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@ Forward UQ - Polynomial Chaos
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Introduction
Forward propagation of parametric uncertainty

Forward model: y = f(x)
@ Local sensitivity analysis (SA) and error propagation

_Y

A
YT ax

Ax

X0

This is ok for:

— small uncertainty
— low degree of non-linearity in f(x)

@ Non-probabilistic methods
e Fuzzy logic
e Evidence theory — Dempster-Shafer theory
o Interval math

@ Probabilistic methods — this is our focus

Najm UQ in Computations



Introduction

Probabilistic Forward UQ

Represent uncertain quantities using probability theory
@ Random sampling, MC, QMC

e Generate random samples {x'}Y_, from the PDF of x, p(x)
e Bin the corresponding {y'} to construct p(y)
e Not feasible for computationally expensive f(x)

— slow convergence of MC/QMC methods
= very large N required for reliable estimates

@ Build a cheap surrogate for f(x), then use MC

@ Collocation — interpolants

e Regression — fitting
@ Galerkin methods

— Polynomial Chaos (PC)

— Intrusive and non-intrusive PC methods

Najm UQ in Computations



ForwardPC hi-D Discont Osc

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of
orthogonal functions of standard RVs

— Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods
for forward UQ

Najm UQ in Computations
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Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
@ Givenagerm{(w) = {&1,--- &} —asetof iid. RVs
— where p(&) is uniquely determined by its moments

Any RV in L?(Q, &(&), P) can be written as a PCE:

u(x,t,w) = fx,1,€) ~ Zukxt‘lfk w))

— ui(x,t) are mode strengths
— U, () are multivariate functions orthogonal w.r.t. p(&)

(n+p)!

With dimension »n and order p: P+1= alp!

Najm UQ in Computations
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Orthogonality

By construction, the functions ¥, () are orthogonal with respect
to the density of £

(u\Ifk> 1

wie) = b= [ e ENOE) pe©) de

@ Hermite polynomials with Gaussian basis

@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods
e Adaptive domain decomposition of the support of &

Najm UQ in Computations
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 1

@ Wiener-Hermite
PCE constructed for
a Lognormal RV

@ PCE-sampled PDF
superposed on true

0.6

PDF 04
@ Order =1 o2y
P M | 2 ; J s 6
u = Zuk\lfk(f)
k=0
= ug+ uié
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 2

@ Wiener-Hermite
PCE constructed for
a Lognormal RV

@ PCE-sampled PDF |
superposed on true  *°[ /

1+

PDF 04
@ Order=2 027 / \
P T | 2 ; s s 6
u = Zuk\lfk(f)
k=0

= up+wmé+u (& 1)
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hi-D Discont Osc

PC lllustration: WH PCE for a Lognormal RV

@ Wiener-Hermite
PCE constructed for
a Lognormal RV

@ PCE-sampled PDF
superposed on true
PDF

@ Order=3

P

> uW(§)

k=0

Lognormal; WH PC order = 3

0.6

04

02

0

=y +w +ur(€ = 1) +u3(€ —3¢)
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 4

@ Wiener-Hermite
PCE constructed for
a Lognormal RV

@ PCE-sampled PDF |
superposed on true [
PDF b

1+

@ Order =4 02p / N
o Lt ‘ L
P 0 1 2 3 4 5 6
u = Z urWi(€)
k=0

= up+ué +ur(& — 1) + uz(& — 3¢) + us(&* — 667 + 3)
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PC lllustration: WH PCE for a Lognormal RV

Lognormal; WH PC order = 5

@ Wiener-Hermite
PCE constructed for
a Lognormal RV

© PCE-sampled PDF | ~

0.6

superposed on true  *“ \
PDF /

\\
@ Order=5 er G
ot ‘ L
P 0 1 2 3 4 5 6
u = Zuk\lfk(f)
k=0

o+ uré + up (€% — 1) + uz(& — 36) + ug(¢* — 667 + 3)
+ us (€% — 1083 + 15¢)
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PC lllustration: WH PCE for a Lognormal RV

