

Adjoint-based deterministic Inversion for Ice Sheets

SAND2014-19449PE

M. Perego¹

joint work with:

A. Salinger¹, E. Phipps¹, D. Ridzal¹, D. Kouri¹, I. Kalashnikova¹,
S. Price², G. Stadler³

¹*Sandia National Laboratories, Albuquerque, NM, USA*

²*Los Alamos National Laboratory, Los Alamos, NM, USA*

³*University of Texas at Austin, TX, USA (now at Courant institute, New York)*

October 29, TUG 2014, Albuquerque

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Sandia
National
Laboratories

Los Alamos
NATIONAL LABORATORY
EST. 1943

THE UNIVERSITY OF
TEXAS
AT AUSTIN

Motivations

- Glaciers and ice sheets influence the global climate, and vice-versa
- Melting of land ice determines the **sea level rise**
 - melting of the Greenland ice sheet: 7 m
 - melting of the Antarctic ice sheet: 61 m



South Florida projection for a sea levels rise
of 5m (dark blue) and 10m (light blue)

Ice Sheet Modeling

Main components of an ice model:

- **Ice flow equations** (momentum and mass balance)

$$\begin{cases} \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \cdot \boldsymbol{\sigma} = \rho \mathbf{g} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

$$\left\{ \begin{array}{l} \rho \left(\frac{\partial \mathbf{u}}{\partial t} + \mathbf{u} \cdot \nabla \mathbf{u} \right) - \nabla \cdot \boldsymbol{\sigma} = \rho \mathbf{g} \\ \nabla \cdot \mathbf{u} = 0 \end{array} \right.$$

Ice Sheet Modeling

Main components of an ice model:

- **Ice flow equations** (momentum and mass balance)

$$\begin{cases} -\nabla \cdot \sigma = \rho \mathbf{g} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

with:

$$\sigma = 2\mu \mathbf{D} - \Phi I, \quad \mathbf{D}_{ij}(\mathbf{u}) = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Non linear viscosity:

$$\mu = \frac{1}{2} \alpha(T) |\mathbf{D}(\mathbf{u})|^{(p-2)}, \quad p \in (1, 2] \quad (\text{typically } p \simeq \frac{4}{3})$$

Viscosity is singular when ice is not deforming

Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

$$\begin{cases} -\nabla \cdot \sigma = \rho \mathbf{g} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

Ice Sheet Modeling

Main components of an ice model:

- Ice flow equations (momentum and mass balance)

$$\begin{cases} -\nabla \cdot \sigma = \rho \mathbf{g} \\ \nabla \cdot \mathbf{u} = 0 \end{cases}$$

- Model for the evolution of the boundaries
(thickness evolution equation)

$$\frac{\partial H}{\partial t} = H_{flux} - \nabla \cdot \int_z \mathbf{u} dz$$

- Temperature equation

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial z} \left(k \frac{\partial T}{\partial z} \right) - \rho c \mathbf{u} \cdot \nabla T + 2\dot{\varepsilon}\sigma$$

- Coupling with other climate components (e.g. ocean, atmosphere)

Stokes Approximations

“Reference” model: **STOKES**¹

$O(\delta^2)$ **FO**, Blatter-Pattyn first order model² (3D PDE, in horizontal velocities)

$O(\delta)$ Zeroth order, depth integrated models:
SIA, Shallow Ice Approximation (slow sliding regimes) ,
SSA Shallow Shelf Approximation (2D PDE) (fast sliding regimes)

$\simeq O(\delta^2)$ Higher order, depth integrated (2D) models: **L1L2**³, (L1L1)...

$\delta :=$ ratio between ice thickness and ice horizontal extension

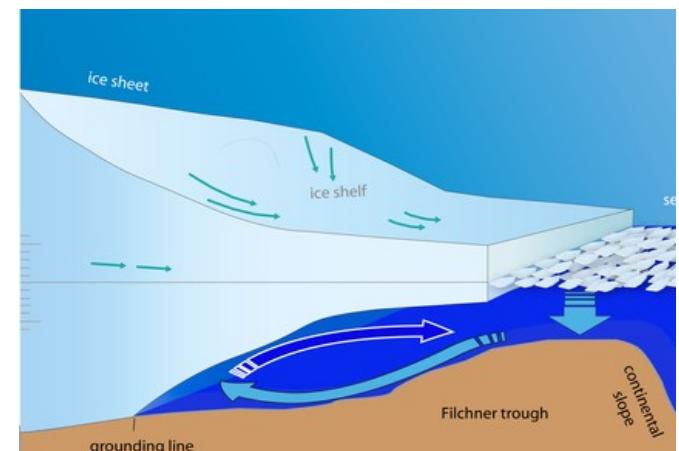
¹Gagliardini and Zwinger, 2008. *The Cryosphere*.

