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Computed Tomography

Computed Tomography (CT) is an indirect 3D imaging technique.

Input: Set of X-ray images acquired about a center of rotation.

Output: Three-dimensional approximation of internal and external structure
Reconstruction: Convolution- Backprojection Algorithm (Feldkamp-Davis-Kress)
Geometry and Configuration of CT System determines magnification
Reconstruction algorithm is O(n?)
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= Graphics Processing Units are coprocessors that handle image
manipulation and now are being used for general purpose computing.

= Capable of Teraflops!

= This massive computational capability of GPUs can be harnessed for many
applications.

= Parallel computing environment
= Fast dedicated memory
= Fast Cache

= CT Reconstruction from projection images requires many arithmetic and
trigonometric operations for every volumetric pixel (voxel).



CT on GPUs ) o,

= “Porting” CT reconstruction on GPUs has shown major bottlenecks.
= Usually not an issue with medical datasets.
= Memory uploads/downloads to device (GPU).
= What ratio of x-ray data to volume should be allocated?

= Traditional CPU-based code reconstructed one slice at a time
= Predicable memory access even when multi-threaded.

=  GPU-based reconstruction

= Massively multithreaded environment creates scattered memory reads if large x-ray
data is utilized.

= Scattered Memory reads severely hinders performance!
= Suddenly reconstruction becomes an Irregular Problem!



Approach ) i,

= Maximize resources by blocking x-ray data and sub-volumes.
= Not necessarily a new idea...

= Counter Intuitive: Maximize x-ray data uploads to device!

=  Partition x-ray images and batch small x-ray image subsets
=  Volume: Use most GPU memory for direct volume storage.

= Utilize GPU-Specific Hardware/Features
=  Massive parallelism
= Texture memory/Texture Cache
=  Constant Memory
= Data prefetch to pinned memory for fast upload

= Dynamic Task Partitioning

= Ensures only relevant data is fetched and uploaded to the device



GPU Cache Hierarchy )
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Implementation ) ..

=  CUDA Programming environment and C++

=  Minimum requirements
= Fermi-based architecture or newer
= 1 GB device memory
= At least one x-ray sub image and one image plane must fit together on device

= Allows for 1 — 8 GPUs per node
= Dynamic Partitioning determined by slice-to-texture ratio (STR)

= STR may not always be satisfied:
= Resource maximization vs. Awkward task size
= Reconstruction size — Too large or small?
= Tail-end reconstruction



Dynamic GPU Tasking ) .

= For a given subvolume the amount of x-ray data necessary varies
= Due to the geometry of the system.
= Taken into account with STR to determine memory data allocation on device.
= Typically, reconstruction along center slices require less data.

= Using OpenMP 2.0, a CPU thread controls one GPU in the system
= Each GPU will usually be reconstructing sub-volumes of varying size
= Load balancing difficult if subvolume is fixed for all GPUs
= No synchronization necessary for CPU threads while algorithm is executing.

= No synchronization necessary between GPU threads either.

= One atomic operation to update reconstruction progress and determine next
subvolume to reconstruct.



FDK Kernel Layout LS

= |nput: X-ray data, index, and size, subvolume data, index, and size,
system geometry

= Get thread ID and voxel positions p,, ..., p, based on ID
= if Thread ID position within ROl then
= for Every slice j in slice block do
— Set register value to zero
— for Every image i in image subset do
» Determine texture interpolation coordinate in image i
» Update register value with texture fetch and scaling
— end for
— Update voxel p; in global memory with register value
= End for
= End if



Evaluation ) e,

= Supermicro workstation
* Dual Octo-core Intel Xeon E-2687W @ 3.1 GHz w/ hyper threading
= 512 GBRAM
= 4 PCI-E 2.0 x16 slots
= 2 NVidia S2090 Devices
= 4 Tesla M2090 GPUs each (8 total)
= Connected via 4 PCI-E host interface cards
= M2090
= 6 GB GDDR5 memory apiece

= 16 streaming multiprocessors (SM)

= 768 KB L2 Cache (load, store, and texture operations)

= 32 Compute cores per SM

= 48 KB L1 Memory (explicitly set, shared memory not used)
= 8 KB Constant Memory and Texture Cache

= Two datasets tested

= 64 Gigavoxels
= 1 Teravoxel



Results: Throughput 64 GV/ 1 GPU ) .
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Results: Throughput 64 GV/ 8 GPUs

Voxel Throughput for8 GPUs
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Results: Throughput 1 TV/ 1 GPU ) S,

Voxel Throughput (1 0K Voxels/1 GPU)
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Results: Throughput 1 TV/ 8 GPUs ) .

Voxel Throughput (10K Voxels/8 GPUs)
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Results: L1 Cache Hit-rates ) &,
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Results: L2 and Texture Cache Hit-rates
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Conclusion on Kernel Design ).

= Big Data CT Reconstruction kernels clearly benefit from an Irregular approach
= Massive parallelism has potential to destroy spatial locality
=  Counter Intuitive approach may create performance gains
= |rregular approach improves voxel throughput by improving cache-hit rates
= Small X-ray data batches and large subvolume tend to perform best.

= Unfortunately this is only a portion of the problem

= Thisis a Big Data problem
= Moving information to and from storage media
= Host-side data

= Next Problem: Rest of the system cannot keep up.



Big Data CT ) e

* |ndustrial-Scale Computed Tomography Datasets
= Differ from Medicine
= Medical datasets are typically less than a few gigabytes
= Industrial scale datasets are dozens of Gigabytes to several Terabytes!

= The reconstruction is large
= The fastest supercomputers cannot be used due to memory.
=  Waiting days to years is not practical!
=  Suboptimal GPU utilization.

