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Abstract—In an effort to enhance image classification of form a basis for all polarization states and therefore dorte
terrain features in fully polarimetric SAR images, this paper complete polarization information of the backscatter.ctigh
explores the utility of combining the results of two state-of-the- the use of polarimetric decompositions, we can extract iphys

art decompositions along with a semi-supervised classification I inaful i fth tt tai .
algorithm to classify each pixel in an image. Each pixel is labeled cally meaningful properties of the scatterers containeekich

either with a pre-determined classification label, or labeled as Pixel of the image based on the intensity and the polariratio
unknown. of the response.

[. INTRODUCTION B. PolSAR decompositions

In 'Fhis paper, we introduce a nc_JveI s_emi-sup_ervised terrainTyo of the widely used building blocks of many polari-
classification framework for polarimetric SAR imagery. The,atric decompositions are the Pauli feature vedtorand the

training consists of selecting small regions of homogeﬂeoh‘orresponding coherency matrif; [1]. For the monostatic
terrain for each terrain category of interest from a trainin.gse 1 is a three element vector

image. Probabilistic models are generated from these homo-

geneous regions . In the test image each pixel in the image 1 [HE+VV

(or stack of images) is labeled with one of the training k= 7 HH —VV (1)

categories. The proposed classification approach uses$ eigh 2HV

parlameters f_rom two weII—_known polarimetric decomposistip _andT is a3 x 3 matrix denoted byT's.

which describe the physical nature of the scatterers within

each pixel. The probabilistic modeling, which occurs dgrin (T3) = <EE*T> @)

training, fits probability density functions (pdfs) to eaoh

the eight parameters for each region. The eight parameteroth quantities are built from the four complex images

of every pixel in the test images are each compared withere(-) is a spatial ensemble average a&id the conjugate

the corresponding pdf, and assigned a p-value. The eighttfnspose ok.

values for each pixel are fused together to give each pixel aSeveral classes of polarimetric decompositions exist to

probability value for fitting each terrain region. This pasb extract physically meaningful characteristics of the &rats.

bility determines the terrain region label it is assignedIto |n the proposed classification approach a model-based decom

the probability is below a set threshold (which correspongmsition and an eigenvalue decomposition are used.

directly to the desired probability of detection), the pid®  G4U is a model-based decomposition that divides the total

labeled unclassified. power response of each pixel into cannonical scatter types

[2]. The G4U decomposition is an extension of Yamaguchi’'s

. ) . ) four-component decomposition [3] which is built upon Free-

A. Brief Overview of Polarimetric SAR man/Durden’s novel three component decomposition [4]. The
A Polarimetric SAR (PolSAR) system measures the polaiiz4U separates the total power into independent scattering

metric information of the back scatter from the reflectors imechanisms: odd-bounce power (also refered to as surface

a scene. The measured data are formed into four compleower) P, even-bounce power (also refered to as dihedral

valued imagesHH, HV, VH, VV, where HV represents or double-bounce poweryP,, volumetric power P,, and

the intensity of a vertically polarized return of an emittethelical power P.. The coherency matrix for each pixel is

horizontally polarized signal. These four polarizatiomtes separated into the theoretical coherency matrices foetfuas

II. POLSAR BACKGROUND
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Fig. 1: Historgrams of the eight parameters of selectedipifce one category
The red plot represents the distribution that is fit to theadat

for training. Each parameter of the selected pixels (repres
ing a desired category) are fit to parametric probabilitysitgn
functions using method of moments parameter estimation. Fo
([13]) = Ps <[T3]>sur4face + Pa T3] aouste ®) the proposed approach, Gamma distributions are fit to the
parametersP;, Py, P,, P,, andTP. Beta distributions are fit

+Pv <[T3]>volume + PC <[T3]>helical (4)
H/A/a is an eigenvalue-based decomposition [5] whicho the parameter&l, A, anda (nhormalized). Every parameter
uses the ei envalugs and eigenvectors of tr?e coherend mafrf every pixel in the image is given a p-value corresponding
9 . >19 . BMAL how well the parameter fits the modeled distributions from
T3, to compute polarimetric parameters. The eigenvalues are training data categories. Thus, every pixel in the i
used to create psuedoprobabilities. These psuedopritieabil ciaht p-values ' ' Irzegge
are used to calculate a average roll-invariant paraniétgand ghtp '
an entropy parametdrH ). An anisotropy parametetA), is o ] ) ]
calculated with the smaller two eigenvalues of the cohgrenc A Probabilistic fusion framework [7] is used to combine
matrix. the p-value scores into one value that represents the giitypab

