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Summary: Extensive x-ray diagnostics on Z i) i
are guiding our understanding of MagLIF plasmas

* Magnetized Liner Inertial Fusion (MagLIF) offers a promising
alternative to traditional ICF schemes — if we can understand
and control the complex interplay of magnetization, preheat,
and stagnation

* Analysis of extensive neutron and x-ray data including
imaging, power, and spectroscopic diagnostics are guiding our
understanding of the plasma evolution and stagnation,
helping to benchmark simulations

* Future experiments are planned to improve our understanding
of preheat, mix, and scaling



Initial MagLIF results are promising ) it
but yields still fall well short of predictions

According to simulations, MagLIF has 10— ' s L

the potential to produce high fusion
yields by exploiting:
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1) a highly efficient driver
delivering ~1% of its stored
energy to the fuel 10+11—

2) magnetic confinement that 3
relaxes required pressures 10— No preheat &
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One hypothesis is that we are coupling only
a small fraction of laser energy to the fuel
(*2-D Hydra simulations by A.B. Sefkow)




Degraded simulations that match the measured ) i
vields provide a detailed picture of the stagnation

Te and T (log10[eV]), t (ns) : 85.9126
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If the main laser pulse is truncated after
depositing only 10% of its energy, it
barely penetrates the LEH...

... but still produces significant yield from a
plasma column with burn-averaged conditions:
pp =0.4 g/cm3

R=65um

z~4 mm

T~ 3 keV

tyun=1.6ns

Pliner = 0.9 g/cm?




Can we diagnose preheat directly and )
correlate it with measured yields?
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Calculations by S. Slutz



Another approach: do the degraded simulations ) it
present a plausible picture of stagnation?
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Te and T (log10[eV]), t (ns) : 138.503 pD - 04 g/cm
— - R=65um
el z=4mm

7 t,,,=1.6ns

ﬁ T~ 3 keV

Priner = 0.9 g/cm?
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The calculated stagnation plasma
=)- 12 N
produces Ypp=2-4x10""and T; ~ 3 keV detailed predictions for the

— consistent with neutron data — .. .
plasma conditions at stagnation,

but many variations of p, R, z, and t . .
Y : P burn which can be tested using x-ray
are consistent with Yy,

and Y does not constrain pR

The simulations also provide

diagnostics
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High-energy X-rays are reasonable proxies for i) Natonat
thermonuclear neutrons
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Neutron production rate: - —— DD neutrons

| — — DT neutrons (/80)
R = ninp < op1Vion(T) > Vol [n/s] 1 ——13 keV photons

[ i 6 keV phot
A given neutron yield can be eV photons

generated by a multiplicity of
burn plasmas whose density,
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Detailed x-ray diagnostics can
supplement neutron data,
placing stringent constraints
stagnation conditions.

Reaction rate <ov> [cm?3/s]
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P. Springer et al., EPJ] Web of Conferences 59, 04001 (2013)
S. Hansen, Phys. Plas. 19, 056312 (2013)
T. Ma et al., Phys. Rev. Lett. 111, 085004 (2013)



Z has extensive x-ray diagnostics that witness )
the MagLIF experiments
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Measuring MagLIF’s ~ 30 J x-ray yields is challenging

adel - compared to the few-MJ x-ray yields of many Z experiments




Combining information from all x-ray diagnostics ) i
provides a well-constrained picture of stagnation
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Detailed spectral measurements also provide ) i
information about mix
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This picture of stagnation is broadly consistent )
with the degraded-yield simulation

Degraded simulation: X-ray analysis with Isobaric model* provides values
burn averages cartoon model even closer to neutron data
: —T (keV)
Pp = 0.4 g/cm3 Pp ~0.3 g/Cm3 3 - T=To[14r/R)] — density {g/cr)
R=65 mwm R=70 nm pT = constant
Zz=4 mm 17 z=4 mm P neutron
tburn =1.6ns tburn =2ns x-ray nght.iﬂg—-.._\
T~ 3 keV T, =3.1keV 1 WegENg 2 N
-~ N
0 - SN
Pliiner = 0.9 g/cm* Pliiner = 0.9 g/cm? 0 Ul.z Dl.a DI.G Ul.s 1
Ypp= 2-4 x 1012 Ypp= 6 x 1012 r/R
Synthetic diagnostics:
Measired geuigolg data: Neutrons (sample VT, ) <T> = 2.5 keV
pp~ < X X-rays (sample 0j/d¢g) <T.> = 3.1 keV
T.=2.5 keV vs (sample 0}/0c) <T,




