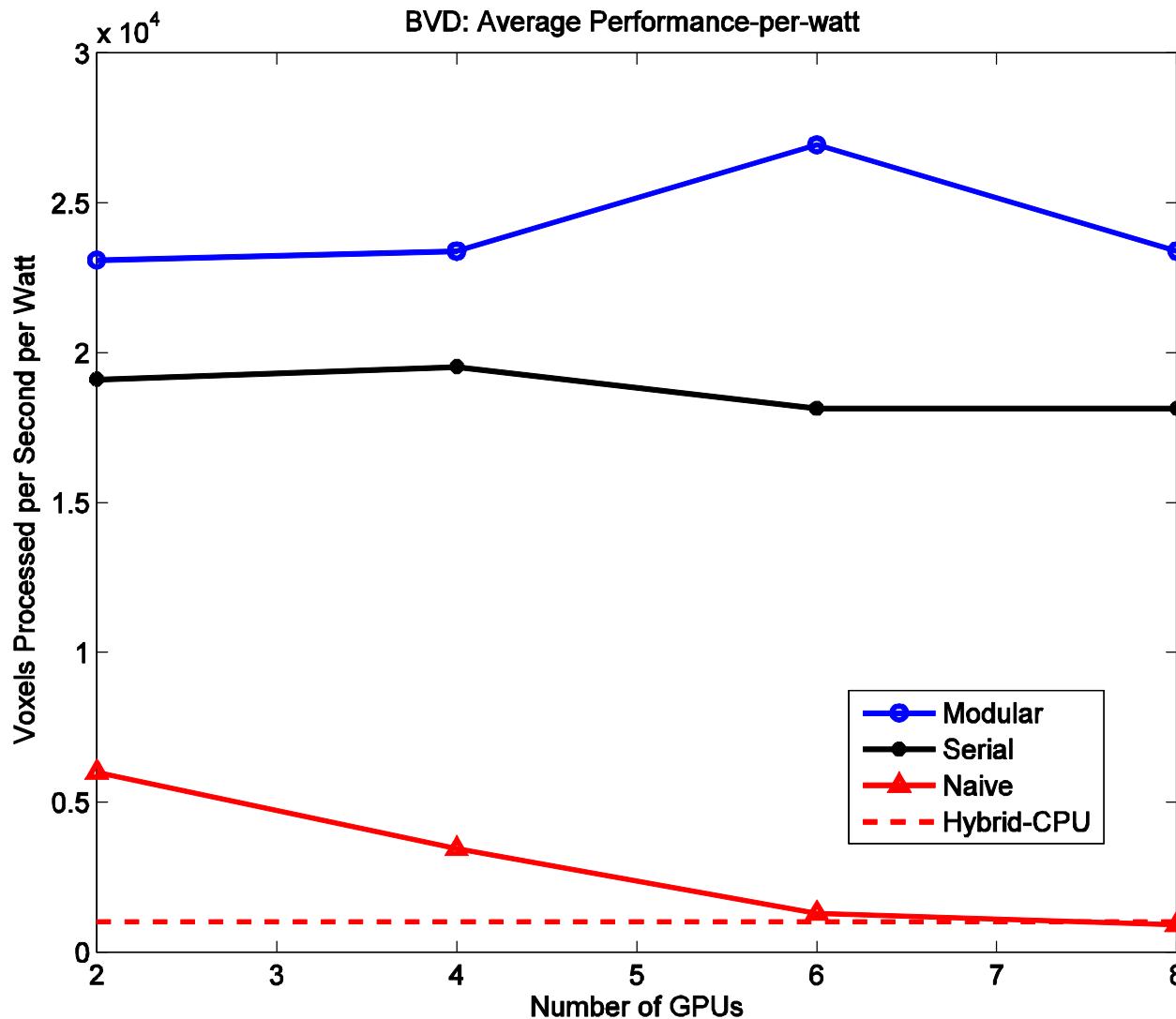
Energy Consumption 64 GV



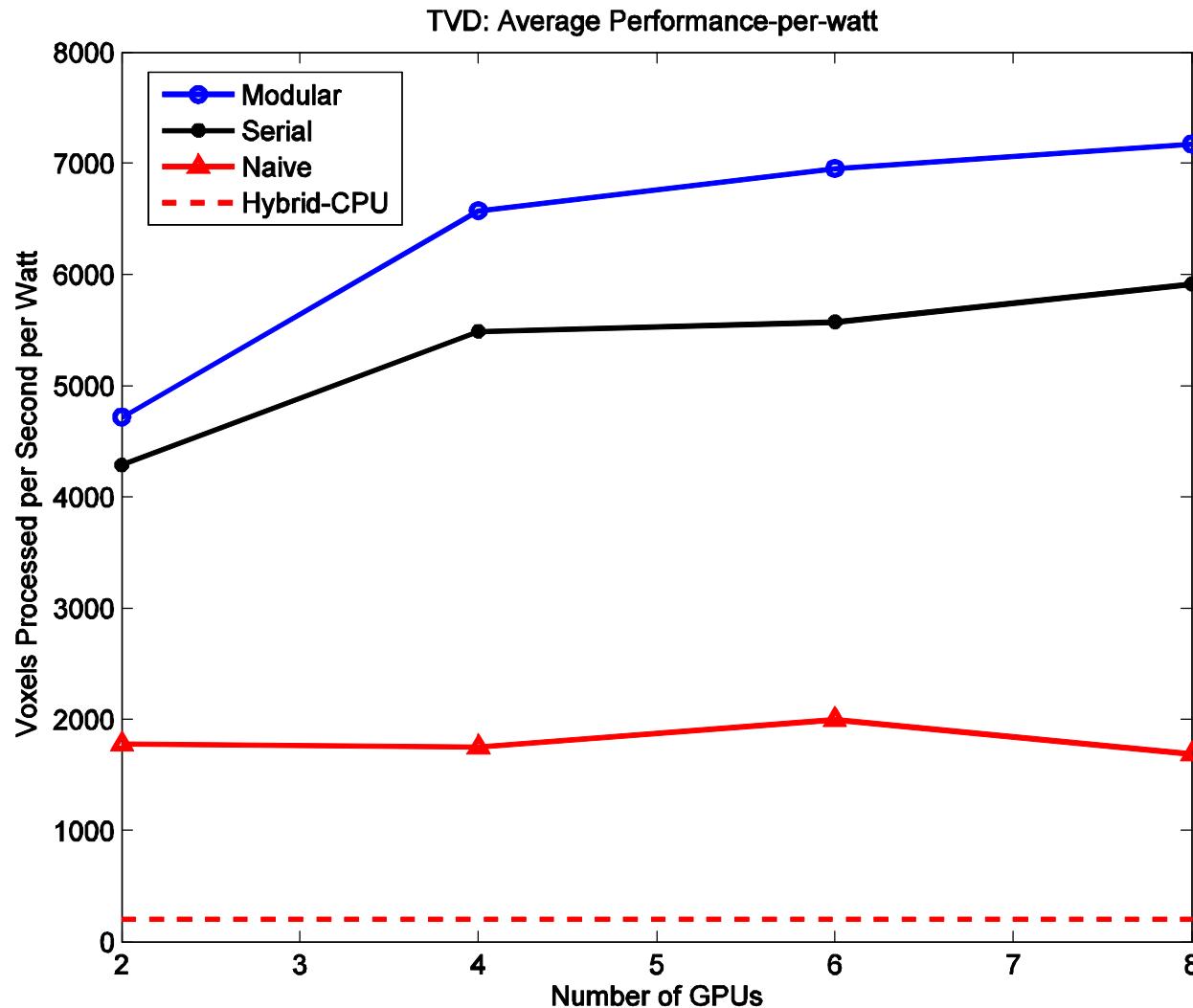
Energy Consumption 1 TV



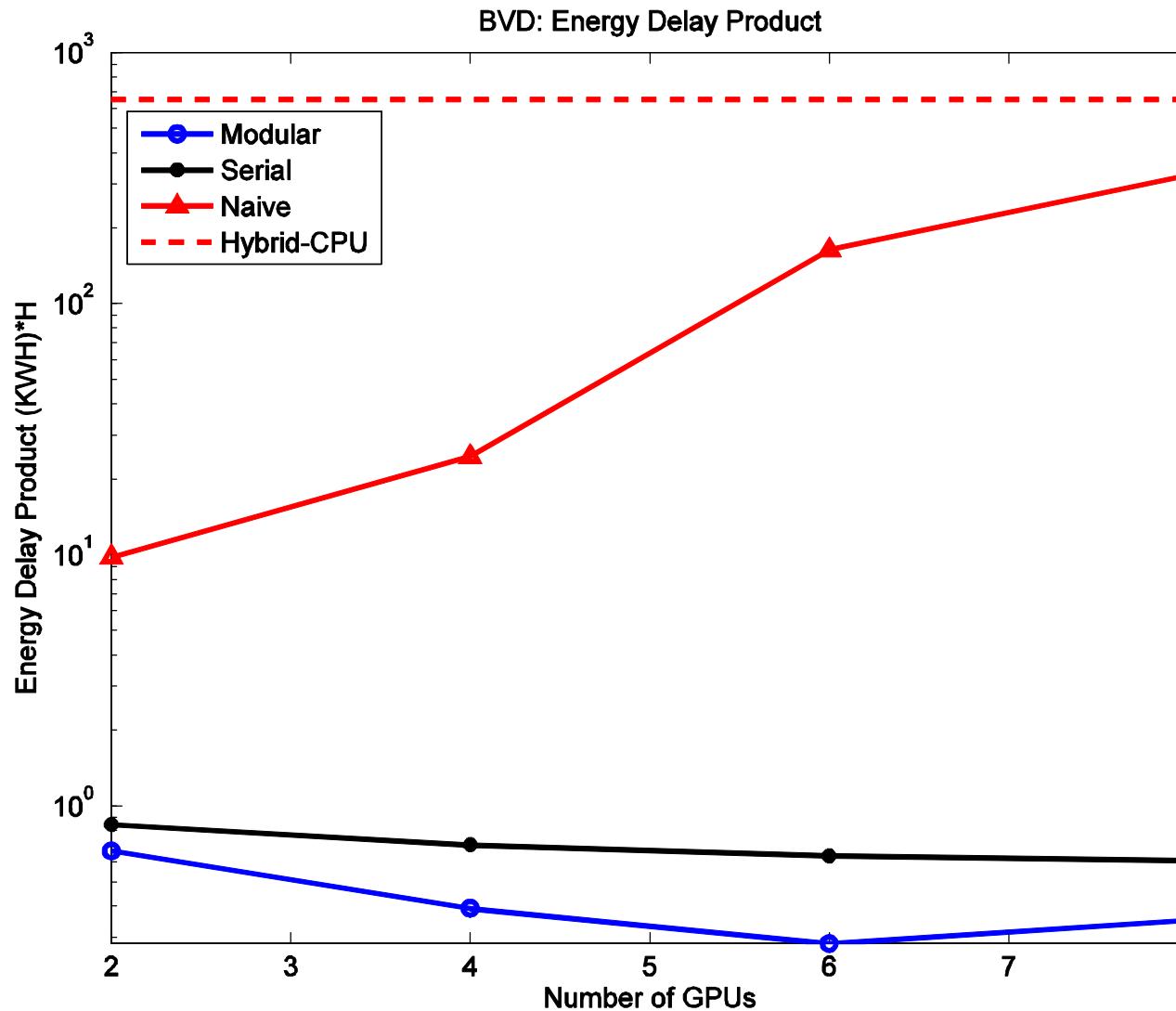
