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Test cases

Implementation Energy (N x M matrix, N = M, L-level values, B = log,L)
nVidia GTX 750 Ti | A simple analysis indicates the nVidia GTX 750 Ti (a state of
the art consumer GPU at the time of this writing, costing $150)
will be memory bandwidth limited. The computational strategy
Is the assume it will consume its standard 60 Watts and process
data as fast as it can be read from memory. The memory rate
will be based on synapse values of the specified number of bits
+ 4 bits of sparsity control information from [(appendix 1)].
Resistive crossbar | 1/24 N° L* p°> M KT, as discussed in text.

Landauer’s Limit Full adder is 3 kT. Energy is 3 N“ p° B* kT In 2

Neuristor spike train | L* log;N spike energy = 2°° logoN Egpike; 6-60 fJ/spike for a
neuristor (we use 6 fJ), as disclosed

PIMS See author’s other paper; TFET logic and adiabatic memory
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Theoretical limits for CMOS

R. Landaver

= Landauer’s paper

Irreversibility and Heat Generation derives limits that do

in the Computing Process not depend on
device properties

Absiracl: It is argued that computing machines inevitably invelve devices which perform logical functions
that de not have a single-valued inverse. This logical irreversibility is associated with physical ireversibility
and requires a minimal heat generation, per machine cycle, typically of the order of kT for each ireversible
function. This dissipation serves the purpose of standardizing signals and making them independent of their
exact logical history. Twe simple, but representative, models of bistable devices are subjected to a more
detailed analysis of switching kinetics to yield the relationship between speed and energy dissipation, and
to estimate the effects of errors induced by thermal fluctuations.

he initial entropy was

Si=k log. W=—kZplog. p
—kZ§ log. 4=3klog. 2.

BEFORE CYCLE AFTER CYCLE FINAL

B q ¥ Py 9 L STATE

The final entropy is
-?.I'-"' —-J:Ep Iﬂgr 7]
=~k(dlog¥+4logd+glogi+ilogd).

The difference S,—S; is 1.18 k. The minimum dissipation,
Figure 5 Three input - three output device which

jeiind e oo il ke i Gty T if the initial state has no useful information, is thercfore
different states. 1.18 kT.
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Resistive crossbar

A. Artificial neural network:

Memristor

Array
interconnect

B. Natural neural network
deformed to show equivalence:

voltage
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Sparse dot product problem setup

dot(v. g. B)= Bguxv -8

(V~ U, 1) 4 0 A
=] | 3 [N e——
: : Vg~ U0, gna) |
PN | | eV | | -
: - : ! | Ne =
Note: Vectars v | | + we=UCF. F) ¥ | | . peN
and g will be i i
permutations of L ~10 i
the illustrated 0 L-'g-r‘--__g_ig’_"ﬂx_)__l y

formats \_ vy L 0 ..-'J




Laboratories

Algebra

There will be a discussion below about the interaction between the Johnson-Nyquist
noise and system speed or clock rate. At this point, let us assume the circuitry in Figure 3
is bandlimited to frequency f. The noise power according to the Johnson-Nyquist noise
theorem will be 4kT fat the input to the amplifier. For the specific situation in Figure 3,
this would be

mese =4 ka: %ﬁ ¥a Ai']ﬂgmax

which yields

Y2
Vm:-fse: [ SkT f ]
ND:  &uma

In accordance with previous discussion, the noise will be amplified before appearing on
the output

mesemﬂ = V}mfse o= V}mfse 1’/2 ﬁ A@E

The number of resolution levels L will be the output range 2V divided by the noise
voltage Visseout-

2
1= 2V | b G 4V
Ynaisequt §kT BNp;
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kT f ﬁzj\ﬂpgi

And then by rearrangement to a form that has units of energy and will be useful later

Vgnae — B2L2 N2 p2 KT
I 2 Npg

The power consumption of the circuit is addressed now. Only the energy tumed into heat
in a resistor is irrecoverable in this situation, so we will analyze the average power
dissipated by all the resistors. We will express the power as a base value plus small-scale

correction.