²Dukowicz, Price and Lipscomb, 2010. *J. Glaciol.*

³Schoof and Hindmarsh, 2010. *Q. J. Mech. Appl. Math.*

(Numerical) Modeling Issues

- Computationally challenging, due to complexity of models, of geometries and large domains
 - design of linear/nonlinear solvers, preconditioners, etc.
 - mesh adaptivity especially close to the grounding line.
- Boundary conditions / coupling (e.g. with ocean)
 - Floating/calving
 - Basal friction at the bedrock,
 - Subglacial hydrology,
 - Heat exchange / phase change.
- Initialization / parameter estimation.
- Uncertainty quantification.



Inverse Problem

Estimation of ice-sheet initial state*

(w/ G. Stadler, UT, and S. Price, LANL)

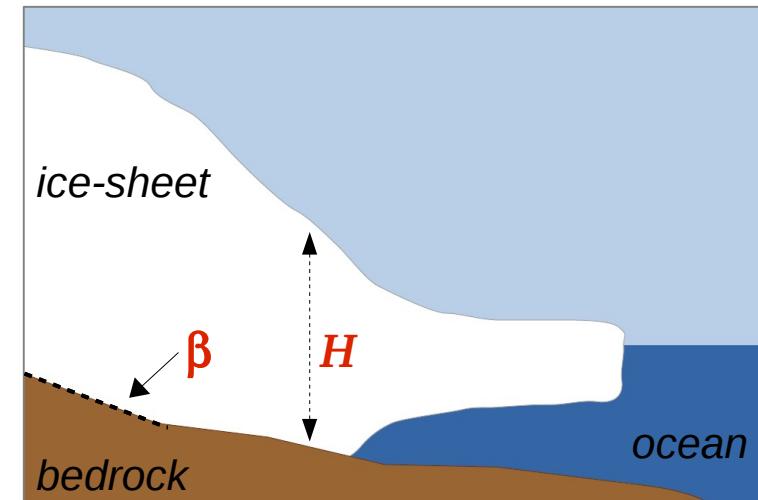
Problem: what is the initial thermo-mechanical state of the ice sheet?

Available data/measurements:

- *ice extension and surface topography*
- *surface velocity*
- *Surface Mass Balance (SMB: accumulation/melt rate)*
- *ice thickness H (very noisy)*

Fields to be estimated :

- ***ice thickness H***
- ***basal friction β***



Additional information:

- *ice fulfills **nonlinear Stokes equation***
- *ice is almost **at thermo-mechanical equilibrium***

Assumption (for now):

- *given **temperature field***

Inverse Problem

Estimation of ice-sheet initial state

Steady State equations and basal sliding conditions

How to prescribe ice-sheet mechanical equilibrium:

$$\frac{\partial H}{\partial t} = -\operatorname{div}(\mathbf{U}H) + \tau_s, \quad \mathbf{U} = \frac{1}{H} \int_z \mathbf{u} dz.$$

divergence flux
Surface Mass Balance

At equilibrium: $\operatorname{div}(\mathbf{U}H) = \tau_s$

Boundary condition at ice-bedrock interface:

$$(\sigma \mathbf{n} + \beta \mathbf{u})_{\parallel} = \mathbf{0} \quad \text{on} \quad \Gamma_{\beta}$$

Bibliography*:

Arthern, Gudmundsson, J. Glaciology. 2010

Price, Payne, Howat and Smith, PNAS 2011

Brinkerhoff et al., Annals of Glaciology, 2011

Morlighem et al. Geophysical Research Letters, 2013

Pollard DeConto, TCD 2012

Petra, Zhu, Stadler, Hughes, Ghattas, J. Glaciology , 2012.

Goldberg and Heimbach, The Cryosphere 2013.

Michel et al., Computers & Geosciences, 2014.

Inverse Problem

Estimation of ice-sheet initial state

PDE-constraint optimization problem: cost functional

Problem: find initial conditions such that the ice is almost at thermo-mechanical equilibrium given the geometry and the SMB, and matches available observations.

