1

SAND2014-20041C

Cluster-Based Approach to a Multi-GPU CT
Reconstruction Algorithm

Laurel J. Orr, Member, IEEE, Edward S. Jimenez, Member, IEEE, and Kyle R. Thompson, Member, IEEE,

Abstract—Conventional CPU-based algorithms for Computed
Tomography reconstruction lack the computational efficiency
necessary to process large, industrial datasets in a reasonable
amount of time. Specifically, processing time for a single-pass,
trillion volumetric pixel (voxel) reconstruction requires months
to reconstruct using a high performance CPU-based workstation.
An optimized, single workstation multi-GPU approach has shown
performance increases by 2-3 orders-of-magnitude; however,
reconstruction of future-size, trillion voxel datasets can still take
an entire day to complete. This paper details an approach
that further decreases runtime and allows for more diverse
workstation environments by using a cluster of GPU-capable
workstations. Due to the irregularity of the reconstruction tasks
throughout the volume, using a cluster of multi-GPU nodes
requires inventive topological structuring and data partitioning
to avoid network bottlenecks and achieve optimal GPU uti-
lization. This paper covers the cluster layout and non-linear
weighting scheme used in this high-performance multi-GPU CT
reconstruction algorithm and presents experimental results from
reconstructing two large-scale datasets to evaluate this approach’s
performance and applicability to future-size datasets. Specifically,
our approach yields up to a 20 percent improvement for large-
scale data.

I. INTRODUCTION

Computed Tomography (CT) uses a series of X-ray images
taken at various angles around an object to generate cross-
sectional slices, also called image planes, to approximate the
object’s interior and exterior structure. These slices are then
combined to form a reconstructed, 3-dimensional volume of
the imaged object [1]. Although CT is typically associated
with the medical field, it is commonly used in industry
for internal component inspection and other nondestructive
evaluation applications. It has been shown that utilizing the
highly parallel architecture of the Graphics Processor Unit
(GPU) on a single workstation can decrease the runtime by 2—
3 orders-of-magnitude [2]. Industrial-size volumes, which are
up to trillions of volumetric-pixels (voxels) in size, however,
can be anywhere from 10 to 10,000 times the size of medical
datasets. This means even when using a GPU-based approach,
reconstruction can still require days to months to complete.
Additionally, with the new advancements in high performance
imaging technology [3]-[6], big data, Teravoxel volumes may
soon be possible. However, with the current techniques, it
would not be possible to reconstruct that massive a volume
in a reasonable amount of time.

Laurel J. Orr and Edward S. Jimenez are with Sandia National Laboratories
Software Systems R&D, Albuquerque, NM, {ljorr, esjimen}@sandia.gov.

Kyle R. Thompson is with Sandia National Laboratories Struc-
tural Dynamics & X-Ray Non-Destructive Evaluation, Albuquerque, NM,
krthomp @sandia.gov.

Previous work by Orr and Jimenez [7], [8] made progress
towards a solution by implementing a modularized, GPU-
based, FDK reconstruction algorithm to run on a single
node. The novelty of their approach was to separate the
GPU computation from the data I/O to increase the GPU
utilization and improve overall performance. By utilizing a
high performance workstation, they were able to reconstruct
a synthetic Teravoxel dataset in under 24 hours. However,
their approach was limited to a single, high performance
workstation, which is not a realistic setup for many users
and is unable to scale. Since their computation was reaching
the limits of one node’s capabilities, further improvements to
runtime were not possible.

Our work builds upon this single node approach and imple-
ments a novel, cluster-based big data reconstruction algorithm.
We use the FDK reconstruction algorithm, although we could
use any algorithm with slight modifications [9]. The rest of this
paper will first give an overview of our approach in Section
IT and then give details on the critical components in Section
III. We evaluate our implementation in Section IV and finally
give concluding remarks and propose future work in Section
V.

