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“Beyond Moore”
 

issue preview
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 Brain Scaling
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Low Precision Dense
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Claimed objectives
Beat CMOS energy
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Analytical approach
Devise theoretical
performance limits
CMOS will
approach its
limits
Others approaches
ought to have the
theoretical ability
to beat
CMOS at limits,
or they have no
chance in practice
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Test cases

Implementation Energy (N × M matrix, N = M, L-level values, B = log2L) 
nVidia GTX 750 Ti A simple analysis indicates the nVidia GTX 750 Ti (a state of 

the art consumer GPU at the time of this writing, costing $150) 
will be memory bandwidth limited. The computational strategy 
is the assume it will consume its standard 60 Watts and process 
data as fast as it can be read from memory. The memory rate 
will be based on synapse values of the specified number of bits 
+ 4 bits of sparsity control information from [(appendix 1)]. 

Resistive crossbar 1/24 N2 L2 p3 M kT, as discussed in text. 
Landauer’s Limit Full adder is 3 kT. Energy is 3 N2 p2 B2 kT ln 2 
Neuristor spike train L2 log2N spike energy = 22B log2N Espike; 6-60 fJ/spike for a 

neuristor (we use 6 fJ), as disclosed 
PIMS See author’s other paper; TFET logic and adiabatic memory  
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Theoretical limits for CMOS

Landauer’s paper 
derives limits that do 
not depend on 
device properties
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Resistive crossbar
A. Artificial neural network:

AmplifierArray 
interconnect

voltage
voltage 

(or current)

Memristor

B. Natural neural network 
deformed to show equivalence:

Dendrite

Axon

Synapse
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Sparse dot product problem setup
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Algebra
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Algebra
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Algebra
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Algebra
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Algebra

N ×Mmatrix; L‐level signal resolution
β extra gain
pv pg sparsity proportion on v and g
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Reinterpretation
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Reinterpretation
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This method has a problem

Logic 0

Logic 1

Digital representation:

Min 100 kT

L=0
L=1
L=2
L=3

L=4 level analog 
representation:

Total 4 kT

Probability of digital “mistake”:
e-100

Probability of analog signal 
mistake by one level:
1/e

Probably of analog signal being 
totally wrong:
e-4 or e-L

Haven’t worked this out yet. 
Means analog doesn’t work as 
well as predicted.
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Improving energy efficiency

However, the problem with this idea is that it turns an analog 
neural network into a the digital version

Works fine, but causes you to eat your words

 Emvm pg Clock 
cycles

Clock 
period 

P = 
Power 

Analog array O(N2 L2 M) kT 1 1 Tclock ∝ 1 
j steps × 1/j th 
size 

j O(N2 L2 pg
2 M) kT + jMEadd 

= O(1/j × N2 L2 M) kT + jMEadd 

 ≤ O((N2 L + j2)/j ML) kT 

1/j j Tclock /j ∝ 1/j 

j = N full 
extension 

O(N L2 M) kT + NMEadd  1/N N Tclock /N ∝ 1/N 
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Algorithm example



22



23

Algorithm quantitative benefit



24

Outline

Preview
CMOS limits
Resistive crossbar
Improving energy efficiency and eating words
Algorithm example
Spiking
Roll up



25

Spike representation
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Backup: adiabatic memory (low) maturity level
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“Beyond Moore”
 

issue preview
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Conclusions

Deep learning has evolved to be efficient on digital computers
High resolution and lack of control of sparsity make it a challenge for 
analog electronics

Biology tried the level‐based approach
Uses it for worms and retinas, but not much more. Maybe we have 
figured out why

Spiking approach has very different characteristics
Biology uses it for higher‐level thinking
Neuristor looks interesting, but no complementary synapse (?)

Looking for a circuit that deletes a spike with probability w. 

Algorithms stack seems feasible
This is work in progress; still not sure about analog level 
separation and digital vs. analog reliability
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