Optimization Problem:

find β and H that minimizes the functional \mathcal{J}

$$\begin{aligned}
 \mathcal{J}(\beta, H) = & \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds \\
 & + \int_{\Sigma} \frac{1}{\sigma_{\tau}^2} |\operatorname{div}(\mathbf{U}H) - \tau_s|^2 ds \\
 & + \int_{\Sigma} \frac{1}{\sigma_H^2} |H - H^{obs}|^2 ds \\
 & + \mathcal{R}(\beta, H)
 \end{aligned}$$

surface velocity mismatch
 SMB mismatch
 thickness mismatch

regularization terms.

} Common
 } Proposed

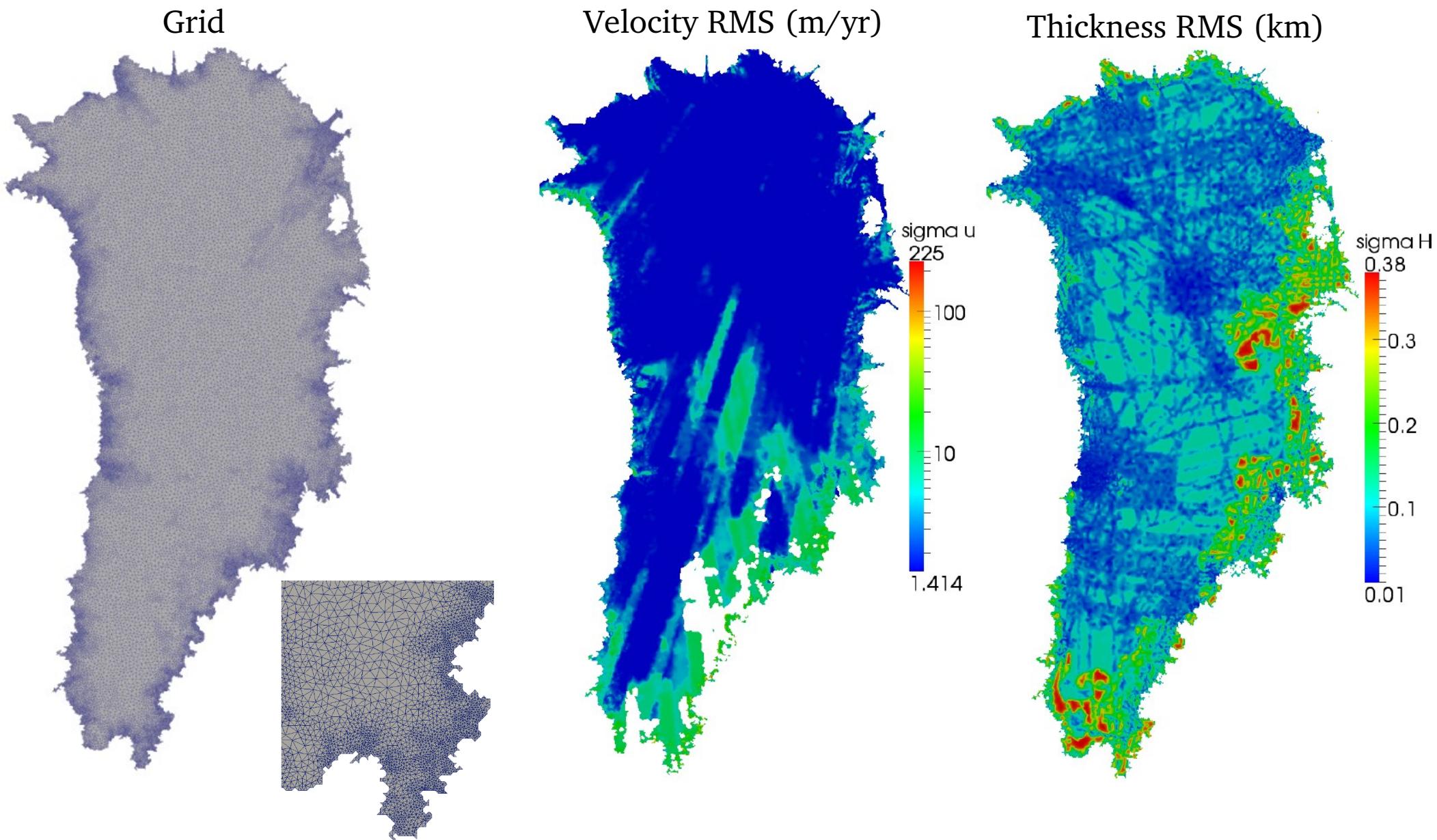
subject to ice sheet model equations
(FO or Stokes)