= |ndustrial-Scale CT is really Big Data CT that impacts many areas.
= Non-Destructive Testing
= Materials Characterizations
= Quality Assurance
= Verification and Validation



Serial Implementation ) .,
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Modularization
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Results: GPU Speedups
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= Speedup is relative to single thread CPU time of 44,987 hours

m Modular Time | Modular Speedup Serial Speedup

102.7 438x
2 53.3 844x
4 30.3 1486x
6 23.1 1946x

8 19.9 2260x

113.9

59.8

37.4

28.0

23.3

395x

752x

1204x

1608x

1927x
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Results: GPU Speedups ) .

= Speedup is relative to OpenMP CPU time of 4,039 hours

m Modular Time | Modular Speedup Serial Speedup

102.7 113.9
2 53.3 76x 59.8 68x
4 30.3 133x 37.4 108x
6 23.1 175x 28.0 144x

8 19.9 203x 23.3 173x




Overall Improvements ) .
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Pulling It All Together ) .

=  GPUs are fast.

= New Bottlenecks are cropping up.
= Modularization helps.

= There has been little work in energy efficiency.
= Are we trading one problem for another?
= Most facilities have limited energy capacity

=  For Big Data, consumption metrics may be unsustainable.
= Same hindrance as Exascale Computing

= CPU-based vs. GPU-based comparisons
= Computation times are proven, what about efficiency?

= Serial-based vs. Modularized-based comparisons
= Does our approach help or hinder consumption?




Energy Efficiency ) .

=  What aspects contribute the most?
= Data transfer
= Computation
= |/O

= Looking at overall energy consumption is insufficient.
= Does not factor performance.

= Other popular metrics:
= Performance-per-Watt: Factors in power of the system.

= Energy-Delay: Greater emphasis on performance.
= Defined as KWH*H.
= Lower is better.

= Studying a single metric can be misleading!



Overall Energy Consumption )i

= Total energy used by an algorithm.
= Simple metric to grasp.

= Comparison between systems and algorithms is straightforward.

= However, this metric does not factor the time consumed during the
computation.

= |dentical consumption is possible with dramatically different
computation times




Performance-Per-Watt L

= This metric is measured as “million-instructions-per-second-per-watt”.
= Somewhat factors computation time

= This metric is typically used when energy consumption is vital.
= Systems that run on primarily batteries (e.g. notebooks, tablets, etc.)

= Not sufficient as one could sacrifice speed to increase this metric.




Energy-Delay iL

= The Energy-Delay metric is a relatively new metric.
= Total Energy (KWH) multiplied by computation time.

= Some forms of the energy delay product square or cube the
delay when greater emphasis on performance is desired.

= First proposed to evaluate trade-offs between circuit level
power savings techniques for digital designs.
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Implementation ) ..

= Leveraging pinned host memory minimizes idling between
kernel launches applied to a given sub-volume.

= As mentioned, data writing is another source of GPU idle.
= |deally, the modularized approach would minimize this idling.
= |s this savings moot with the complexity of the task on the CPU?

= Both implementations are written in a hybrid environment:
= C++
= CUDA (Ver. 5.0)
= OpenMP




Evaluation )

= Metrics to be measured:

= Energy Consumption
= To be measured in kilowatt-hours (kWh).

= Performance-Per-Watt
= Presented as voxels-reconstructed (and stored)-per-second-per-watt.
= Modified from traditional MFLOPS-per-watt

= Reconstruction is known to be limited in memory bandwidth and
computation.

= Energy-Delay Product
= To ensure algorithm is not trading off speed for savings.
= Square weighting of delay as suggested by other works (Laros Il et. Al.).



. Naous
Evaluation Cont. ) 52
= Four CT implementations measured:

= Popular CPU-based Approach

= Leverages OpenMP for multi-threading and MPI for parallel processing

= Naive GPU Implementation:
= Baseline
= No GPU-specific exploitation
= Brute force Port of CPU-like implementation
= Upto 8 GPUs

= Serialized Approach
= Upto 8 GPUs

= Modularized Approach
= Upto 8 GPUs




Evaluation Cont. ) .
= System used:

= Supermicro server
= Dual octo-core Intel Xeon E-2687W @ 3.1GHz w/ Hyper threading
= 512GB system memory

8 NVidia Tesla M2090 GPUs
= Contained in 2 NVidia S2090 units
= Connected via 4 PCI-E 2.0 x16 host interface cards

Storage Media
= 8x3TB 6 Gb/s drivesin RAID 0
= Controlled by an Intel Controller with 1 GB of DDR3 cache.

Metrics obtained with several P3 International P4460 Kill-A-Watt Monitors

GPUs disconnected for CPU measurements
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Evaluation Cont.

= Two datasets used

= 64 Gigavoxel Reconstruction
= 4000x4000x4000 voxel volume
= 1800 Projections
= High-end of current acquisitions

= 1 Teravoxel Reconstruction
= 10K x 10K x 10K voxel volume
= 10,000 Projections
= “Future-proof” dataset.



Energy Consumption 64 GV h

BVD: Total KWH
20 \
18 D
—8— Modular
16 L —— Serial _
=—ate— Naive
= = = Hybrid-CPU

14

12

Number of GPUs




Energy Consumption 1 TV ) .
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Performance-Per-Watt 64 GV 1) .

x 10* BVD: Average Performance-per-watt
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Performance-Per-Watt 1 TV ).

TVD: Average Performance-per-watt
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Results: Energy-Delay 64 GV ) o,
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Results: Energy-Delay 1 TV
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Conclusions )

= This work has shown that leveraging GPUs not only improves
computation time, but does so while improving multiple
energy metrics for FDK reconstruction.

= The computation community is approaching energy
limitations, intelligent algorithm design can help.

= Testing a heterogeneous cluster approach with promising
results!

= What other algorithms can benefit from this work?




