

*Uncertainty Quantification
in
Computational Models*

SAND2014-19420PE

Habib N. Najm

hnnajm@sandia.gov

Sandia National Laboratories
Livermore, CA, USA

Auburn University
Auburn, MA
Sept. 19, 2014

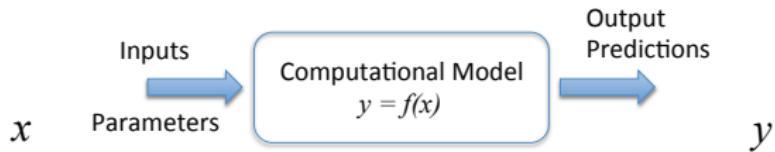
Acknowledgement

B.J. Debusschere, R.D. Berry, K. Sargsyan, C. Safta,
K. Chowdhary, M. Khalil — Sandia National Laboratories, CA

R.G. Ghanem — U. South. California, Los Angeles, CA

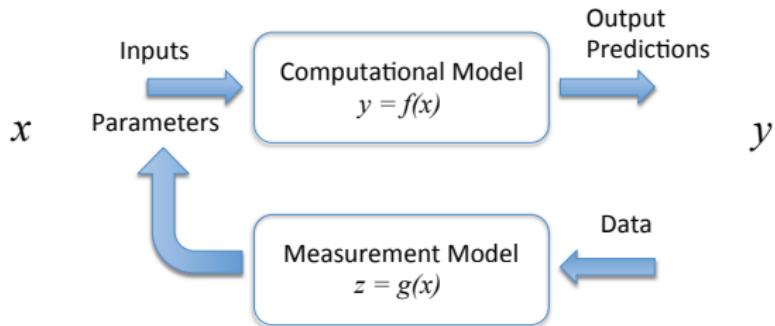
O.M. Knio — Duke Univ., Durham, NC

O.P. Le Maître — CNRS, Paris, France

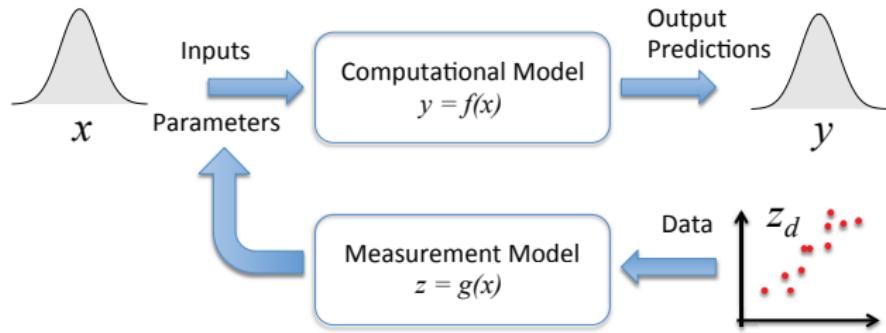

Y.M. Marzouk — Mass. Inst. of Tech., Cambridge, MA

This work was supported by:

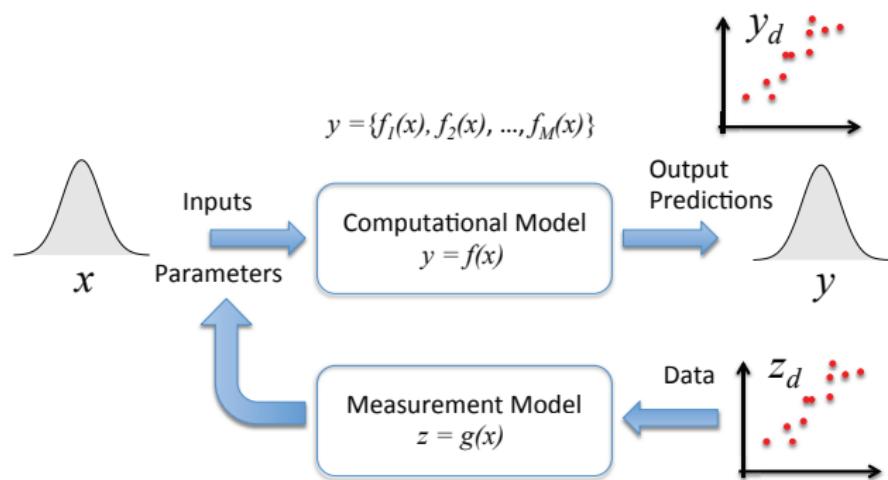
- DOE Office of Advanced Scientific Computing Research (ASCR), Scientific Discovery through Advanced Computing (SciDAC)
- DOE ASCR Applied Mathematics program.
- DOE Office of Basic Energy Sciences, Div. of Chem. Sci., Geosci., & Biosci.


Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94-AL85000.

Uncertainty Quantification and Computational Science


Forward problem

Uncertainty Quantification and Computational Science


Inverse & Forward problems

Uncertainty Quantification and Computational Science

Inverse & Forward UQ

Uncertainty Quantification and Computational Science

Inverse & Forward UQ
 Model validation & comparison, Hypothesis testing

Outline

- 1 Introduction
- 2 Forward UQ - Polynomial Chaos
- 3 Inverse Problem - Bayesian Inference
- 4 Closure

Forward propagation of parametric uncertainty

Forward model: $y = f(x)$

- Local sensitivity analysis (SA) and error propagation

$$\Delta y = \left. \frac{df}{dx} \right|_{x_0} \Delta x$$

This is ok for:

- small uncertainty
- low degree of non-linearity in $f(x)$

- Non-probabilistic methods
 - Fuzzy logic
 - Evidence theory – Dempster-Shafer theory
 - Interval math
- Probabilistic methods – this is our focus

Probabilistic Forward UQ

-

$$y = f(x)$$

Represent uncertain quantities using probability theory

- Random sampling, MC, QMC
 - Generate random samples $\{x^i\}_{i=1}^N$ from the PDF of x , $p(x)$
 - Bin the corresponding $\{y^i\}$ to construct $p(y)$
 - Not feasible for computationally expensive $f(x)$
 - slow convergence of MC/QMC methods
 - ⇒ very large N required for reliable estimates
- Build a cheap surrogate for $f(x)$, then use MC
 - Collocation – interpolants
 - Regression – fitting
- Galerkin methods
 - Polynomial Chaos (PC)
 - Intrusive and non-intrusive PC methods

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With $y = f(x)$, x a random variable, estimate the RV y

- Can describe a RV in terms of its
 - density, moments, characteristic function, or
 - as a function on a probability space
- Constraining the analysis to RVs with finite variance
 - ⇒ Represent RV as a spectral expansion in terms of orthogonal functions of standard RVs
 - Polynomial Chaos Expansion
- Enables the use of available functional analysis methods for forward UQ

Polynomial Chaos Expansion (PCE)

- Model uncertain quantities as random variables (RVs)
- Given a *germ* $\xi(\omega) = \{\xi_1, \dots, \xi_n\}$ – a set of *i.i.d.* RVs
 - where $p(\xi)$ is uniquely determined by its moments

Any RV in $L^2(\Omega, \mathfrak{S}(\xi), P)$ can be written as a PCE:

$$u(\mathbf{x}, t, \omega) = f(\mathbf{x}, t, \xi) \simeq \sum_{k=0}^P u_k(\mathbf{x}, t) \Psi_k(\xi(\omega))$$

- $u_k(\mathbf{x}, t)$ are mode strengths
- $\Psi_k()$ are multivariate functions orthogonal w.r.t. $p(\xi)$