\mathbf{U} : computed depth averaged velocity
 H : ice thickness
 β : basal sliding friction coefficient
 τ_s : SMB
 $\mathcal{R}(\beta)$ regularization term

Inverse Problem

Estimation of ice-sheet initial state of Greenland ice sheet

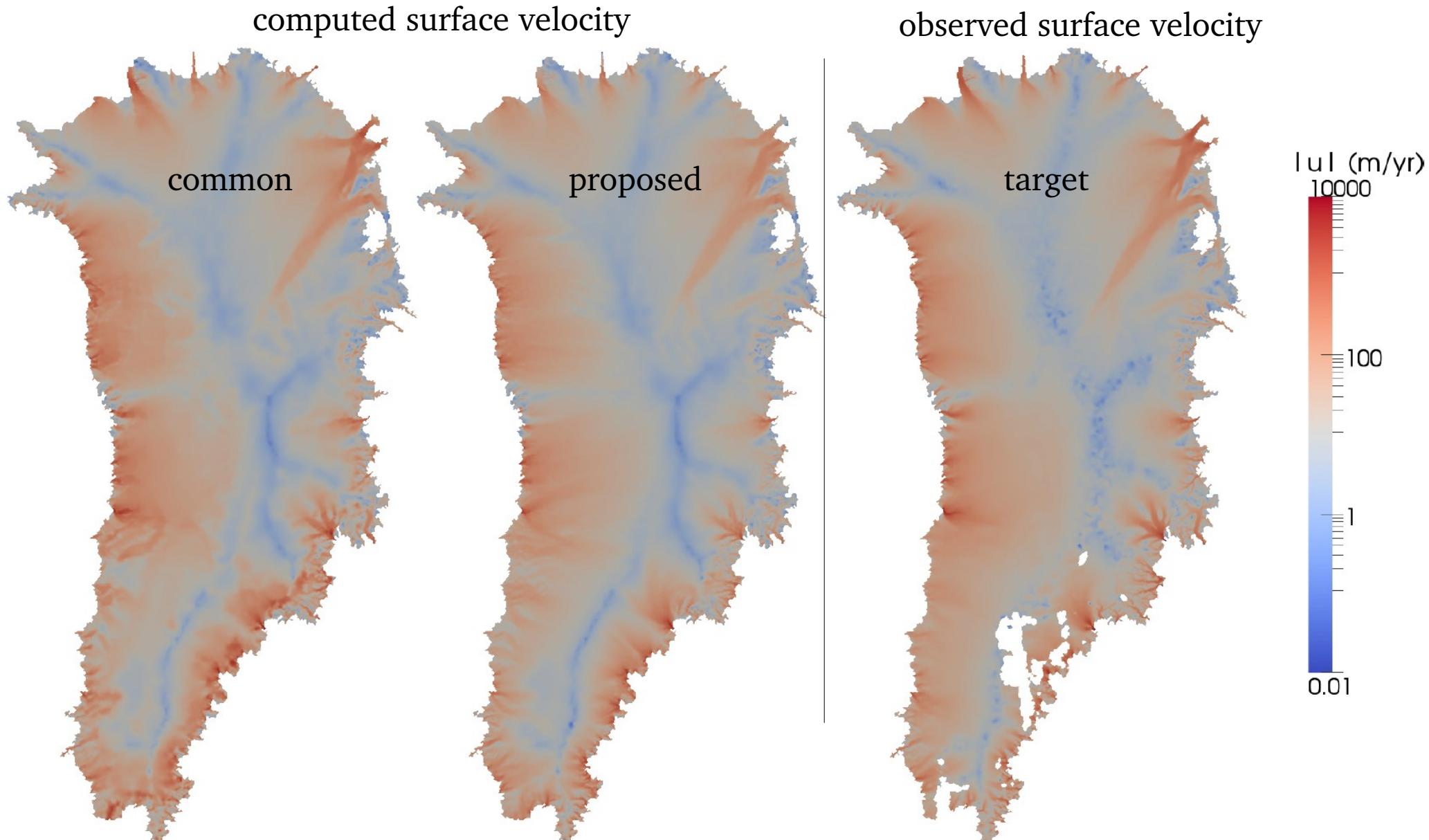
Grid and RMS of velocity and errors associated with velocity and thickness observations