Lognormal RV Lognormal RV
4 WHg’Cordm 16 WHP(id
g e 14+ % “““““
12 2 12 4
1 —=— 5
1 10
8
0.8
6
06 4 it
04 l e
0 0 1 2 3 4 5 -474 -3 2 -1 0 1 2 3 4
PC mode amplitudes PC function u(¢)
Upg—us Order 1-5

@ Fifth-order Wiener-Hermite PCE represents the given
Lognormal well

@ Higher order terms are negligible

Najm UQ in Computations



ForwardPC hi-D Discont Osc

Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
o Utility
e Moments: E(u) = ug, var(u) = Zle uZ (W2, ...
o Global Sensitivities — fractional variances, Sobol’ indices
e Surrogate for forward model

Requirement:
@ RVsin L2, i.e. with finite variance, on (2, &(€), P)

Najm UQ in Computations
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Intrusive PC UQ: A direct non-sampling method

@ Given model equations: _

@ Express uncertain parameters/variables using PCEs

P P
u = Zuk\llk; A= Z )\k\I/k
k=0 k=0

@ Substitute in model equations; apply Galerkin projection

@ New set of equations: _

— with U:[l/t(),...,up]T,A:[Ao,...,AP]T

@ Solving this deterministic system once provides the full
specification of uncertain model ouputs

Najm UQ in Computations
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Intrusive Galerkin PC ODE System

Say f(u; \) = Au, then

du P P
" ZZ)‘M‘I pgiy 1=0,--+ P

where the tensor Cp,; = (¥, V,¥,)/(¥?) is readily evaluated

Najm UQ in Computations
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hi-D Discont Osc

Laminar 2D Channel Flow with Uncertain Viscosity

@ Incompressible flow
@ Viscosity PCE

- v=1y+ v
) Streamwise velocity

—V—E v; U

Vo mean
— v;: i-th order mode
P

- of= E:Vl2 <\Illz>
i=1

Vo

I

V3 g

(Le Maitre et al., J. Comput. Phys., 2001)

Najm UQ in Computations
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Intrusive PC UQ Pros/Cons

Cons:
@ Reformulation of governing equations
@ New discretizations
@ New numerical solution method

— Consistency, Convergence, Stability
— Global vs. multi-element local PC constructions

@ New solvers and model codes
— Opportunities for automated code transformation
@ New preconditioners

Pros:
@ Tailored solvers can deliver superior performance

Najm UQ in Computations
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Stability of Intrusive Galerkin ODEs

@ Setting:
o Nonlinear ODEs with uncertain initial conditions/parameters
@ Intrusive Galerkin ODE system can be unstable in general

e Spurious positive eigenvalues
e Fast growth of PC coefficients

@ Equation structure similar to that of semidiscretized
spectral Galerkin/Fourier equations for conservation laws

e Generally unstable for nonlinear conservation laws
o Filtering is useful to ensure stability

@ Stability achievable with local multi-element PC methods
@ Need to develop stable global PC methods — filtering

@ Application setting:
e Uncertain chemical kinetics model — homogeneous ignition

Najm UQ in Computations
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A chemically-relevant model ODE system

State vector (x(z),y(t)) -
dx 10
a = —X(l + y) 1
dy 1 0.1
E = E(X — Yy + Bxy) 0.1
X(O) — )CO 000 ot 0.0050.010 Au.osu 0.100 0,500 1.000
y0) =
67>0,8>0 ’

x(1),y(t) 2 0

€ << 1 = stiff
. . 0.
x: slow variable (stable species) U ———
y: fast variable (radical species) :

Najm UQ in Computations
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Uncertain model chemical system

>

W =0,v=1,6=001
1%, 8 : Uncertain, independent, lognormal

E[f] = 1.0, Stdv[3] = 0.202
Ex’] = 1.0, Stdv[x’] = 0.202,0.343,0.372 (Case: 1,2,3)

Najm UQ in Computations
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Intrusive Galerkin global PC ODE system

&= (&,&) iid N(0,1)

(&) = 2 (&) = (&)
B&) = Zkﬁk‘l’k ) =B(&)

