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Abstract—In an effort to enhance image classification of
terrain features in fully polarimetric SAR images, this paper
explores the utility of combining the results of two state-of-the-
art decompositions along with a semi-supervised classification
algorithm to classify each pixel in an image. Each pixel is labeled
either with a pre-determined classification label, or labeled as
unknown.

I. I NTRODUCTION

In this paper, we introduce a novel semi-supervised terrain
classification framework for polarimetric SAR imagery. The
training consists of selecting small regions of homogeneous
terrain for each terrain category of interest from a training
image. Probabilistic models are generated from these homo-
geneous regions . In the test image each pixel in the image
(or stack of images) is labeled with one of the training
categories. The proposed classification approach uses eight
parameters from two well-known polarimetric decompositions
which describe the physical nature of the scatterers within
each pixel. The probabilistic modeling, which occurs during
training, fits probability density functions (pdfs) to eachof
the eight parameters for each region. The eight parameters
of every pixel in the test images are each compared with
the corresponding pdf, and assigned a p-value. The eight p-
values for each pixel are fused together to give each pixel a
probability value for fitting each terrain region. This proba-
bility determines the terrain region label it is assigned to. If
the probability is below a set threshold (which corresponds
directly to the desired probability of detection), the pixel is
labeled unclassified.

II. POLSAR BACKGROUND

A. Brief Overview of Polarimetric SAR

A Polarimetric SAR (PolSAR) system measures the polari-
metric information of the back scatter from the reflectors in
a scene. The measured data are formed into four complex-
valued images,HH, HV , V H, V V , whereHV represents
the intensity of a vertically polarized return of an emitted
horizontally polarized signal. These four polarization states

form a basis for all polarization states and therefore contain the
complete polarization information of the backscatter. Through
the use of polarimetric decompositions, we can extract physi-
cally meaningful properties of the scatterers contained ineach
pixel of the image based on the intensity and the polarization
of the response.

B. PolSAR decompositions

Two of the widely used building blocks of many polari-
metric decompositions are the Pauli feature vector,k, and the
corresponding coherency matrix,T [1]. For the monostatic
case,k is a three element vector

k =
1√
2





HH + VV
HH − VV

2HV



 (1)

andT is a 3× 3 matrix denoted byT 3.

〈T 3〉 =
〈

k · k∗T
〉

(2)

Both quantities are built from the four complex images
where〈·〉 is a spatial ensemble average andk

∗T the conjugate
transpose ofk.

Several classes of polarimetric decompositions exist to
extract physically meaningful characteristics of the scatterers.
In the proposed classification approach a model-based decom-
position and an eigenvalue decomposition are used.
G4U is a model-based decomposition that divides the total

power response of each pixel into cannonical scatter types
[2]. The G4U decomposition is an extension of Yamaguchi’s
four-component decomposition [3] which is built upon Free-
man/Durden’s novel three component decomposition [4]. The
G4U separates the total power into independent scattering
mechanisms: odd-bounce power (also refered to as surface
power) Ps, even-bounce power (also refered to as dihedral
or double-bounce power)Pd, volumetric powerPv, and
helical powerPc. The coherency matrix for each pixel is
separated into the theoretical coherency matrices for these four
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Fig. 1: Historgrams of the eight parameters of selected pixels for one category
The red plot represents the distribution that is fit to the data

scattering mechanisms with power coefficients and theG4U
decomposition solves for these coefficients.

〈[T3]〉 = Ps 〈[T3]〉surface + Pd 〈[T3]〉double (3)

+Pv 〈[T3]〉volume + Pc 〈[T3]〉helical (4)

H/A/ᾱ is an eigenvalue-based decomposition [5] which
uses the eigenvalues and eigenvectors of the coherency matrix,
T 3, to compute polarimetric parameters. The eigenvalues are
used to create psuedoprobabilities. These psuedoprobabilities
are used to calculate a average roll-invariant parameter(ᾱ) and
an entropy parameter(H). An anisotropy parameter,(A), is
calculated with the smaller two eigenvalues of the coherency
matrix.

These two fundamentally different decompositions were
chosen in an effort to combine the added benefits of the
additional information of the model-basedG4U scatter type
powers with the statisticalH/A/ᾱ parameters soley deter-
mined by the coherency matrix.