Inverse Problem

Estimation of ice-sheet initial state of Greenland ice sheet

Inversion results: surface velocities

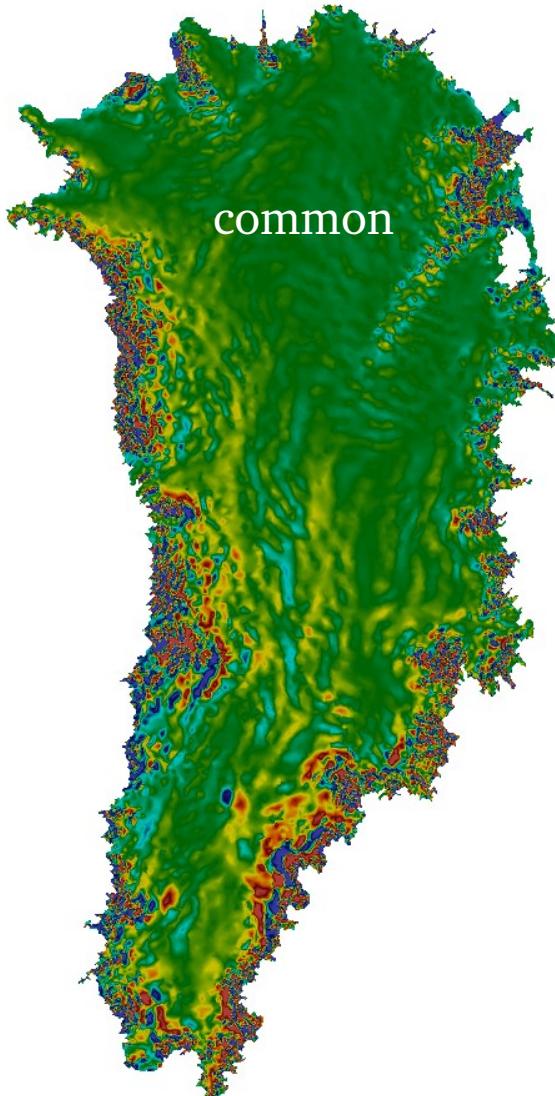


Inverse Problem

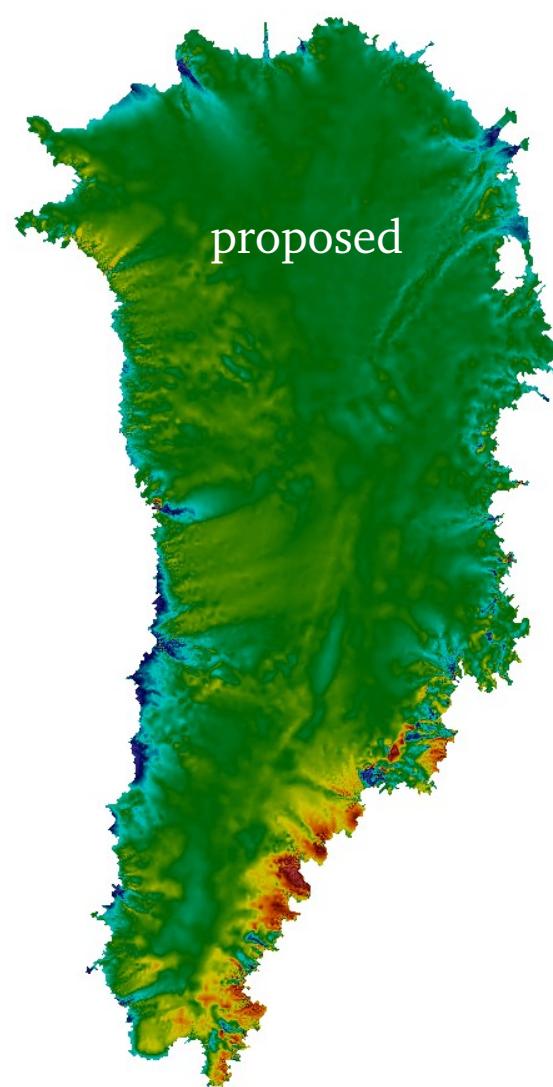
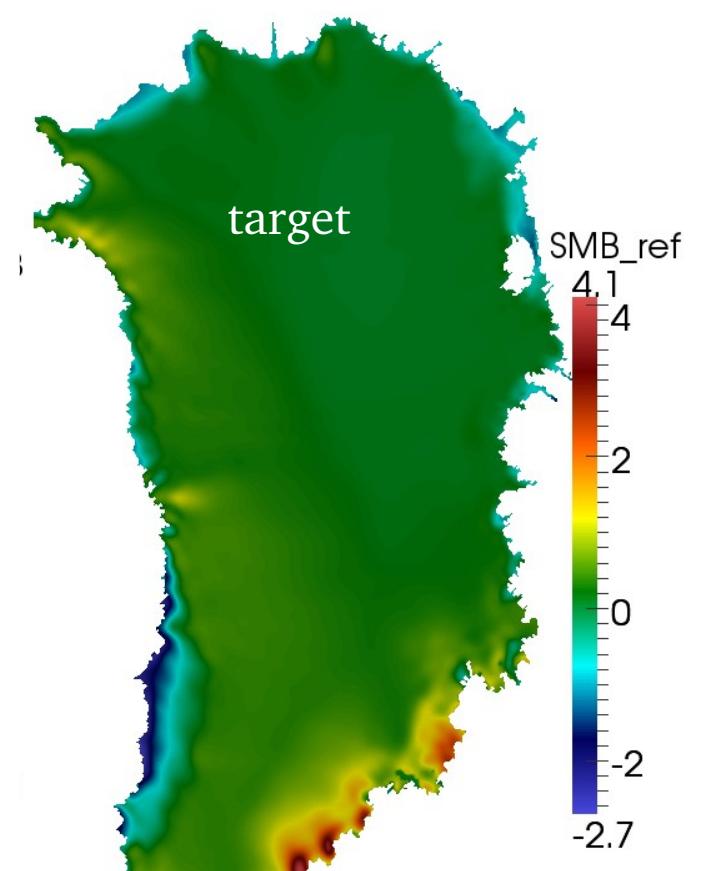
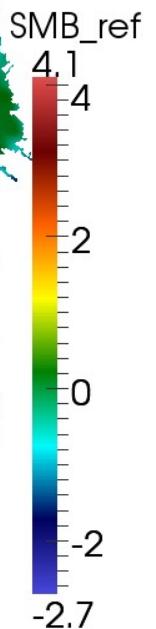
Estimation of ice-sheet initial state of Greenland ice sheet