II. APPROACH

To improve performance, bring runtimes into a reasonable
range, and allow for more flexible computing environments,
this approach performs reconstruction across a cluster of com-
puters where each computer has access to one or more GPUs.
Note that we will use the term GPU to refer to both the chip
and the entire device (graphics card), depending on the context.
Implementing a high-performance yet flexible clustered, multi-
GPU approach is a doubly irregular problem due to the variety
of possible GPU-capable workstation environments and the
irregular nature of large-scale reconstruction on GPUs [8],
[10]. In particular, the ratio of the size of the input to the
size of the output for a GPU is not constant throughout the
volume due to magnification artifacts, which means the data
cannot be linearly partitioned across the GPUs. Additionally,
the implementation needs to ameliorate the potential network
bottlenecks arising from transferring Gigabytes to Terabytes
of data across the cluster.

At a high level, this approach declares one node to be a
master, one to be an output node, and the rest to be slaves
where each slave must have at least one available GPU. The
master dynamically partitions the reconstruction volume across
the cluster and instructs each slave to run a single, multi-GPU
reconstruction task on its respective sub-volume following the

R

Fig. 1. One Node 1/O

method presented in [7], [8]. Each slave requests a subset of
preprocessed X-ray sinogram images (input to GPUs) from
the master to minimize the number of data transfers while
maintaining that all sinogram images and reconstructed image
planes (output of GPUs) fit in the host’s memory (host refers
to the node/workstation where the GPU resides). The slave
iteratively runs the reconstruction on a block of sinograms,
transfers the reconstructed image planes to the output node
once reconstruction is finished, and requests a new block of
sinogram images. This process is repeated until the entire
reconstruction task is completed.

III. IMPLEMENTATION
A. Cluster Structure

In traditional reconstruction algorithms, there is typically
a single node with a large amount of storage space that
receives and stores all the raw X-ray data from the imaging
system. Since it is not guaranteed that the entire dataset can be
transferred to each workstation, cluster-based reconstruction
algorithms utilize a single storage device to handle all data
I/0. For a cluster, the master is typically the node responsible
for providing all I/O operations [11]. Due to not only the
massive amount of data to be transferred across the cluster
(all sinograms and image planes) but also the fact that GPUs
process the X-ray images and output image planes faster than
the host can transfer data, network bottlenecks will likely
occur at the master when slaves start requesting input data
while simultaneously transferring reconstructed image planes.
Due to limited bandwidth, slaves will experience delays when
transferring data, resulting in suboptimal GPU utilization and
performance.

To alleviate network congestion, this implementation allows
another node other than the master to handle writing data to
storage media while the master still handles reading sinogram
images (see Figure 2). With two nodes handling data I/O,
although the bottleneck is not completely annihilated, it is
significantly reduced due to the modularized nature of the
reconstruction algorithm. Additionally, the net data transfer
is the same as when there is only one I/O node, so we are not
unnecessarily sending data across the network.

B. Load Balancing

To allow for versatile, heterogeneous clusters, we must
accommodate nodes having varying GPU compute capabili-
ties (architecture and supported features). If the volume was

Fig. 2. Two Node I/O

naively equally split between the nodes, performance would
be limited by how fast the weakest node could process. For
example, given three nodes all with the same model of GPU
where two nodes had 8 GPUs and the third only had one,
then the two nodes with 8 GPUs would sit idle waiting for
the single GPU node to complete its task. If a larger portion of
the volume went to the two 8 GPU nodes, the overall runtime
and GPU utilization would decrease. However, as mentioned
in Section I, the amount of input needed to reconstruct a
single image plane varies depending on the overall size of
the reconstructed volume and where the image plane resides
in the volume. This indicates that a non-uniform, dynamic
partitioning scheme must be implemented to achieve optimal
performance. Additionally, since not all GPUs have the same
capabilities or memory configurations, the partitioning scheme
cannot be linear in the number of GPUs on the node.

To maximize performance and reduce the amount of net-
work communication between nodes, the master divides the
volume prior to computation depending on the overall size of
the reconstruction (number of reconstructed image planes) and
on the following parameters of each slave:

o Number of GPUs: The more GPUs on a node, the greater
that node’s processing power.