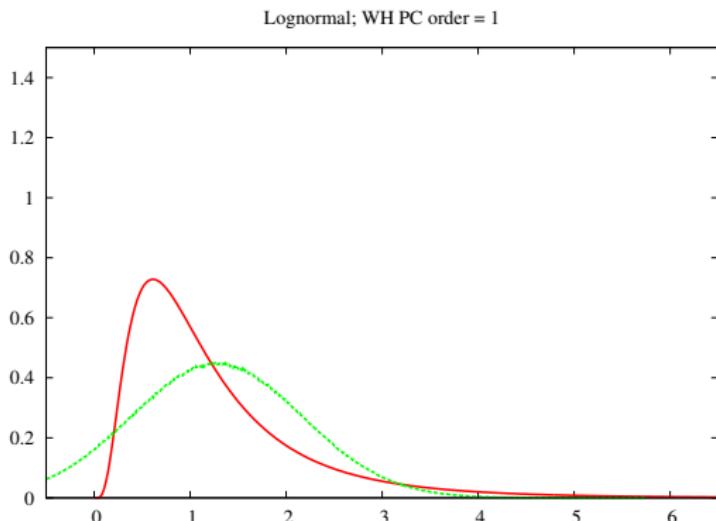
With dimension n and order p :
$$P + 1 = \frac{(n + p)!}{n!p!}$$

Orthogonality

By construction, the functions $\Psi_k()$ are orthogonal with respect to the density of ξ

$$u_k(\mathbf{x}, t) = \frac{\langle u \Psi_k \rangle}{\langle \Psi_k^2 \rangle} = \frac{1}{\langle \Psi_k^2 \rangle} \int u(\mathbf{x}, t; \lambda(\xi)) \Psi_k(\xi) p_\xi(\xi) d\xi$$

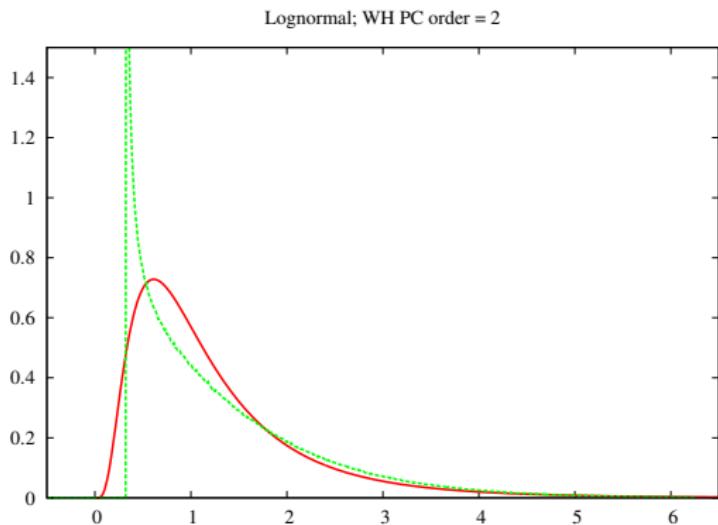
Examples:


- Hermite polynomials with Gaussian basis
- Legendre polynomials with Uniform basis, ...
- Global versus Local PC methods
 - Adaptive domain decomposition of the support of ξ

PC Illustration: WH PCE for a Lognormal RV

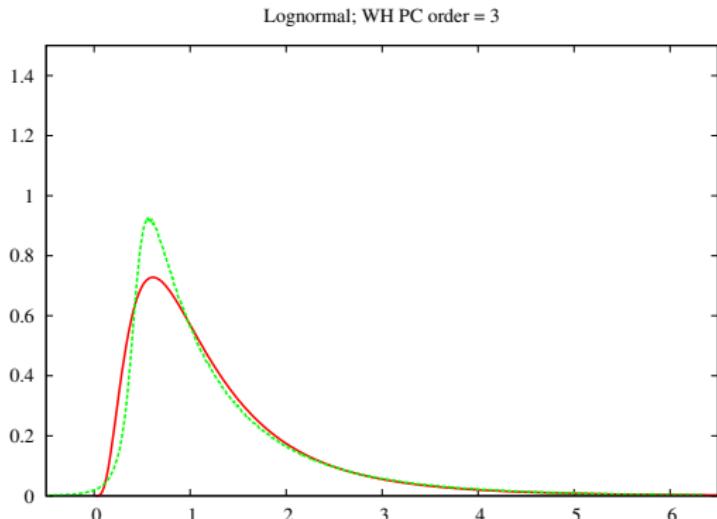
- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 1