V(€

(€
xX(t,€) = 2o u(1) We(€)
¥(6,8) = D (1) Wi (§)-

Galerkin ODE system: k =0,...,P

e = —xx — > %iyj Cije
Ik =€ o — v+ X 0 xiBe Cijur)
where

Cijr = (U0, 0) /(T7)
Cioe = (U 0;0,0,) /(UF)

Najm UQ in Computations
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Galerkin system instability for high o

@ Fourth order PC solution
0.8 Stable

@ Implicit stiff time integrator = Vg
— DVODE
@ Consequences of increased
uncertainty in x°
o Case 1 —stable
e Case 2 — marginal
o Case 3 —unstable

@ Increasing PC order makes the i < |
problem worse -0.051- uh
e Unstable for lower degrees of = | . Sable b

— Marginal
— Unstable

X

uncertainty

—

Yy

Najm UQ in Computations
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Spurious persistent growth of positive eigenvalues

@ Physically meaningful positive g
eigenvalues during brief phases x
of system dynamics P
e Initial fast time evolution of the
system

0.05

0.10

0.15

0.20

025

o Brief phase of explosive growth
typical of ignition )

o Growth of initial uncertainty ‘

@ Marginal case exhibits persistent
positive eigenvalues o

100

@ Unstable case exhibits fast of
growth of positive eigenvalues

xxxxxx

Najm UQ in Computations
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Instability consequences on p(x, y)

0.0020

04
00015

)<01

00010

Ply

00005

0.0000

0 2 ¥ 6 8 10

02 04 06 08 000 002 004 006 008 010

Case 1 Case 2 Case 3

@ Probability density function p(x(¢), y(¢)) based on sampling
PCEs of (x(z),y(z))

@ Instability leads to large/increasing P(Y < 0)
e Unphysical and inconsistent with sampled solution PDF

@ Employ filtering that minimizes max(Px<o, Py<o)

Najm UQ in Computations
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Filter Design

Given a PCE (&) = "5, i Ui (£).
Then, with U = (ug, u1, ..., up)’, and u = YoV (&) = u(U,§),
seek filtered PCE (&) = >-p_, i Wi (€), where
U = argmin{|ju — i||3 + w ®x(U)}
U
with
1 & .
oy(U) = & > (1~ H(u(U,£))) ~ Plu < 0)
i=1
where w is a chosen weight factor
@ Filter applied at any time step where &y > oy,

@ Procedure finds i(&) that is both
— near to u(£), and has minimal @y

Najm UQ in Computations
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Filtered system reduction in P,., = max[P(X < 0), P(Y < 0)]

@ Growth in Py, is

halted 0.0006 ]
i1 P(X <0)
@ Filtered time g().mxm, ]
integration maintains -
Pneg < ¢thr
0.0000
0.00

0.06

o

=3

E
T

Ply(H)<0]

0.02

0.00

L L L
0.00 0.05 0.10 0.15 0.20

Najm UQ in Computations



ForwardPC hi-D Discont Osc

Filter eliminates spurious positive eigenvalues

@ Filtered system has
positive eigenvalues
over a limited time :
range

@ Persistent and
growing spurious Unfiltered
positive eigenvalues
eliminated 1007 8

Eigenvalues

Filtered

0.00 0.05 0.10 0.15 0.20 0.25

time

Najm UQ in Computations



ForwardPC

@ Stable time evolution

of PC mode
coefficients

Filtered system
intrusive solution

consistent with that

based on

non-intrusive Monte

Carlo and Gauss
Quadrature results

hi-D Discont Osc

Filtered Galerkin ODE system is Stable

— MC — MC
61~ — GQ q — GQ il
Intr Intr
5 — Intr-005] 4 — Intr-005
o -
4F 4
B3 4
2 4
, 1] i
! 1 1 ! L
0.1 0.2 0.3 0.4 0.5 0%5
'
T T T T T T T T
6 — MC B — MC
— GQ — GQ
Intr Intr
— Intr-005 — Intr-005[|

ymode 3

Najm

UQ in Computations
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Filtered system PC mode errors

@ PC mode errors are higher
in the higher-order terms

@ O(10%) normalized RMS ¢ o y—
errors in low-order modes

@ Other challenges:

Filtered system stability 0 o

impacted by ) Error between PC mode
e degree of uncertainty coefficients from the
e PC order

intrusive Galerkin solution
and the non-intrusive
Gauss-Quadrature solution

@ Py, threshold ¢y,

Najm UQ in Computations
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Non-intrusive PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,; \) = S5 dx(x, 1) Tk (€)

@ Integrals can be evaluated using

o A variety of (Quasi) Monte Carlo methods
— Slow convergence; ~ indep. of dimensionality

e Quadrature/Sparse-Quadrature methods
— Fast convergence; depends on dimensionality

Najm UQ in Computations
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UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

@ CHy-H, jet, air coflow, 3D flow

T [K]
@ Re=9500, LES subgrid modeling 000
@ 12 x 10% mesh cells, 1024 cores Focs
@ 3 days run time, 2 x 10° time steps '800
400
298

@ 3 uncertain parameters (Cs, Pr;, Sc;)
e 2"-order PC, 25 sparse-quad. pts

Mean axial velocity on centerline RMS axial velocity on centerline

.|| ‘ \ l ]
J. Oefelein & G. Lacaze, SNL

5 1(! 15
Mam Effect Sensitivit Indlces
SNL Najm UQ in Computations 30/51

Main-Effect Sensitivity Index
Main-Effect Sensitivity Index




ForwardPC hi-D Discont Osc

PC and High-Dimensionality

Dimensionality n of the PC basis: &€ = {¢1,..., &}
@ n ~ number of uncertain parameters
@ P+ 1= (n+p)!/nlp! grows fast with n
Impacts:
@ Size of intrusive PC system

@ Hi-D projection integrals = large # non-intrusive samples
@ Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level =3 Clenshaw-Curtis sparse grid, Level =5
. . ; .
. e o . . e o
°
°
°
. . ° .
°
L4
°
o o . . . e o 000000000000 000000000ococns
°
°
°
. . ° .
L4
°
o
. e o . e . e o
3 o i o
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PC Sparse Quadrature in hiD — Climate land model

Full quadrature: N = (Np)"
Sparse Quadrature | 80-D Surrogate

@ Wide range of methods 1e+07;

(] NeSted & hierarChicaI ]€+06; No. of Sparse Quadrature Points

@ Clenshaw-Curtis:
N = O(np) _“.é’ 1e+05?

@ Adaptive — greedy “ 10000 No.of PC Terms ]
algorithms

1000;
Number of points can still be §
excessive in hi-D wog”
1 2 3 4
— Large no. of terms PC Order

— Reduction/sparsity

Najm UQ in Computations
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Other non-intrusive methods

@ Response surface employing PC or other functional basis

@ Collocation: Fit interpolant to samples
e Oscillation concern in multi-D

@ Regression: Estimate best-fit response surface
o Least-squares
@ Sparsity via ¢, constraints; compressive sensing
e Bayesian inference
@ Sparsity via Laplace priors; Bayesian compressive sensing
e Useful when quadrature methods are infeasible, e.g.:
— Samples given a priori
— Can’t choose sample locations
— Can't take enough samples
— Forward model is noisy

Najm UQ in Computations
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Challenges in PC UQ — Non-Linearity

@ Bifurcative response at critical parameter values

e Rayleigh-Bénard convection

e Transition to turbulence

e Chemical ignition
@ Discontinuous u(A(§))

e Failure of global PCEs in terms of smooth ¥, ()

e « failure of Fourier series in representing a step function
@ Local PC methods

e Subdivide support of A(&) into regions of smooth u o A\(€)
Employ PC with compact support basis on each region
o A spectral-element vs. spectral construction

Domain mapping

Najm UQ in Computations
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Challenges in PC UQ — Time Dynamics

@ Systems with limit-cycle or chaotic dynamics

@ Large amplification of phase errors over long time horizon
@ PC order needs to be increased in time to retain accuracy
@ Time shifting/scaling remedies