Inversion results: surface mass balance (SMB)

SMB needed for equilibrium



SMB from climate model

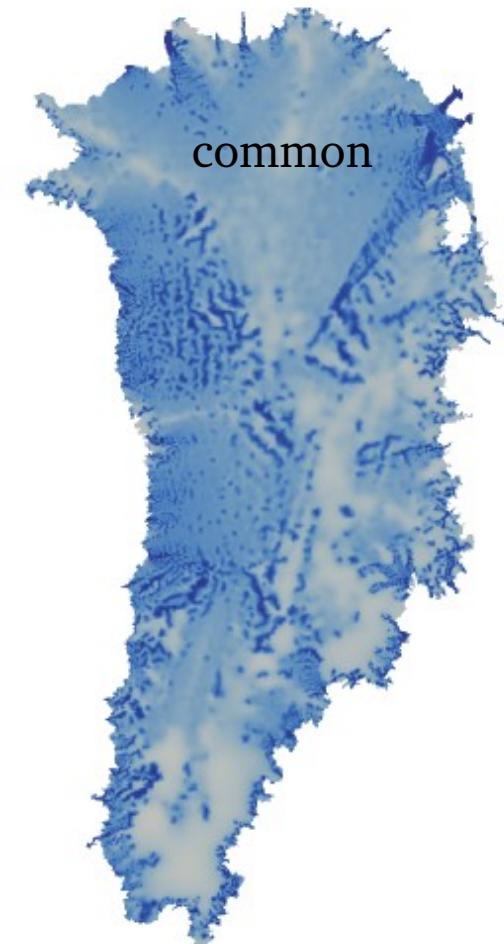


Inverse Problem

Estimation of ice-sheet initial state of Greenland ice sheet

Estimated beta and change in topography.

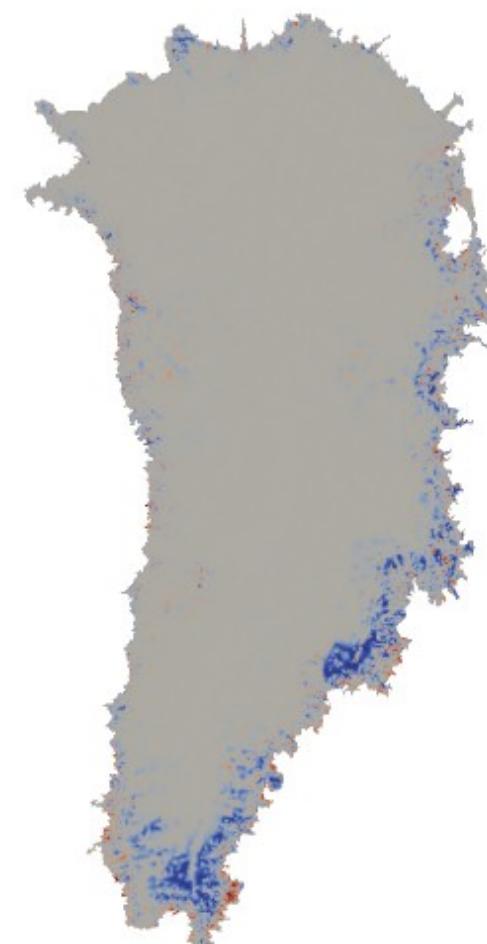
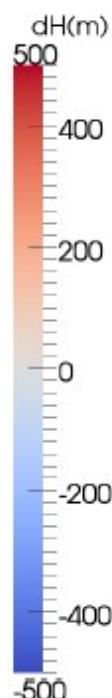
recovered basal friction