$$u = \sum_{k=0}^P u_k \Psi_k(\xi)$$


$$= u_0 + u_1 \xi$$

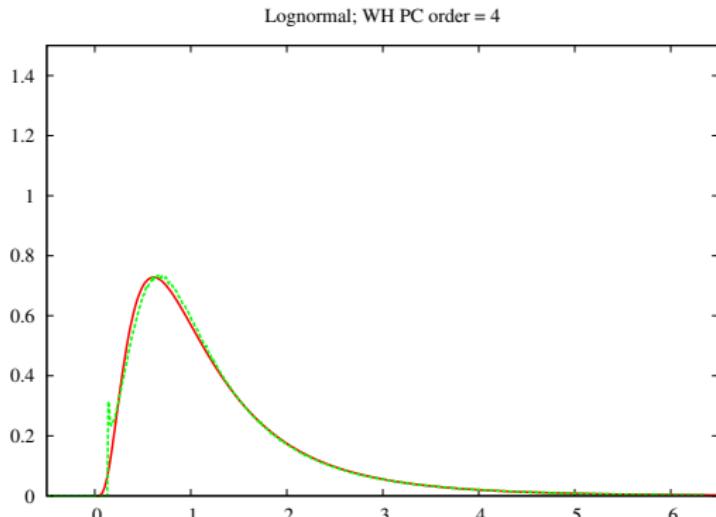
PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 2


$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1)
 \end{aligned}$$

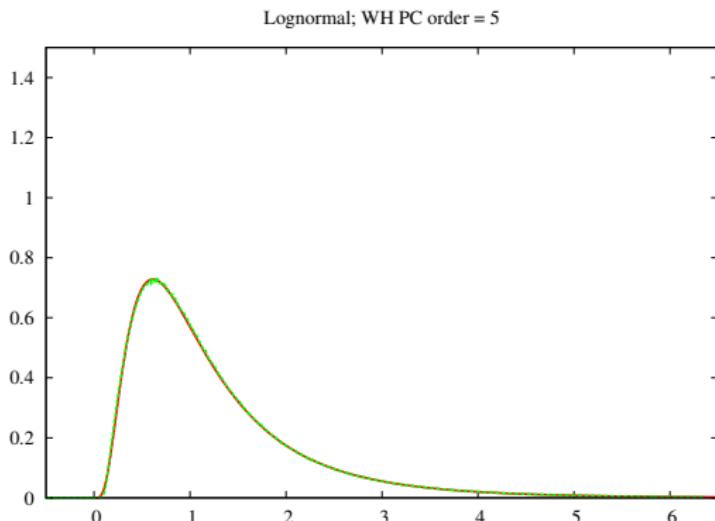
PC Illustration: WH PCE for a Lognormal RV