« Host-to-Device Memory Ratio: This is total free system
memory divided by the sum of the total free device
memory across all devices contained within a node. As
this ratio increases, so does the total amount of data
transfers from host to device prior to the host requiring
additional data from the network. Since the transfers
across the network are slower than those between GPU
and host, we want this ratio maximized. Additionally,
when this ratio is too small, the host may not be able
to hold enough data to fill the GPU’s memory, which
hurts GPU utilization and performance. However, this
parameter has diminishing returns after a certain point.
Specifically, when, for one sub-volume, the time spent
transferring data from host to GPU is longer than the time
to send data across the network, then an equivalent host
system with more GPU memory (smaller ratio) would

perform faster on the same amount of data. In this case,
the system with the smaller memory ratio should receive
a larger sub-volume. In other words, we do not want
systems with an extremely large ratio to dominate the
partition.

« Total Number of GPU Multiprocessors: More multi-
processors implies there are more available CUDA cores
for computing; however, multiple GPUs with a moderate
number of multiprocessors is preferred to one GPU with
a large number of multiprocessors.

o« Lowest GPU Compute Capability: An increase in
compute capability typically represents an incremental
increase in performance. This is the least significant factor
in determining the partition.

While there are more parameters we could have used
in determining the partition, we isolated what we believed
were key, easily accessible factors. Additionally, while this
scheme does depend on the total number of image planes
being reconstructed, that parameter could be set to a constant,
allowing for the cluster to be configured once for multiple
reconstructions.

To explain how the variables above are used, assume there
are n slave nodes, and let p; be the parameter vector of node
1 such that

gi
N
pi = m;
C;

where

e g; is the number of GPUs.

o 7; is the the ratio of host memory to total GPU memory.
o m; is the total GPU multiprocessor count.

o c; is the lowest GPU compute capability.

The master then calculates
s = WP

where

e sis a1l xmn row vector such that s[i] is the amount of
work assigned to node 7.
e W is a 1 x 4 user-defined linear or non-linear operator
that acts on P.
« P=1p; Pl
More specifically, the operator W is defined as the compo-
sition of two user-defined operators,

W =WzrF.

F applied to matrix P is a column-wise functional operation
to each p; so that

§1 Egzg
T = | £, (my)

fa(ci)

Note that an operator in F can use information on the total
number of reconstructed image plans or information from
other nodes. For example, an operator could be a normalization

function that normalizes the value with respect to all other
nodes.
Wz applied to Fp; is a 1 x 4 weighting operator so that

wr1 * f1(9:)
wro * fao (1)
wr 3 * fz(m;)
wr4* f1(c;)

Wi = W Fji, =

Although we could achieve that same weighting scheme
without Wxr by incorporating the linear weights into the
functions, by separating the two operators, we allow for better
understanding and control over the linear and nonlinear aspects
of the weighting scheme.

Lastly, we represent the work allocated to node ¢ as a
percentage of the total volume. To transform s accordingly,
we compute

WP

~ rowsum (WP)’

For example, suppose you want to exponentiate the number
of multiprocessors, cap the maximum memory ratio at 2, and
weight the compute capability as ten times more important
than the other parameters. The resulting operators are

f1:9i > gi

fa r i — max(ry, 2)
f3:m; — expm;
f4 G G

F=

and
W;:[l 1 1 10}.

Again, we could allow f; to be ¢; — 10c¢;, but we want to
keep the linear and nonlinear components disjoint.

IV. EXPERIMENTAL EVALUATION
A. Weighting Setup

We tried three F operators to determine the optimal parti-
tioning scheme by testing the operators on synthetic cluster
configurations. After applying the partitioning algorithm to
a variety of configurations, we empirically determined the
schemes that were best at balancing the data [12]. For both
schemes, the weighting operator YW, which will to be tuned
by the user, made the number of GPUs the most important
parameter, followed by the memory ratio, then the number
of multiprocessors, and lastly the lowest compute capability.
The operator also normalized each parameter. Additionally,
since all parameters except the host-to-device memory ratio
are expected to linearly affect the processing power of node ¢,
we defined f1, f3, and fy to be the identity function. fs, on
the other hand, had to be defined differently.

As explained previously, systems with a large amount of
host memory but few GPUs give diminishing returns on
performance because even though their memory ratio is very
large, their processing is constrained by having few GPUs.
To account for this and limit the impact of the host-to-device
memory ratio on the volume allocation, f; was defined as a
different non-linear function in each scheme.