Performance-Per-Watt 64 GV



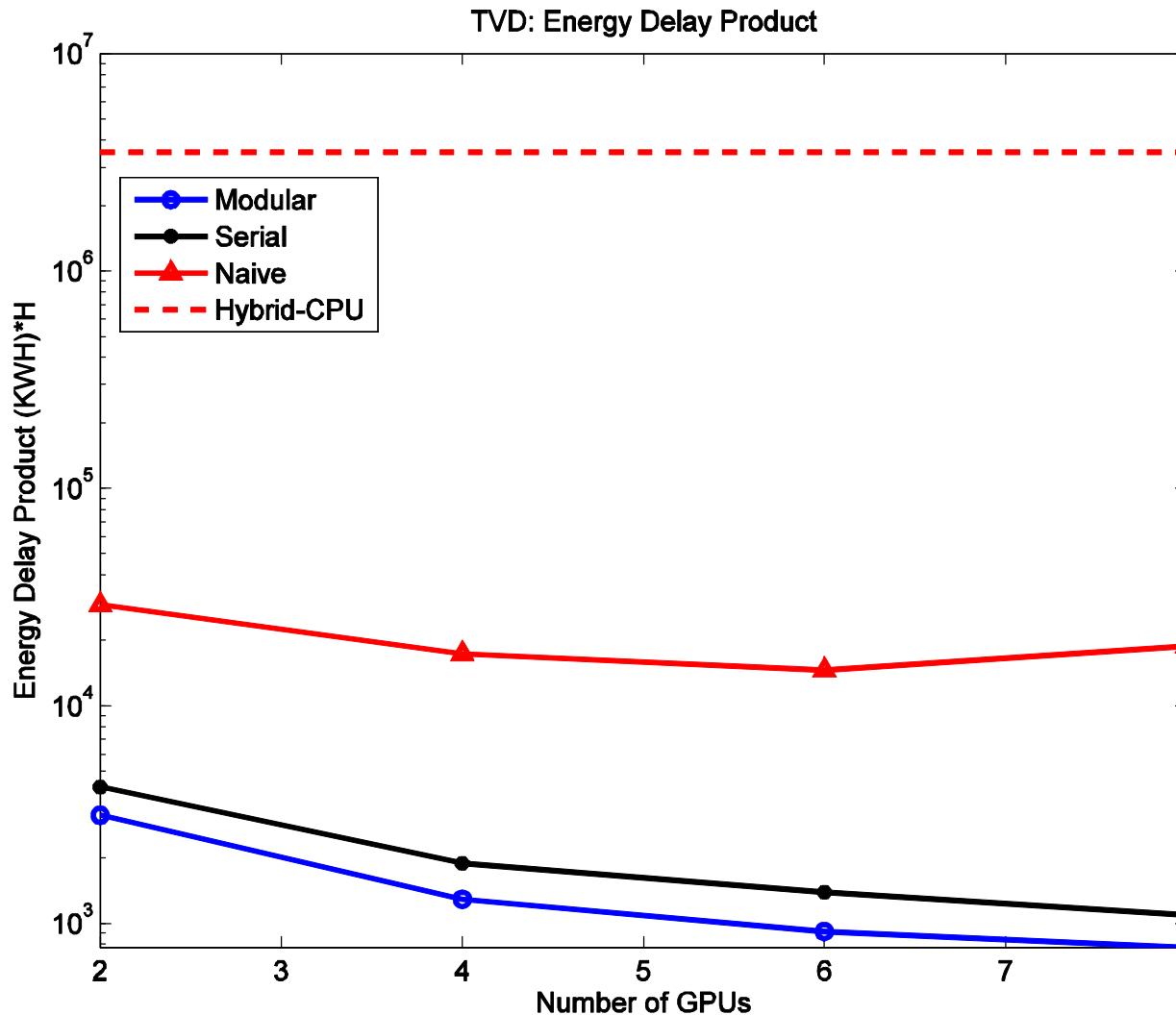
Performance-Per-Watt 1 TV



Results: Energy-Delay 64 GV



Results: Energy-Delay 1 TV



Conclusions

- This work has shown that leveraging GPUs not only improves computation time, but does so while improving multiple energy metrics for FDK reconstruction.
- The computation community is approaching energy limitations, intelligent algorithm design can help.
- Testing a heterogeneous cluster approach with promising results!
- What other algorithms can benefit from this work?