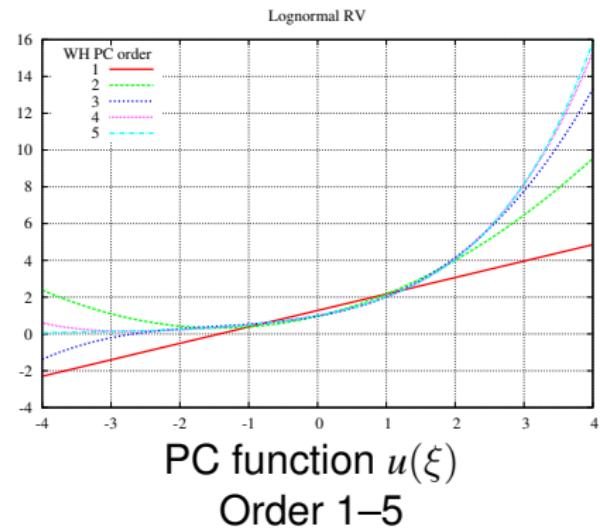
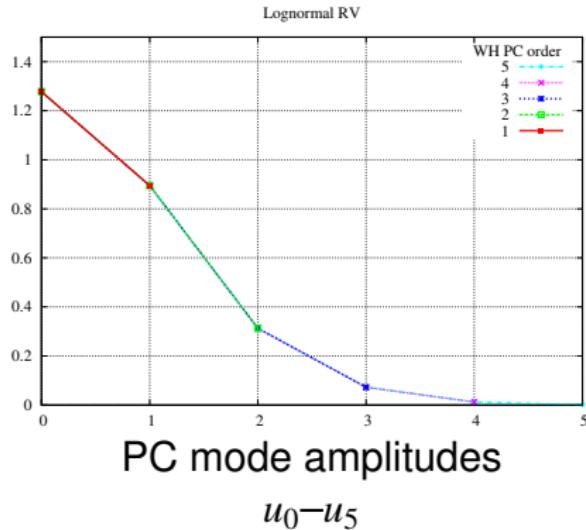
- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 3


$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi)
 \end{aligned}$$

PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 4


$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3)
 \end{aligned}$$



PC Illustration: WH PCE for a Lognormal RV

- Wiener-Hermite PCE constructed for a Lognormal RV
- PCE-sampled PDF superposed on true PDF
- Order = 5

$$\begin{aligned}
 u &= \sum_{k=0}^P u_k \Psi_k(\xi) \\
 &= u_0 + u_1 \xi + u_2 (\xi^2 - 1) + u_3 (\xi^3 - 3\xi) + u_4 (\xi^4 - 6\xi^2 + 3) \\
 &\quad + u_5 (\xi^5 - 10\xi^3 + 15\xi)
 \end{aligned}$$

PC Illustration: WH PCE for a Lognormal RV

- Fifth-order Wiener-Hermite PCE represents the given Lognormal well
- Higher order terms are negligible

Essential Use of PC in UQ

Strategy:

- Represent model parameters/solution as random variables
- Construct PCEs for uncertain parameters
- Evaluate PCEs for model outputs

Advantages:

- Computational efficiency
- Utility
 - Moments: $E(u) = u_0, \text{ var}(u) = \sum_{k=1}^P u_k^2 \langle \Psi_k^2 \rangle, \dots$
 - Global Sensitivities – fractional variances, Sobol' indices
 - Surrogate for forward model

Requirement:

- RVs in L^2 , i.e. with finite variance, on $(\Omega, \mathfrak{S}(\xi), P)$

Intrusive PC UQ: A direct *non-sampling* method

- Given model equations: $\mathcal{M}(u(\mathbf{x}, t); \lambda) = 0$
- Express uncertain parameters/variables using PCEs