proposed



difference between recovered
and observed thickness



Inverse Problem

Estimation of ice-sheet initial state

Algorithm and Software tools used

Algorithm	Software Tools	
Basal non-uniform triangular mesh	<i>Triangle</i>	
Linear Finite Elements on tetrahedra	<i>LifeV</i>	
Quasi-Newton optimization (L-BFGS)	Rol	
Nonlinear solver (Newton method)	NOX	
Krylov Linear Solvers	AztecOO/IfPack	

Details:

Regularization terms: Tikhonov.

L-BFGS initialized with Hessian of the regularization terms.

$$\left(\frac{1}{2} \beta^T L \beta \rightarrow L \right)$$

Inverse Problem

Estimation of ice-sheet initial state

PDE-constraint optimization problem: gradient computation

Find (β) that minimize $\mathcal{J}(\beta, \mathbf{u})$
subject to $\mathcal{F}(\mathbf{u}, \beta) = 0$.

flow model

How to compute **total derivatives** of the functional w.r.t. the parameters?

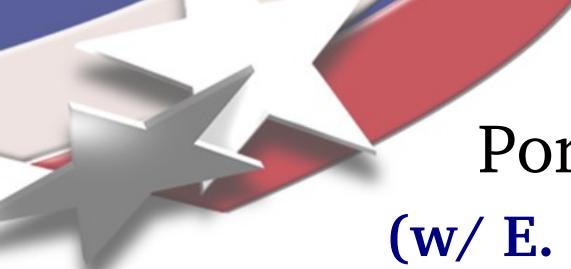
Solve State System $\mathcal{F}(\mathbf{u}, \beta) = 0$

Solve Adjoint System $\langle \mathcal{F}_{\mathbf{u}}^*(\boldsymbol{\lambda}), \boldsymbol{\delta}_{\mathbf{u}} \rangle = \mathcal{J}_{\mathbf{u}}(\boldsymbol{\delta}_{\mathbf{u}}), \quad \forall \boldsymbol{\delta}_{\mathbf{u}}$

Total derivative $\mathcal{G}(\boldsymbol{\delta}_{\beta}) = \mathcal{J}_{\beta}(\boldsymbol{\delta}_{\beta}) - \langle \boldsymbol{\lambda}, \mathcal{F}_{\beta}(\boldsymbol{\delta}_{\beta}) \rangle$

Derivative w.r.t. β

$$\mathcal{G}_1(\boldsymbol{\delta}_{\beta}) = \alpha_{\beta} \int_{\Sigma} \nabla \beta \cdot \nabla \boldsymbol{\delta}_{\beta} \, ds - \int_{\Sigma} \boldsymbol{\delta}_{\beta} \, \mathbf{u} \cdot \boldsymbol{\lambda} \, ds$$



Porting the inversion to Albany-FELIX

(w/ E. Phipps, A. Salinger, D. Ridzal and D. Kouri)

Why?

- to exploit Automatic Differentiation for computing derivatives
- to exploit Albany/Trilinos ecosystem (e.g. for UQ capabilities using Dakota)
- to extend Albany adjoint/inversion capabilities,
- to use in-house software (better maintainability)

Albany Development:

- implement **distributed parameters**, i.e. fields defined on the mesh or on parts of it.
- implement routines for computing **derivatives** of **residual** and **responses** w.r.t. the **distributed parameters**.

Trilinos Development:

- couple Piro to ROL using Thyra implementation of ROL::Vector and ROL::Objective. ROL needs reduced gradient and objective functional.