Scaled Value

Host-to-Device Mem Ratio

Fig. 3. Log Curve for Scheme 1

Scaled Value

Host-to-Device Mem Ratio

Fig. 4. Double Logistic Curve for Scheme 2

Scheme 1 Used a log function (see Figure 3).
fa(r;) =axlog(r; +b)+c

where a, b, and d are user-defined, constant parameters
tuned to optimize the scaled value for a given cluster.
Scheme 2 Used a double logistic function (see Figure 4).

fa(ri) = sign (r;i —d) (1 — e > —a

where d, s, and a are user-defined, constant parameters
tuned to optimize the scaled value for a given cluster.

Scheme 3 Used a double logistic function like Scheme 2
except we set s to be dependent the total number of image
planes reconstructed, denoted as #IP. Specifically, the
function is

_(ri—d)?
falr) =sien (s =) (1= ¢ 77)

where d and a are user-defined parameters. As more
image planes are reconstructed, the curve becomes more
shallow (see Figure 5 compared to Figure 4). The reason
we tried this scheme is because when there are fewer
image planes to reconstruct, this ratio becomes less
important more quickly. In other words, since the network
traffic is less with fewer image planes, a small change
in the memory ratio has a more dramatic impact on
performance.

Scaled Value

Host-to-Device Mem Ratio

Fig. 5. Double Logistic Curve for Scheme 3
Node 1 | Node 2 | Node 3 | Node 4

Num GPUs 3 3 4 2

Mem Ratio 12 4 12 8
TotalMP 32 32 52 12
CC 2.0 2.0 2.0 2.0
Scheme 1 26.2 22.7 34.2 16.9
Scheme 2 27.7 21.1 35.7 15.6
Scheme 3 (2k) 26.6 20.6 34.6 18.1
Scheme 3 (10k) 28.3 20.8 36.3 14.6

TABLE I

SYNTHETIC CLUSTER 1 RESULTS

B. Weighting Results

Tables 1-4 list the properties of the 4 synthetic, 4 node
cluster configurations we used to test our weighting schemes.
We used 4 node clusters with each node having compute
capability 2.0 to keep the results consistent with those from our
experimental evaluation where we also had 4 nodes each with
compute capability 2.0 (it remains future work to try GPUs
with a variety of compute capabilities). The last four rows
of of each table contain the volume percentage allocated to
each node. The last two rows are both the volume percentage
allocated by scheme 3 with different #IP values. The first
row of scheme 3 has #IP = 2,000 and the second row of
scheme 3 has #IP = 10, 000.

Across all cluster configurations, the partitioning results
are similar, but slight differences can have a large impact
on runtime, especially for big data reconstructions. On these
Terabyte-sized inputs, reconstruction of a single image plane
can take up to a minute. This means a one or two percent vol-
ume allocation difference could result in a runtime difference
of a few hours.

Node 1 | Node 2 | Node 3 | Node 4

Num GPUs 4 4 4 4

Mem Ratio 32 16 8 4
TotalMP 52 52 52 52
CC 2.0 2.0 2.0 2.0
Scheme 1 27.9 26.0 24.0 22.1
Scheme 2 28.0 28.0 23.2 20.8
Scheme 3 (2k) 26.6 26.6 26.1 20.6
Scheme 3 (10k) 31.9 28.2 20.6 19.4

TABLE II

SYNTHETIC CLUSTER 2 RESULTS

Node 1 Node 2 | Node 3 | Node 4

Num GPUs 1 2 3 4
Mem Ratio 16 4 4 16
TotalMP 52 32 52 64
CcC 2.0 2.0 2.0 2.0
Scheme 1 224 18.1 24.8 34.6
Scheme 2 24.1 16.5 23.2 36.2
Scheme 3 (2k) 23.9 16.7 23.4 36.0
Scheme 3 (10k) 25.4 15.2 21.9 37.6

TABLE III
SYNTHETIC CLUSTER 3 RESULTS
Node 1 | Node 2 | Node 3 | Node 4

Num GPUs 3 3 1 8

Mem Ratio 64 16 4 8
TotalMP 32 64 16 128
CC 2.0 2.0 2.0 2.0
Scheme 1 23.6 24.3 9.5 42.6
Scheme 2 22.5 26.8 8.6 422
Scheme 3 (2k) 21.1 25.5 8.3 45.1
Scheme 3 (10k) 26.3 27.0 7.1 39.5