$$u = \sum_{k=0}^P u_k \Psi_k; \quad \lambda = \sum_{k=0}^P \lambda_k \Psi_k$$

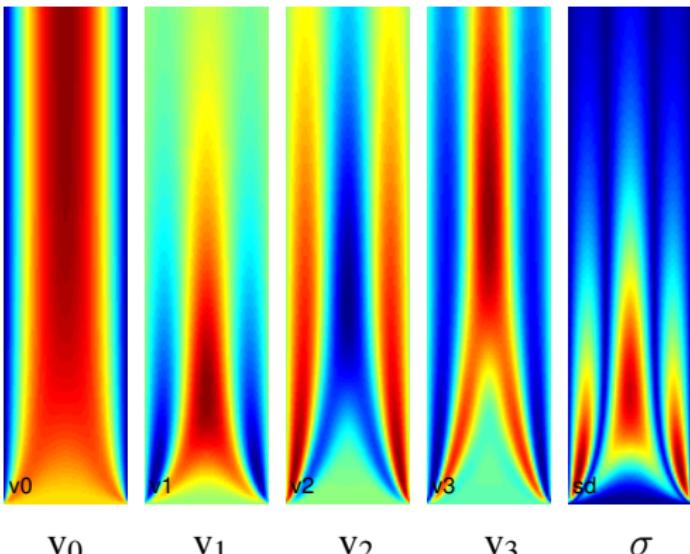
- Substitute in model equations; apply Galerkin projection
- New set of equations: $\mathcal{G}(U(\mathbf{x}, t), \Lambda) = 0$
 - with $U = [u_0, \dots, u_P]^T$, $\Lambda = [\lambda_0, \dots, \lambda_P]^T$
- Solving this deterministic system once provides the full specification of uncertain model outputs

Intrusive Galerkin PC ODE System

$$\frac{du}{dt} = f(u; \lambda)$$

$$\lambda = \sum_{i=0}^P \lambda_i \Psi_i \quad u(t) = \sum_{i=0}^P u_i(t) \Psi_i$$

$$\frac{du_i}{dt} = \frac{\langle f(u; \lambda) \Psi_i \rangle}{\langle \Psi_i^2 \rangle} \quad i = 0, \dots, P$$


Say $f(u; \lambda) = \lambda u$, then

$$\frac{du_i}{dt} = \sum_{p=0}^P \sum_{q=0}^P \lambda_p u_q C_{pqi}, \quad i = 0, \dots, P$$

where the tensor $C_{pqi} = \langle \Psi_p \Psi_q \Psi_i \rangle / \langle \Psi_i^2 \rangle$ is readily evaluated

Laminar 2D Channel Flow with Uncertain Viscosity

- Incompressible flow
- Viscosity PCE
 - $\nu = \nu_0 + \nu_1 \xi$
- Streamwise velocity
 - $v = \sum_{i=0}^P v_i \Psi_i$
 - v_0 : mean
 - v_i : i -th order mode
 - $\sigma^2 = \sum_{i=1}^P v_i^2 \langle \Psi_i^2 \rangle$

(Le Maître *et al.*, J. Comput. Phys., 2001)

Intrusive PC UQ Pros/Cons

Cons:

- Reformulation of governing equations
- New discretizations
- New numerical solution method
 - Consistency, Convergence, Stability
 - Global vs. multi-element local PC constructions
- New solvers and model codes
 - Opportunities for automated code transformation
- New preconditioners

Pros:

- Tailored solvers can deliver superior performance

Stability of Intrusive Galerkin ODEs

- Setting:
 - Nonlinear ODEs with uncertain initial conditions/parameters
- Intrusive Galerkin ODE system can be unstable in general
 - Spurious positive eigenvalues
 - Fast growth of PC coefficients
- Equation structure similar to that of semidiscretized spectral Galerkin/Fourier equations for conservation laws
 - Generally unstable for nonlinear conservation laws
 - Filtering is useful to ensure stability
- Stability achievable with local multi-element PC methods
- Need to develop stable global PC methods – filtering
- Application setting:
 - Uncertain chemical kinetics model – homogeneous ignition

A chemically-relevant model ODE system

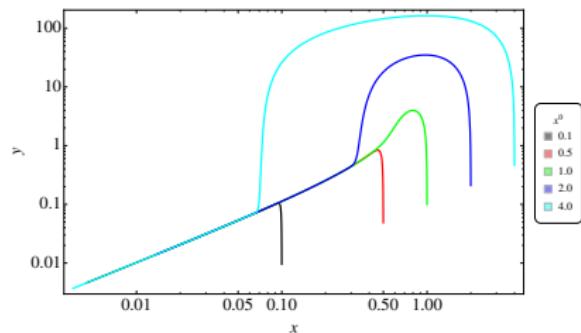
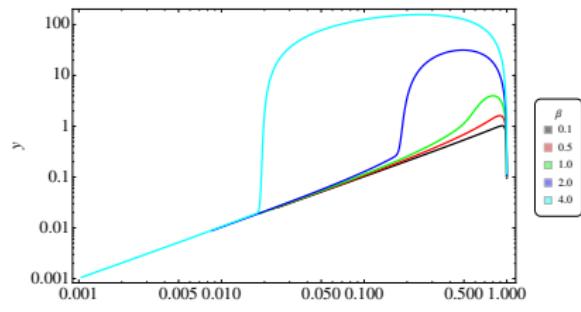
State vector $(x(t), y(t))$