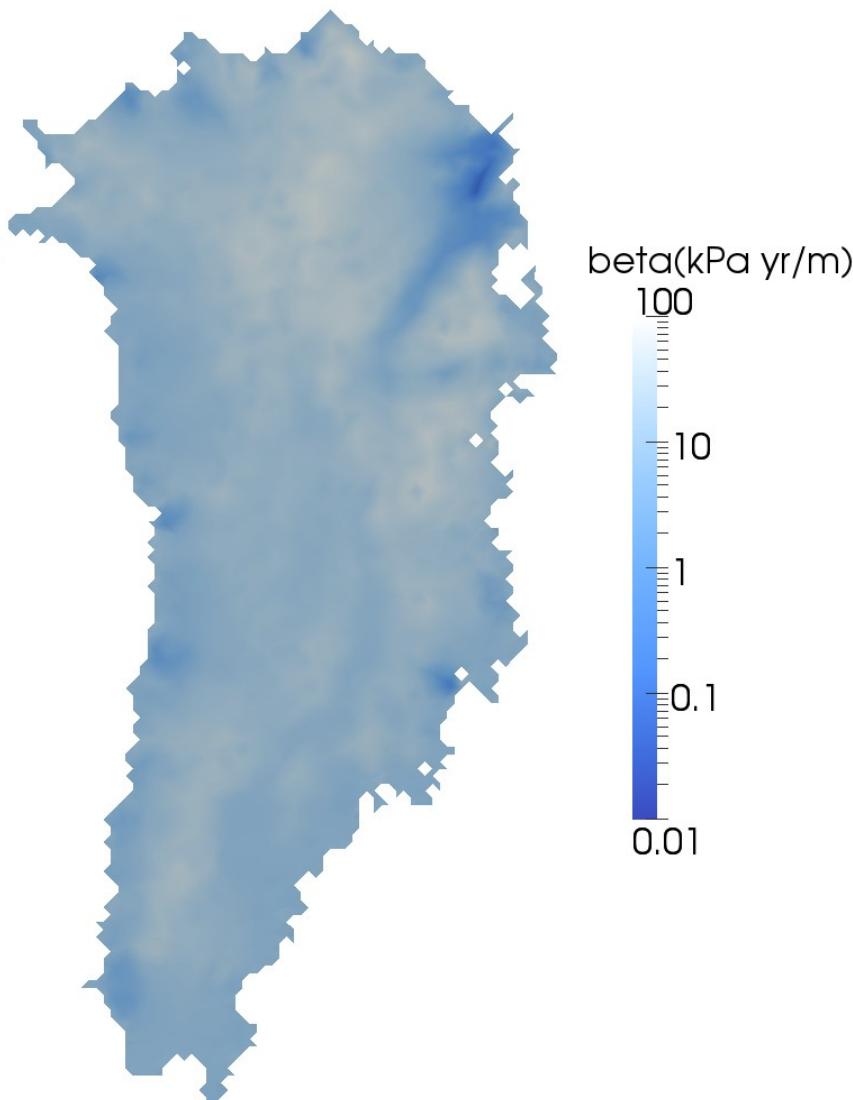
$$\mathcal{G} = \mathcal{J}_\beta - \mathcal{F}_\beta^T \lambda$$

Matrix-free
matrix vector product

\mathcal{G} : reduced gradient
 \mathcal{J} : response or objective function
 \mathcal{F} : residual
 β : (distributed) parameter

Preliminary result using Albany-Piro-ROL

recovered basal friction



Objective functional:

$$\mathcal{J}(\mathbf{u}(\beta), \beta) = \int_{\Sigma} \frac{1}{\sigma_u^2} |\mathbf{u} - \mathbf{u}^{obs}|^2 ds + \alpha \int_{\Sigma} |\nabla \beta|^2 ds.$$

ROL algorithm:

- *Limited-Memory BFGS*
- *Backtrack line-search*

Inverted 2000 parameters.

TODOs:

- clean/test Piro-ROL interface
- add bound-constraints
- implement Hessian computation in order to use Newton methods and for UQ
- invert for shape parameters (H)

Trilinos packages used in this calculation:

Nonlinear analysis

- Piro
- ROL
- LOCA
- NOX

Vectors / tools

- Teuchos
- Epetra
- EpetraExt
- Thyra

Physics / discretization

- Phalanx
- Sacado
- Intrepid
- Shards

Linear solvers

- Stratimikos
- Belos/AztecOO
- Ifpack

Mesh

- Zoltan
- STK::Mesh
- STK::IO
- Seacas::Exodus
- Seacas::IOSS

(thanks Andy)