Axially resolved spectra allow us to ) i
assess axial variations in ps ., T, PR}i e @aNd MiXx

Gross variations in axial intensities are most likely due to

density variations along the column — under this interpretation, -~ ~9 keV (with Zn)
densities vary by factors of 2 while pressures are fairly uniform. —_95keV
——12keV
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Upcoming shots will use an interior tracer layer ) e
of ZnO to better characterize fuel-liner mix
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* Additional emitters will increase Zn signal by ~103

* Expect yield degradation of ~2x if mixed near
stagnation, and ~10x if mixed by laser

* Provide a localized signal and independent
temperature estimate from the mixed region




Combining information from all x-ray diagnostics
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also helps characterize late-time emission:
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Can the late-time emission help us understand ) i
observed helical instabilities?

 Late-time stainless steel emission was not
observed on shots where the stainless return
can was replaced with aluminum

Axial dimension

* The pitch of helical instabilities observed by
Awe et al. on implosions with applied B,
suggest instability seeding when B, ~ B,

e ForB~ 10T, this occurs well before the
liner begins to implode, but a small amount of
ionized mass swept onto the liner at early
times (~ 1 ug/cm?), could flux-compress the
external B, to ~ 100 T ~ B, (Ryutov)

* The late-time emission suggesting ~ 10 ng/cm?
from the return can could be supplemented
with tracers in the current feed
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Caveats to the x-ray analysis

= The absolute power and spectral measurements which inform the
density diagnostic depend PCD calibrations, which have ~30%
uncertainties translating to ~“50% uncertainties in p;,, and pR;;

= Low S/N on the spectrometers at high photon energies leads to 10-20%
uncertainties in the inferred electron temperatures

= The temporal evolution of the stagnating plasma has not yet been
analyzed

= The data analysis was performed using a composite data set taken
from two shots; in future experiments we hope to have complete data
sets to enable analysis of every shot

We are building a rough but reliable picture of MagLIF stagnation
conditions, providing detailed data to help validate our simulations.




High-fidelity radiation and thermal transport )
data will be critical for predictive simulations

* Radiative losses during preheat can have a major effect on target

performance: requires reliable non-LTE atomic models
 H. Scott and S. Hansen, High Energy Density Phys. 6, 39 (2010)
« M. Rosen et al., High Energy Density Phys. 7, 180 (2011)

* The efficacy of the magnetic field in inhibiting conduction losses is
also key, but there is a dearth of data and benchmarked calculations

of thermal conduction, particularly in high magnetic fields:
* Y. Ping, Thermal conductivity measurements of CH and Be by refraction-
enhanced x-ray radiography (last year’s DPP)
 T.Ott and M. Bonitz, Phys. Rev. Lett. 107, 135003 (2011)
 P. Grabowski, UC Irvine

* Optimizing laser preheat may require more sophisticated
treatments of LPI




Summary: Extensive x-ray diagnostics on Z i) i
are guiding our understanding of MagLIF plasmas

* Magnetized Liner Inertial Fusion (MagLIF) offers a promising
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and stagnation

* Analysis of extensive neutron and x-ray data including imaging,
power, and spectroscopic diagnostics are guiding our
understanding of the plasma evolution and stagnation,
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* Future experiments are planned to improve our understanding
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The Magnetized Liner Inertial Fusion (MagLIF) ) i
effort on Z has many important contributors:
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Initial experiments produced 2x10*? DD neutrons (s,
— and a remarkable 5x10° DT neutrons
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“Secondary” 14 MeV neutrons are produced D+ D % 0.8 MeV He3 + 2.5 MeV n
by 1 MeV tritons interacting with D fuel: 50% 1.0 MeVT + 3.0MeVp

e i — —no stopping

clean, Te= 3.5 keV
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n an unmagnetize 650 s i ; g
plasma, pR > 200 mg/cm? <ppx> g/em? plasma, pR ~ 2 mg/cm?
is required for triton/o is sufficient to confine
confinement (<x> ~ R) 1 MeV tritons (<x> ~ Z)

A field that confines 1 MeV tritons will also confine thermal electrons
(inhibiting conduction losses) and fast alphas (required for self-heating)




Zeeman splitting is being used to characterize Z's () i
current drive and flux compression in Magnetized
Liner Inertial Fusion (MagLIF) experiments

« Sodium deposits vaporized and backlit by current-carrying surfaces signal both
the magnitude and direction of the local magnetic field:
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