TABLE IV

SYNTHETIC CLUSTER 4 RESULTS

Table 1 shows a 3, 3, 4, 2 GPU configuration where Node
4 is the weakest while Node 3 is the strongest with the
most GPUs and multiprocessors. Node 1 and 2 are similar
with Node 1 having three times the host-to-device memory
ratio as Node 2. However, Node 1 does not receive three
times the volume as Node 2 since the memory ratio is less
significant than the number of GPUs. Node 1 is not going to
be able to compute three times the number of image planes
as Node 2 because only having 3 GPUs is the bottleneck in
its computation. Lastly, the difference between scheme 3 (2k)
and scheme 3 (10k) is most notable in Node 4. With 2k image
planes, Node 4 receives 18.1 percent of the volume, while with
10k image planes, it receives 14.6 percent. With only 2k image
planes to reconstruct, the relative slowness of transferring data
across the network is more noticeable, making Node 4’s larger
memory ratio more beneficial that with 10k image planes.

Table 2 shows a configuration where all nodes have 4 GPUs
and the same number of multiprocessors. The only factor
differentiating them is the host-to-device memory ratio (Node
1 has the greatest and Node 4 the least). Again, even though
Node 3 has double the memory ratio as Node 4, the number
of GPUs is the dominating factor; so, Node 3 does not receive
double the volume as Node 4. Scheme 3 (10k) has the widest
range of allocations with Node 4 receiving 19.4 percent and
Node 1 receiving 31.9 percent, which makes sense given the
large number of image planes to reconstruct. Scheme 1 has the
narrowest allocation range with Node 4 receiving 22.1 percent
and Node 1 receiving 27.9 percent, making it a poor choice
for large reconstructions where Node 4 would lag behind.

Table 3 shows a 1, 2, 3, 4 GPU configuration. Scheme 2 and
3 (2k) are nearly identical in their volume allocations. Scheme
3 (10k) allocates less volume to Node 2 and 3 and more to
Node 1 and 4 than the other schemes because Node 1 and 4’s
high memory ratios are becoming more significant with the
larger number of image planes. Although schemes 1, 2, and

3 are slightly more uniform in their allocation, with a large
number of image planes, scheme 3 (10k) will likely be more
efficient.

Table 4 shows a 3, 3, 1, 8 GPU configuration where Node 3
has 1 GPU and a memory ratio of only 4 while Node 4 has 8
GPUs with a memory ratio of 8. We also see Node 1 and 2 both
have 3 GPUs with a memory ratio of 64 and 16 respectively.
Even though Node 1 has four times the memory ratio as Node
2, it actually receives less volume than Node 2. This is because
both of their memory ratios are extremely large; so, we see
little to no performance benefit from giving more volume to
Node 1. In fact, Node 1’s lower number of multiprocessors,
32 compared to Node 2’s 64, will hurt its performance more.
We see that Node 4 receives the most volume in all schemes,
which is as expected given its high number of GPUs.

Overall, these schemes better partition the data than a
uniform partition, but scheme 3 is the one we think best takes
into account each node’s capabilities. Scheme 3 also varies
the partition depending on the number of image planes to
reconstruct, which will improve performance and increase the
partitioning scheme’s ability to balance the work for a variety
of heterogeneous clusters. Therefore, we used scheme 3 to
partition our volume in our experimental evaluations.

C. Cluster Setup

We used 5 nodes (1 master and 4 slaves) with a total
of 14 Nvidia Tesla GPUs. The 14 Tesla GPUs consisted of
8 M2090 devices (512 CUDA cores/6GB RAM), 4 C2070
devices (448 CUDA cores/ 6GB RAM), and 2 C2050 devices
(448 CUDA cores/ 3GB RAM). As mentioned previously, all
of these graphic cards had compute capability 2.0; so, we were
unable to test its impact on performance.

For our one node I/0 implementations, (one node was doing
all the I/O as in Figure 1), we used an 8x HDD RAIDO array.
For our two node implementation (separate nodes for reading
input and writing output as in Figure 2), we used an 8x HDD
RAIDO array for input I/O and a 3x HDD RAIDO array for
output. All HDDs used in the RAID arrays were 3TB. The total
cluster memory was approximately 1TB, unevenly distributed
between the master and slave nodes.

