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Z Generator ~20MA in ~100ns
Bright Laboratory Thermal Source of Soft X-rays
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We need to magnetically accelerate ~1mg to 1000km/s
over many cm’s and keep it stable !

Using the tools and methodology
described here we achieved a factor of
~8 increase in K-shell yield in our first

We need implosion velocities in
excess of ~1000km/s to make this

work 4 shots.
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Hydrodynamic Gas Flow

~m second
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Hydrodynamic Gas Flow

Radiative Magneto-hydrodynamic
Implosion

Imploded by ~20MA in ~100ns
~m second




Hydrodynamic Gas Flow

Radiative Magneto-hydrodynamic
Implosion

Imploded by ~20MA in ~100ns
~m second




Implosions disrupted by instabilities

€ 8cmor12cm == Can control with mass distribution
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Previous work on gas puffs indicate some promising
directions to follow

Gas Puffs have been used extensively for many years:
Review Paper B. Comiso, J Guiliani (find reference)

We will explore on Z two approaches

« A shaped density profile that rises towards the axis to inhibit
instability growth:
Hammer et al PoP 3, 2063 (1996)
Velikovich et al., PRL 77 853 (1996), PoP 5 3377 (1998)
H. Sze et al PoP Lett. 8 3135 (2001)

« Use of a central jet (mass on axis) to increase K-shell yield:
o Successful at 200ns rise time, 2-6MA facilities
H. Sze et. al., Phys. Plas., (2007)
H. Sze et al., Phys. Rev. Lett. (2005)

» Finite number of shots available on Z so investigating these approaches, and
optimizing to Z is something we want to do this computationally.
* Modifying gas flow requires us having control over how profiles are produced
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Many steps to the process

Field Gas Puff experiments.
Assess and characterize output

Spectrum (kJ/keV)

1011 12 13 14 15 16 17 18 19 20 0.0
Photon Energy (keV)

GORGON - 3D Radiative-Resistive
MHD

Radiation Model: S.B. Hansen
screened-hydrogenic/ UTA non-LTE model SCSF

Nozzle Assembly & profiles

measurement (SITF)
D.C.Lamppa, M. Jobe

e

Eest | i

-

Interferometry System:

Alameda Applied Sciences (AASC) (P. Coleman et al RSI
2012) (Assisted by DTRA funding)

GORGON-HYDRO - Gas flow
modeling for nozzle design

AL
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Simulated Areal Density Compared Directly of
Measurement
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Simulated Areal Density Compared Directly of
Measurement

Density Areal Density

Integrate across density profile
for Areal Density

N
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Simulated Areal Density Compared Directly of
Measurement (avoids need to Abel invert)

Density Areal Density Interferometry Simulation

4mm 12mm

Interferometry / simulation
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Initial perturbations may be added in controlled way to
hydro model

Unperturbed Density Profile

Interferometry Simulation

Perturbed Density Profile

Smooth profile perturbed by
volumetric Gaussian bubbles. Scale
length comparable to throat plate
variations. Magnitude below what
would show up on areal density
interferometry map.
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Start With a Double Shell Gas Puff and Evolve Design
to Improve Performance

We will evolve design based on approaches "
people have previously found successful e Interferometry
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Outer Shell Only Is Catastrophically Unstable

"1 .I.'
r \BOOOns
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3050ns
Driving a light single shell ‘— n
After Shell mass is accreted
| mstat_)llltles rapidly grow as 3060ns
imploding surface encounters
free space n
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Use heavy inner shell to interfere with instability growth
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Instabilities rapidly redistribute outer shell mass as it
transits space between shells
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Instabilities are temporarily
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' L-:, n at late time
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|dealized rising density profile tamps early disruption

g ! By filling space between

z 20 Rising Density shells rapid onset of
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Design 2 12cm nozzles to study shell like vs ramped
density profiles.

We would like to incorporate the ramped profile advantages in a gas profile we
can both produce, and one we can directly compare to a double shell profile

AL

Ramped Density Profiles / Central Jet: Hammer et al PoP 3, 2063 (1996), Velikovich et al., PRL
77 853 (1996), PoP 5 3377 (1998) , H. Sze et al PoP Lett. 8 3135 (2001)
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Shaped profile verified with 3D printed components

D. Lamppa and SITF team

Predicted gas flow profile confirmed by
interferometry

Interferometry _
ooots | —— Simulation SITF team was able to rapid

prototyped nozzle contour to
verify design.
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This will prove very useful as
we evolve the design further

0.0000

Radius / cm

11/12/2014 21



Density glcc
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Shell Profile More Fragmented as it passes

Implosion here

35+
304 l

Through mid-plane the imploding
shell is unwrapped to highlight
azimuthal as well as axial
fragmentation
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Standard deviation from average radial density significantly higher for shell profile
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Z experiments conducted to compare ramped and shell
profiles, confirming predicted x2 increase in K-shell Yield
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Simulated and Measured powers and yields for photon energies Kr K-shell and above

1.2 1.2

1.0 1.01
2 o8- 5kJ 2 o8- (isz:j)
% 0.6 % 0.6 3kJ

0.4+ 0.4

0.2 ZkJ 0.21

0.0 ‘ ‘ ‘ 0.0 ‘ : :

3085 3090 3095 3100 3085 3090 3095 3100

Time / ns Time / ns

While increase from profile change recovered initial predictions of first experiments were
high due to optimistic assumptions on current delivery
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Emitting plasma at comparable temperatures. Changes
In density account for yield changes
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Increased yield from higher density more apparent if you
force cylindrical convergence
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Low mass central jet predicted and confirmed to
increase K-shell yield

mass on axis
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E 60- Distribution Central jet
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Based on revised estimates on current delivery predicted factor of ~2 yield increase
from addition of a light central jet was recovered in experiment
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Central jet improves both axial and azimuthal symmetry

Ramped Profile Ramped Profile + Central Jet
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ldeal Central Jet Mass Related to how hard you drive
the implosion
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Higher current reaching the load
can support significantly higher
central jet masses

Predicted optimum
central jet mass too high.




Construct a test to highlight some limits on central jet
effectiveness
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Predicted behavior recovered in experiments
Experiments performed and results presented by Adam Harvey-Thompson

K-shell power (TW)

K-shell power (TW)
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1:1.6 without center jet yield:
330kl == 9% (3 shot Av. yield)

1:1.6 with center jet yield:
373 kl = 9% (single shot)

1:1 without center jet yield:
144 k) £ 9%

1:1 with center jet yield:
375k) = 10%

Substantial increase in yield and
power with central jet as
predicted by GORGON




Conclusions

« Large diameter low mass implosions are
very unforgiving — very little margin for error.

» Tools developed and tested to design gas
profiles to optimize yield.
* This incudes both determining

distribution of mass, and shaping the 13
gas profile 1(1)
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