@ Futile to attempt representation of detailed turbulent
velocity field v(x,#; A\(€)) as a PCE
— Fast loss of correlation due to energy cascade
— Problem studied in 60’s and 70’s
@ Focus on flow statistics, e.g. Mean/RMS quantities

o Well behaved
@ Argues for non-intrusive methods with DNS/LES of
turbulent flow

Najm UQ in Computations



SEVES Missing Data

Inverse UQ — Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting
@ Require joint PDF on input space
@ Statistical inference — an inverse problem

Bayesian setting

@ Given Data: PDF on uncertain inputs can be estimated
using Bayes formula

— Bayesian Inference

@ Given Constraints: PDF on uncertain inputs can be
estimated using the Maximum Entropy principle

— MaxEnt Methods

Najm UQ in Computations



SEVES Missing Data

Bayes formula for Parameter Inference

@ Data Model (fit model + noise model): y=f(\) *xg(e)
@ Bayes Formula:
p(A,y) = p(Aly)p(y) =p[A)p(A)
Likelihood  Prior
A A
0 p(Y[A) p(X)
Posterior
p(y)
Evidence
@ Prior: knowledge of X prior to data
@ Likelihood: forward model and measurement noise
@ Posterior: combines information from prior and data
@ Evidence: normalizing constant for present context

Najm UQ in Computations



Missing Data

The Prior

@ Prior p(\) comes from

e Physical constraints
e Prior data
e Prior knowledge

@ The prior can be uninformative
@ It can be chosen to impose regularization

@ Unknown aspects of the prior can be added to the rest of
the parameters as hyperparameters

@ The choice of prior can be crucial when there is little
information in the data relative to the number of degrees of
freedom in the inference problem

@ When there is sufficient information in the data, the data
can overrule the prior

Najm UQ in Computations



SEVES Missing Data

Construction of the Likelihood p(y|\)

@ Where does probability enter the mapping A — y in p(y|A)?
@ Through a presumed error model:
@ Example:
o Model:
Ym = g(/\)
e Data: y
e Error between data and model prediction: e

y = g\ +e

@ Model this error as a random variable
@ Example

@ Error is due to instrument measurement noise
e Instrument has Gaussian errors, with no bias

€ ~ N(0,0?)

Najm UQ in Computations



SEVES Missing Data

Construction of the Likelihood p(y|\) — contd

For any given A, this implies
YA o~ N(g(A),0?)

or

1 - g(A))2>
Ao) = exp | —
p(y[A, o) 5, SXP < 502
Given N measurements (yy,...,yn), and presuming

independent identically distributed (iid) noise

yi = 8A)+e
e ~ N(0,0%)

N
L) =piis--owlr o) = [[p0ilr o)
i=1

Najm UQ in Computations



SEVES Missing Data

Likelihood Modeling

@ This is frequently the core modeling challenge

e Error model: a statistical model for the discrepancy
between the forward model and the data
e composition of the error model with the forward model

@ Error model composed of discrepancy between

— data and the truth — (data error)
— model prediction and the truth — (model error)

@ Mean bias and correlated/uncorrelated noise structure
@ Hierarchical Bayes modeling, and dependence trees

p(9,0|D) = p(¢10,D)p(0|D)

@ Choice of observable — constraint on Quantity of Interest?

Najm UQ in Computations
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Posterior

p(Aly) < p(y|N\)p(A)

Continuing the above jid Gaussian likelihood example, consider
also an iid Gaussian prior on A\ with

A ~ N(m,s?)
—m)?
p) = —p—exp (-

Najm UQ in Computations



Missing Data

Posterior cont'd

Then the posterior is
pAy) o e 1PNl g=lA=ml]
and the log posterior is
Inp(Aly) = —lly—gWN[ =[x =m|[+ Cy

Thus, the maximum a-posteriori (MAP) estimate of A is
equivalent to the solution of the regularized least-squares
problem

argmin(|[y — g(A)[[ + ||A — m|l)

The prior plays the role of a regularizer

Najm UQ in Computations



SEVES Missing Data

Exploring the Posterior

@ Given any sample ), the un-normalized posterior
probability can be easily computed

p(Aly) o< p(y|\)p(N)