We used CUDA version 5.0, MPICH [13], and OpenMP
version 2.0. Two of the nodes used Microsoft Server 2012 and
the remaining three used Microsoft Server 2008. We used a
synthetic Teravoxel dataset made up of 10,000 100 Megapixel
projections (1 trillion voxels). We ran our reconstruction using
a uniform partitioning scheme where all nodes get the same
percentage of image planes (25 percent) and using scheme
3 as described above with one modification. Due to previous
work showing the reconstruction algorithm does not scale well
beyond 4 GPUs [7], we set f1 = max(g;,4) (g; is the number
of GPus on node 7).

D. Experimental Results

To test our implementation, we created two clusters. The
cluster shown in Table 5 had a 5, 1, 3, 4 GPU configuration
with Node 2 and 4 having the highest host-to-device memory
ratio. Node 1 had the largest number of GPUs, 5, but the

Node 1 | Node 2 | Node 3 | Node 4
Num GPUs 5 1 3 4
Memory Ratio 5.8 21.6 7.9 29.9
TotalMultiProc 74 14 46 64
Compute Capability 2.0 2.0 2.0 2.0
Uniform Partitioning 25.0 25.0 25.0 25.0
Weighted Partitioning 32.1 10.2 24.3 333
TABLE V
EXPERIMENTAL CLUSTER 1
Node 1 | Node 2 | Node 3 | Node 4
Num GPUs 4 3 3 4
Memory Ratio 8.4 7.4 7.9 29.9
TotalMultiProc 56 46 46 64
Compute Capability 2.0 2.0 2.0 2.0
Uniform Partitioning 25.0 25.0 25.0 25.0
Weighted Partitioning 254 21.4 20.7 323
TABLE VI

EXPERIMENTAL CLUSTER 2

lowest memory ratio, 5.8. Our dynamic partitioning scheme
allocated the smallest volume to Node 2, 10.2 percent and the
largest to Node 4, 33.3 percent. Even though Node 4 had 4
GPUs compared to Node 1’s 5, it had a significantly higher
memory ratio, meaning it should get more of the volume.

The cluster shown in Table 6 had a 4, 3, 3, 4 GPU
configuration with Node 1, 2, and 3 all having a memory ratio
of around 8. Node 4 had a ratio of 29.9, meaning it received the
most volume since it also had the largest number of GPUs.
Node 1 had a slightly higher memory ratio and number of
multiprocessors than Node 2 and 3; so, it received a little
more volume to reconstruct.

Our experimental results are shown in Table 7. We tested
our one node I/O implementation on both clusters and our
two node implementation on the second cluster. We wanted
to compare the one and two node I/O implementations on a
cluster that stressed the network, and the second cluster, being
slightly more uniform in volume allocation, does this more
than the first cluster.

Our results show that we more than double performance
from using a uniform partitioning scheme to our weighted
partitioning scheme. In all cases, the reconstruction took over
30 hours for the uniform partitioning. Due to time limitations,
we chose not to let the reconstruction run until completion.
Cluster 1 and cluster 2 both had similar runtimes for the
one node I/O, weighted implementation, further showing the
weighting scheme’s adaptability. There was a 9 percent in-
crease in performance using one node for I/O versus two
nodes. This shows that while reducing the I/O bottleneck at
the master node does improve performance, the benefit is not
as significant as using a better load balancing scheme.

Uniform | Weighted
Cluster 1 with 1 Node I/O >30hrs 14.1hrs
Cluster 2 with 1 Node I/O >30hrs 14.2hrs
Cluster 2 with 2 Node I/O >30hrs 12.9hrs

TABLE VII
RUNTIME RESULTS

V. CONCLUSION

This work has shown that future-sized, big data CT re-
construction can be done in a feasible amount of time. By
implementing a modularized algorithm for reconstruction, tak-
ing advantage of the highly parallel architecture of the GPU,
and utilizing the compute power of a cluster, we were able
to significantly reduce the runtime for reconstruction. Further,
by making the cluster consist of heterogeneous, GPU-capable
workstations, we have allowed a variety of users and NDE labs
with different workstations to run CT reconstruction without
needing expensive and specialized hardware. This means CT
can potentially be used as a standard quality control measure
due to the improved reconstruction performance.