Vaode moves asymptotically to zero as N increases, with the base value for power
assuming Vyoge = 0. If Vi 1 grounded, there will be p,p N uniformly distributed
voltages [-V, V] across resistors with average conductance gy,/2. This yields the base
power of 1/6 V' 2 g, per resistor and total power

Prrewon® = 1/6 V2 lgye DN
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We will designate the base power with the superscript ® and use it in subsequent
discussion of higher level functions. However, we have numerically computed the small-
scale correction. Given that the v's and g’s in Figure 2 have well-defined distributions,
the average heat produced by the resistors in Figure 3 can be computed as

PMHZPJEMME@@EM Gf?v:lhpg;w) V 28 mn D:N,

where Pspmia.(M, Z) 1s the result of a numerical computation. The authors wrote a
computer program that rolls uniformly distributed random numbers in the range [-1, 1]
forv’s and [0, 1] for g’s and computes the power dissipation as a function of the number
of uniformly-distnibuted drive voltages M= p,p.N and additional zero voltages due to
sparseness Z = (pgp\pz/N and given V= gy = 1. A graph of this function is illustrated in
Figure 4.
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/ 720
D T T T T l — 710
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Figure 4: Computation of average power (Puyuisr.)
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All curves in Figure 4 are asymptotic to 1/6, with the interesting behavior on the left. The
lowest curve labeled Z0 is the power when all the applied voltages are uniformly
distributed in the range [-V/, ] and there are no additional grounded signals applied due
to sparsity. This curve shows less average power due to V4 shifting away from zero
towards the applied voltages and reducing power. The other curves labeled ZNN include
the addition of NN grounded signals applied due to sparse values in the voltage vector.
Tying V4. to additional grounds would be expected to reduce fluctuation in V4 and
cause the curve to approach the asymptotic value more quickly — which is what 1s
observed.

We must now establish a connection between operating speed and the Johnson-Nyquist
noise. We had previously assumed the circuitry would be limited to frequencies below f,
but fhas so far been just an algebraic symbol. We are now free to engineer a specific
value for fusing algebraic manipulations. To identify the limiting case, the Nyquist
sampling theorem states that the maximum rate at which voltages could be applied to the
rows and dot products obtained from the columns would be 2. This would imply the
limiting case of a clock period of 1/(2f). In this limiting case, the energy to evaluate a
neuron would be the power P, multiplied by the clock period.
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The equation below is a rearrangement of terms from the equation for power above,

divided 21|

Erowor® = Prgwron® _ VEmax DD
2f f 12

Substitute

E—®=L’LNp KT PPN _ [2L°N pp kT
2 Np; 12 24

The equation above is notable because of the absence of V" and g,,,.. The equation is thus
an implementation-independent representation of the minimum energy Eje,r» ™ as a
function of the nature of the problem being solved and the thermodynamic quantity kT.

= N x M matrix; L-level signal resolution
= [extragain

" p, P, sparsity proportion on v and g
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Reinterpretation

There is redefinition of terms that may yield insight. Expressing Eep,®) in terms of N, =
PN and N; = pN the nonzero signals in the vectors,

B2 I2N2 N kT
24N

EHEWH{B} =

In conventional computer terminology, the system will perform p,p-N multiply
operations. The energy per operation will be E,,,® divided by pp.N.

Energy/op = 1/24 52 [2 N, kT

Which tells us the energy per equivalent multiply operation is proportional to the number
of nonzero elements in a column of the weight matrix. In subjective terms, this means the

cost of a multiply depends on how many similarly computed products might be added up
afterwards.
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Reinterpretation

Further note the implication to software-based ANNs, such as Deep Learning. As
mentioned above, Deep Learning typically does not assume any sort of sparse coding or
gain £. This would imply f=p, =p. =1 and the energy per neural evaluation would be

Enewron® = 1/24 L2 N?kT

The above expressions are for a dot product. If we multiply by M, which is the number of

output neurons, we get the energy of an N x M vector-matrix multiply, as may occur in
software-based methods such as Deep Learning.

Evp™® = 1/24 B L2 N* MkT,

where E., 1s the energy of a vector-matrix multiply.