These two fundamentally different decompositions wefbat the pixel belongs to the distributions of the S(_elecliezdlp
chosen in an effort to combine the added benefits of tg@d therefore belongs to thiclass the selected pixelsseqire
additional information of the model-base@4U scatter type L€t Fi be the pdf of thei™ characteristic, and let’ (x)

powers with the statisticall/A/a parameters soley deter-P€ the probability that thet" parameter of a pixel fits the
mined by the coherency matrix. distribution. As long ag"; is continuous (or well approximated

by a continuous function), then the random variabBJeof the
[1l. PROPOSEDAPPROACH selected pixels has a distribution that is uniform{onl]. The

The two decomposition£4U and H/A/d , are run on P; .Of pierS that do not belong to the distribution will not be
the set of complex-valued images. From the results of thed@iform.
decompositions, each pixel has the following eight paranset
associated with itPs, Py, P, P., H, A, & values along with  Let Y; = —log (P;). The log of a uniform distribution is
total powerTP. At this point, the SLIC superpixel segmentathe standard exponentidt; will be very large for pixels with
tion algorithm [6] is used as a method to quickly and easity sat least one characteristic that has low probability ofnfiti
lect homogeneous (arearly homogeneous) pixels of interestthe distribution of the selected pixels.

scattering mechanisms with power coefficients and Gé/
decomposition solves for these coefficients.
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Fig. 2: Flow chart illustrating the proposed classificatioethod
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(a) G4U image: withP; blue, Py red, P, (b) Hand-selected pixels of each homoge) Pixel by pixel classification result cor-
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Fig. 3: Results

Legend is the correlation correction factor that can be used to ac-

Ground. Vegetatio count for correlations bewteen the parameters. Accourfiting

Vegetation Shado correlation, the distribution ob; is gamma distributed with

Tree Tops parameters:
S[?:tlelg\évrvv\(gteer o N A N @)
T = =
Hard-packed Dirt N+C N+C

Sand/Loose Dirtl A threshold S} can be selected so that the probability that
Unclassified a gamma random variable with the above parameters in

Let Equation (7) is less thas’;, matches the desired probability

of detection. A pixel is labeled with a category if the pigel
Sy parameter is less than or equal to the categorys
Sp=>_Y; (5) threshold; otherwise, the pixel remains unclassified. Ifxelp
' is labeled with two or more categories, the pixel is labeled

where N represents the number of characteristics to combi v¥|th the category that yields the Iowe%!; ratio. The proposed
For the example in this papery = 8. The sum of N classification is illustrated with the flow chart in Figure 2.

independent standard exponentials is represented by a gamm
distribution withr = N and A\ = 1. Therefore, if theY;
values are independent, the sum is represented with a gammahe data for this example were collected along the Rio
distribution with the theoretical parameters ststed abdfre Grande River in Albuquerque, New Mexico, with the Sandia
the Y; values are not independent, as with the parameté¥ational Laboratories fully-polarimetric X-band devefognt
used in the proposed approach, their sum is still gamradar.
distributed, but the parameters need to be computed withThe histograms shown in figure 1 are of the eight parameters
the correlation taken into account. Lgt; be the estimated of the hand-selected pixels for the category of vegetation
correlation betweery; andY;. Then shadow. Overlayed on the histograms are the estimated dis-
tributions computed using the method of moments parameter
estimation from the hand-selected pixels. The eight patenrsie
C= Z Zﬁij (6) of each pixel in the image are compared to these distribsition
i=1 j#i and are each given a p-value representing the probabikity th

IV. EXPERIMETAL RESULTS



the pixel’'s parameters fit the corresponding distributiofithe
category’s hand-selected pixels.

The three images shown in figure 3 are theU-colored
PoISAR image 3(a), the hand-selected pixels represertiimg t
categories are represented in image 3(b), and the clasisifica
result in image 3(c). Th&4U is a false-color POISAR image
with the color representing each pixel’'s scattering meigmn
contributions represented by the percetag#®pblue, P, red,

P, green,P, yellow, and the power of the return represented
by pixel brightness. Image 3(b) illustrates the hand-getkc
pixels that generate the categories. The number of pixels
selected per category has an order of magnitudel @f
compared to the number of pixels in the imagé x 10°.

The different colors represent different categories. Huyehd

for the colors of the categories is shown in table Ill. Image
3(c) is the resulting pixel-by-pixel classified image.

V. CONCLUSION

We have proposed semi-supervised terrain classification
framework, which classifies each pixel into classes defined b
the hand-selected homogeneous training regions. If thel pix
is not a close match to any of homogeneous terrain regions,
it is flagged as uncategorized.
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