Although our work has better prepared the scientific com-
munity to handle future-sized CT reconstruction, there are
many problems that still need to be addressed. Can we take
the energy efficiency results from [12], where they showed
a single node, GPU-based reconstruction to be more energy
efficient than one without GPUs, and show them to be true to
our approach? For other future work, we want to test our load
balancing scheme on a wider variety of clusters where nodes
have differing compute capabilities. We would also research
making the cluster configuration automated. Instead of the
parameters being hand-tuned, which takes time and skill, we
would devise an algorithm to determine the parameters which
work best for a particular cluster.

We also want to look at distributing the data using a
distributed file system to alleviate the network congestion
caused by the massive amount of input and output data
being transfered across the network. By using a distributed
file system, we would also pave the way to compute a
reconstruction on “the cloud”, which eliminates the need to
purchase hardware and GPUs.

We believe this work has a significant impact on the
industrial imaging community and is a first step towards near-
real-time CT reconstruction.

VI. ACKNOWLEDGMENTS

Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy’s National Nuclear Security Adminis-
tration under contract DE-AC04-94AL.85000.

REFERENCES

[1] H. H. Barrett and K. J. Myers, Foundations of Image Science.
Interscience, 2004.

[2] W. mei W. Hwu, Ed., GPU Computing Gems - Emerald Edition.
Morgan Kaufmann, 2011.

[3] O. Cossairt, D. Miau, and S. Nayar, “Gigapixel computational imag-
ing,” in Computational Photography (ICCP), 2011 IEEE International
Conference on, 2011, pp. 1-8.

[4] R. Kohley, P. Gaé, C. Vétel, D. Marchais, and F. Chassat, “Gaia’s fpa:
Sampling the sky in silicon,” in Proceedings of SPIE, Space Telescopes
and Instrumentation: Optical, Infrared, and Millimeter Wave, vol. 8442.
SPIE, 2012.

[5] N. K. Dhar and R. Dat, “Advanced imaging research and development
at darpa,” in Proceedings of SPIE, Infrared Technology and Applications
XXXVIII, vol. 8353. SPIE, 2012.

Wiley-

[6]

[8]

[9]
[10]

(11]
[12]

[13]

D. J. Brady, M. E. Gehm, R. A. Stack, D. L. Marks, D. S. Kittle, D. R.
Golish, E. M. Vera, and S. D. Feller, “Multiscale gigapixel photography,”
Nature, vol. 486, pp. 386-389, 2012.

L. J. Orr and E. S. Jimenez, “Preparing for the 100-megapixel detector:
Reconstructing a multi-terabyte computed-tomography dataset,” in SPIE
Optical Engineering+Applications. International Society for Optics and
Photonics, 2013.

E. S. Jimenez, L. J. Orr, K. R. Thompson, and R. Park, “A high-
performance and energy-efficient ct reconstruction algorithm to recon-
struct multi-terabyte datasets,” in Conference Proceedings for the IEEE
Nuclear Science Symposium and Medical Imaging Conference, NSS-MIC
2013. 1EEE Computer Society, 2013.

L. Feldkamp, L. Davis, and J. Kress, “Practical cone-beam algorithm,”
Journal of the Optical Society of America A, vol. 1, 1984.

E. S. Jimenez, L. J. Orr, and K. R. Thompson, “An irregular approach
to large-scale computed tomography on multiple graphics processors
improves voxel processing throughput,” in Proceedings of the 2012 SC
Companion: High Performance Computing, Networking Storage and
Analysis. 1EEE Computer Society, 2012, pp. 254-260.

J. Deng, “Parallel computing techniques for computed tomography,”
Ph.D. dissertation, University of Iowa, 2011.

E. S. Jimenez, E. L. Goodman, R. Park, L. J. Orr, and K. R. Thompson,
“Irregular large-scale computed tomography on multiple graphics pro-
cessors improves energy-efficiency metrics for industrial applications,”
in SPIE Optical Engineering+ Applications. International Society for
Optics and Photonics, 2014.

“MPICH: High-Performance Portable MPI,” http://www.mpich.org/.