III. PROPOSEDAPPROACH

The two decompositions,G4U and H/A/ᾱ , are run on
the set of complex-valued images. From the results of these
decompositions, each pixel has the following eight parameters
associated with it:Ps,Pd,Pv,Pc,H,A, ᾱ values along with
total powerTP . At this point, the SLIC superpixel segmenta-
tion algorithm [6] is used as a method to quickly and easily se-
lect homogeneous (ornearly homogeneous) pixels of interest

for training. Each parameter of the selected pixels (represent-
ing a desired category) are fit to parametric probability density
functions using method of moments parameter estimation. For
the proposed approach, Gamma distributions are fit to the
parametersPs,Pd,Pv,Pc, andTP . Beta distributions are fit
to the parametersH,A, andᾱ (normalized). Every parameter
of every pixel in the image is given a p-value corresponding
to how well the parameter fits the modeled distributions from
the training data categories. Thus, every pixel in the imagehas
eight p-values.

A probabilistic fusion framework [7] is used to combine
the p-value scores into one value that represents the probability
that the pixel belongs to the distributions of the selected pixels
and therefore belongs to the class the selected pixels represent.
Let Fi be the pdf of theith characteristic, and letPi (x)
be the probability that theith parameter of a pixel fits the
distribution. As long asFi is continuous (or well approximated
by a continuous function), then the random variablePi of the
selected pixels has a distribution that is uniform on[0, 1]. The
Pi of pixels that do not belong to the distribution will not be
uniform.

Let Yi = − log (Pi). The log of a uniform distribution is
the standard exponential.Yi will be very large for pixels with
at least one characteristic that has low probability of fitting
the distribution of the selected pixels.



Fig. 2: Flow chart illustrating the proposed classificationmethod
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(a) G4U image: withPs blue,Pd red,Pv

green,Pc yellow
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(b) Hand-selected pixels of each homoge-
neous region
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(c) Pixel by pixel classification result cor-
responding to the categories selected in 3b

Fig. 3: Results
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Let

Sf =

N
∑

i=1

Yi (5)

whereN represents the number of characteristics to combine.
For the example in this paper,N = 8. The sum ofN
independent standard exponentials is represented by a gamma
distribution with r = N and λ = 1. Therefore, if theYi

values are independent, the sum is represented with a gamma
distribution with the theoretical parameters ststed above. If
the Yi values are not independent, as with the parameters
used in the proposed approach, their sum is still gamma
distributed, but the parameters need to be computed with
the correlation taken into account. Letρ̂ij be the estimated
correlation betweenYi andYj . Then

C =

N
∑

i=1

∑

j 6=i

ρ̂ij (6)

is the correlation correction factor that can be used to ac-
count for correlations bewteen the parameters. Accountingfor
correlation, the distribution ofSf is gamma distributed with
parameters:

r̂ =
N2

N + C
λ̂ =

N

N + C
(7)

A thresholdS∗
f can be selected so that the probability that

a gamma random variable with the above parameters in
Equation (7) is less thanS∗

f , matches the desired probability
of detection. A pixel is labeled with a category if the pixel’s
Sf parameter is less than or equal to the category’sS∗

f

threshold; otherwise, the pixel remains unclassified. If a pixel
is labeled with two or more categories, the pixel is labeled
with the category that yields the lowestSf

S∗

f

ratio. The proposed
classification is illustrated with the flow chart in Figure 2.

IV. EXPERIMETAL RESULTS

The data for this example were collected along the Rio
Grande River in Albuquerque, New Mexico, with the Sandia
National Laboratories fully-polarimetric X-band development
radar.

The histograms shown in figure 1 are of the eight parameters
of the hand-selected pixels for the category of vegetation
shadow. Overlayed on the histograms are the estimated dis-
tributions computed using the method of moments parameter
estimation from the hand-selected pixels. The eight parameters
of each pixel in the image are compared to these distributions
and are each given a p-value representing the probability that



the pixel’s parameters fit the corresponding distributionsof the
category’s hand-selected pixels.

The three images shown in figure 3 are theG4U -colored
PolSAR image 3(a), the hand-selected pixels representing the
categories are represented in image 3(b), and the classification
result in image 3(c). TheG4U is a false-color PolSAR image
with the color representing each pixel’s scattering mechanism
contributions represented by the percetage ofPs blue,Pd red,
Pv green,Pc yellow, and the power of the return represented
by pixel brightness. Image 3(b) illustrates the hand-selected
pixels that generate the categories. The number of pixels
selected per category has an order of magnitude of102

compared to the number of pixels in the image4.5 × 106.
The different colors represent different categories. The legend
for the colors of the categories is shown in table III. Image
3(c) is the resulting pixel-by-pixel classified image.

V. CONCLUSION

We have proposed semi-supervised terrain classification
framework, which classifies each pixel into classes defined by
the hand-selected homogeneous training regions. If the pixel
is not a close match to any of homogeneous terrain regions,
it is flagged as uncategorized.
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