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Magnetocaloric Effect (MCE)

= Magnetocaloric effect (MCE) is a reversible temperature change
upon application or removal of an external magnetic field
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[1] K. Gschneidne, Rep. Prog. Phys., 2005, 68, 1479



Magnetocaloric Effect (MCE)

= 80 years ago : used for achieving ultra low temperatures
(W. F. Giaugue, Nobel price winner - 1949).

= Room-temperature refrigeration http://www.nobelprize.org
/nobel_prizes/chemistry/I

aureates/1949/
Since 1997, after discovery

el e

= of the giant MCE in Gd(Ge,Si,)

Patent by BASF and E. Brueck et. al.

,Method for generating giant

Haier . gad magnetocaloric materials”

Source: Haier - magnetocaloric
wine cooler



http://www.nobelprize.org/
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MCE & Entropy

Entropy : S(T,B,p)=S,T,B,p)+S,(T',B,p)+S, (T,B,p)
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= Prototype material

= Single crystal of
Mng_ Fe Siy with
O0<x<4

= x = 4 exhibits
moderate MCE at ~300 K

= Non-rare earth based -P63/mcm

= Solid solution: Mn and Fe on
4d and 6g




Nuclear Inelastic Scattering ‘

= Phonon assisted nuclear absorption

= Direct measurement of density of phonon
states

after [1]

nuclear states | | |
A 0

ﬁ ... incoming radiation

Signal

= Detection: measurement of radioactive decay
‘E‘ ... phonon or internal conversion

= about 1 meV resolution %
[1] Ralf Rohlsberger, Nuclear Condensed Matter Physics with Synchrotron Radiation, Springer,



MnFe4Si3 - Density of phonon states

= NIS results at different temperatures and

with applied magnetic field ,e;:,‘;,"ant
= No significant 0.08
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Resonant Ultrasound Spectroscopy (RUS)

= Resonant Ultrasound Spectroscopy (RUS)

NIS
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= RUS results at different temperatures
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= Soft mode behaviour at
300 K

= Only in a,b plane
components

= No discontinuity
= absolute errors: ~5%

= relative errors: <<1%



Neutron diffraction

: : In collaboration with [1]
= neutron diffraction (SPODI, MLZ) S ga i . : . I e
- refinement of magnetic structure: < 681 - it e
P6 >> Pm’ s la72 ©
: 4.70
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[1] P. Hering, Chem. Mater., 2015, 27 (20), pp 7128-7136



Resistivity

= temperature dependent resistivity sensitive

for transition Magnetoresistance effect

25 — . :
= but magneto resistance (MR) effect only with ! ' 5T alor;g ab
field in a,b and transport along ¢ x20r -
© 1.5 -
= up to 2% MR not large for GMR materials but E !
for anisotropic resistance E:J 1.0 _ -
= 05 transport along ¢ n
0.0 ' - L

300 320
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= might be ordering of spins in a,b plane




Small-Angle Scattering and anelastic Process

= unexpected SAXS signal
in neutron diffraction data

temperature (K)
Alisuaqul

= large increase in inverse
quality factor of the RUS
peaks
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Small-Angle Scattering and anelastic Process

= maybe an anelastic process (Zener, Gorsky, Snoek ...) :

Re-arrangment of atomic order / occupation

Know to be prominent in alloys / solid solution

Verification ? ? ?
gl Assumption:

The blue-blue bond is longer
than the other bonds

(a@) x5

[1] A. Nowick, Anelastic Relaxation in Crystalline Solids, Academic Press, 1972



RUS & NIS — Comparison

= Extracted sound velocities do not match

= Magnon-phonon interaction 4500 l
or systematic deviation of .
methods "‘E 4250 )
>
[5]
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[1] Wettling, Jantz, Appl. Phys. 23, 195 (1980)




= Ultrasound Pulse Echo
(UPE ) - MHz to GHz

= Giga-Hertz Interferometry
(GHI) - low GHz

= Brillouin Scattering
(BS) - GHz

NIS
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Conclusion

= No influence on iron specific DPS (above 3 meV),
entropy estimation reveals: possible change only ~1 %

t’ — O —6_ o ‘__'1@6“-: 0.8 o

= Low energy elasticity (MHz) influenced by the [_’Q:E:ﬂ:a:@:%é_ 8:2 3
magnetic transition, not magnetostriction dueto = * 44w, 0.2 %
diffraction results and isomer shift ro —amas o 0.0 T

0 100 200 300
_ _ » Temperature (K)
= Difference in the extracted sound velocities

possibilities: systematic, spin-phonon interaction

= Transition not second order, more likely tricritical point or complex interplay
— first order: RUS, heat capacity (lattice)
— second order: VSM, Mossbauer (magnetism)

= Remark: Conduction electrons influenced by magnetic transition

— efficiency of MCE could be influenced



Backup MnFe Si,



Mossbauer Spectroscopy

= 4 component MB fit (binomial
distribution due to occupation)
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= Bean and Rodbell fit indicative
for second order transition

= ijsomere shift changes
with opposite sign at the

4d it
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Characterization

‘Paul Hering:
in-house XRD - x=4, 300K, wR=1.7 (enriched powder)
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Characterization

‘Paul Hering:
‘Neutron Powder diffraction (SPODI), non-enriched powder x=4
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Holder

Piezo crystal
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~Subtraction of elastic line
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MCE- Refrigeration - Example

a) exchange-liquid heated by MCE b) transporting warm liquid to hot side
c) exchange-liquid cooled by MCE d) transporting cold liquid to cold g

I. Romero Gomez et al. / Renewable and Sustainable Energy Reviews 17 (2013) 74-82