This method has a problem

Digital representation: L=4 level analog
representation:
Logic 1
Min 100 kT
1 L=3
Total 4 kT L=2
il L=1
Logic O l L=0

Laboratories

Probability of digital “mistake”:
e-lOO

Probability of analog signal
mistake by one level:
1/e

Probably of analog signal being
totally wrong:
et orel

Haven’t worked this out yet.
Means analog doesn’t work as
well as predicted.
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Improving energy efficiency
Emvm Py Clock | Clock =
cycles | period Power

Analog array | O(N“ L* M) kT 1 1 Telock oc 1
jsteps x 1/j 1 | j O(N* L? pg” M) KT + jMEaga | 1/ | ] Tewock /] | oc 1/j
size = O(1/j x N° L* M) KT + jMEagq

<O((N?L + j3/j ML) kT
j =N full O(N L* M) kKT + NMEagq /N | N Tetok IN | oc 1/N
extension

= However, the problem with this idea is that it turns an analog

neural network into a the digital version
= Works fine, but causes you to eat your words
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Algorithm example

A. Task: Find colunm with -
largest value in vector-matrix Input g;tlrgiin
product
Note: If M= N, the power L
is the same at each step
Winner,
B1. Use full array, but only =2 take all
N 22 MKT; L=2 Output
B2. Select most promising M2 of M
columns; now can use L=4 for same
power N 24 (M/2)*kT; L=4
v
B3. Select most promising N/2 of N .
TOWS; now can use L=6
(N/2)22° MI2KT; L6 M2
B4. Select most promising M/4 of M2
N2 columns; now can use L=12
N2 27 (M4 kT: L=12
M2
. Ni2
B3. Select most promising N/4 of
N/2 rows; now can use L=16
(N/4)2 28 M4 KT I=16 M4
B6. Select most promising M/8 of M/4
Ni4 columns; now can use L=32
N/4 210 (A8 kT; L=32
M4
N/4
Etc. L< M8




A. Task: Find column with : h Sanda
largest value in vector-matrix Input Weight Laboratories
product _pWt ' matrix

Note: If M= N, the power
is the same at each step

B1. Use full array, but only =2
N? 22 MKT; L=2

"B

M

Winner
take all
| Oumu‘l:h

B3. Select most promising N/2 of N
rows; now can use L=6
(N2 2° M2 KT; =6

N/2

M2

Ef

B2. Select most promising M/2 of M

columns; now can use L=4 for same
power N 24 (M/2)2kT; L=4

N

M2

B35. Select most promising N/4 of
N/2 rows; now can use L=16

- X

B4. Select most promising M/4 of M2
columns; now can use L=12
NI227T (M/4)*kT: L=12

Ni2




Algorithm quantitative benefit

If we assume N = M, the power will be the same at each step.

The number of levels increases in the sequence 2, *."2, 2, *4"2, ... This means the number of
iterations required to reach L levels is about log; g5 L.

This means the algorithm has reduced energy of O(N? L2 M) KT to O(log; ssL N> M) kT, a
reduction by a factor of O(L%/log; ¢sL).
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Spike representation

Rate vy LY Ty

R"E'IE V1 I.:I'."rT,ﬂr

oemaprg— L LT ITTT ITT

1 O O | T

Rate E V; LI;TM

Calculation: N
AT+ NI+ 112 = 172
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Backup: adiabatic memory (low) maturity level

A. Spiking dot product

Input0 —

Attenuator awy

0..L2

spikes —

Attenuator owy

enter

each —

Attenuator aw;

input

Input N-1

Attenuator oy

log, N
levels

B. Neuristor OR gate (attenuator not known):

The standard
deviation in
number of spikes
1s L, so there are
L distinguishable
levels
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Conclusions

= Deep learning has evolved to be efficient on digital computers

= High resolution and lack of control of sparsity make it a challenge for
analog electronics

= Biology tried the level-based approach

= Uses it for worms and retinas, but not much more. Maybe we have
figured out why

= Spiking approach has very different characteristics
= Biology uses it for higher-level thinking

= Neuristor looks interesting, but no complementary synapse (?)
» Looking for a circuit that deletes a spike with probability w.

= Algorithms stack seems feasible

= This is work in progress; still not sure about analog level
separation and digital vs. analog reliability
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