@ Explore posterior w/ Markov Chain Monte Carlo (MCMC)
— Metropolis-Hastings algorithm:
e Random walk with proposal PDF & rejection rules

— Computationally intensive, O(10°) samples
— Each sample: evaluation of the forward model

e Surrogate models
@ Evaluate moments/marginals from the MCMC statistics

Najm UQ in Computations



SEVES Missing Data

Surrogate Models for Bayesian Inference

@ Need an inexpensive response surface for
e Observables of interest y
e as functions of parameters of interest x

@ Gaussian Process (GP) surrogate

@ GP goes through all data points with probability 1.0
e Uncertainty between the points

@ Fit a convenient polynomial to y = f(x)
— over the range of uncertainty in x

e Employ a number of samples (x;,y;)

e Fit with interpolants, regression, ... global/local
e With uncertain x :

— Construct Polynomial Chaos response surface

(Marzouk et al. JCP 2007; Marzouk & Najm JCP 2009)

Najm UQ in Computations



SEVES Missing Data

Bayesian inference — High Dimensionality Challenge

@ Judgement on local/global posterior peaks is difficult
e Multiple chains
e Tempering
@ Choosing a good starting point is very important
e An initial optimization strategy is useful, albeit not trivial
@ Choosing good MCMC proposals, and attaining good
mixing, is a signficant challenge
o Likelihood-informed proposals
e Adaptive learning of proposal based on available samples
e Hessian informs best local multivariate normal

approximation of posterior
Adaptive, Geometric, and Langevin MCMC methods

Najm UQ in Computations



SEVES Missing Data

Bayesian inference — Model Error Challenge

@ Quantifying model error, as distinct from data noise, is
important for assessing confidence in model validity

@ Available statistical methods for accounting for model error
have shortcomings when applied to physical models

@ New methods are needed/under-development for
assessing how best to model model error such that
e physical constraints are satisfied
e disambiguation of model error and data noise is feasible
o calibrated model error terms adequately impact all model
outputs of interest
uncertainties in predictions from calibrated model reflect
the range of discrepancy from the truth

Najm UQ in Computations
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UQ Challenges - Characterization of Uncertain Inputs

@ Computational Model M (u,\) =0

— Uncertain input parameter A
— Experimental Measurement  F(y,A) =0

@ Uncertain model inputs can be estimated from data on y
— Regression
— Bayesian inference

@ Quite frequently, we have partial data/information

— Partial missing data, e.g. failed measurements
— Full data loss — No data, but have summary
information, e.g. moments and/or quantiles on
e data — processed data products
o fitted parameters

Najm UQ in Computations



SEVES Missing Data

Parameter Estimation in the Absence of Data

@ Frequently:
e we know summary statistics about data or parameters from
previous work
e the raw data used to arrive at these statistics is not available

@ How can we construct a joint PDF on the parameters?

@ In the absence of data, the structure of the fit model,
combined with the summary statistics, implicitly inform the
joint PDF on the parameters

@ Goal: Make available information explicit in the joint PDF

Data Free Inference (DFI)

@ Discover a consensus joint PDF on the parameters
consistent with given information in the absence of data

— MaxEnt and Approximate Bayesian Computation

Berry JCP 2012, Najm IJUQ 2014
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SEVES Missing Data

DFI Algorithm Structure

Basic idea:
@ Explore the space of hypothetical data sets
— MCMC chain on the data
— Each state defines a data set
@ For each data set:

— MCMC chain on the parameters

— Evaluate statistics on resulting posterior

— Accept data set if posterior is consistent with
given information

@ Evaluate pooled posterior from all acceptable posteriors
Logarithmic pooling:

1/K
pP(Aly) = [Hp Aly:) ]
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Closure
Closure

@ Probabilistic UQ framework

e Polynomial Chaos representation of random variables
@ Forward UQ

@ Intrusive and non-intrusive forward PC UQ methods
@ Inverse UQ

e Parameter estimation via Bayesian inference
e Missing data and MaxEnt

@ Challenges

High dimensionality

Intrusive Galerkin stability

Nonlinearity

Time dynamics

Model error

Najm UQ in Computations
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