$$\frac{dx}{dt} = -x(1+y)$$

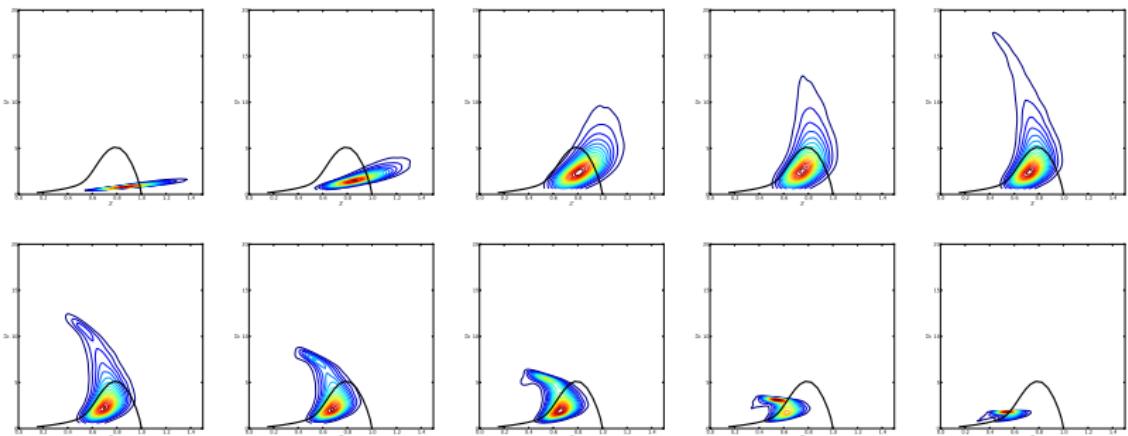
$$\frac{dy}{dt} = \frac{1}{\epsilon}(x - \gamma y + \beta xy)$$

$$x(0) = x^0$$

$$y(0) = y^0$$



$$\epsilon, \gamma > 0, \beta \geq 0$$

$$x(t), y(t) \geq 0$$


$\epsilon \ll 1 \Rightarrow$ stiff

x : slow variable (stable species)

y : fast variable (radical species)

Uncertain model chemical system

$$y^0 = 0, \gamma = 1, \epsilon = 0.01$$

x^0, β : Uncertain, independent, lognormal

$$E[\beta] = 1.0, \quad \text{Stdv}[\beta] = 0.202$$

$$E[x^0] = 1.0, \quad \text{Stdv}[x^0] = 0.202, 0.343, 0.372 \quad (\text{Case: 1,2,3})$$

Intrusive Galerkin global PC ODE system

$\xi \equiv (\xi_1, \xi_2)$ i.i.d. $\mathcal{N}(0,1)$

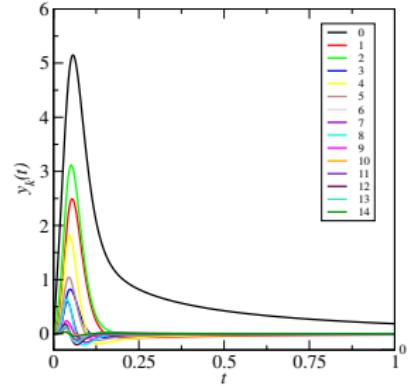
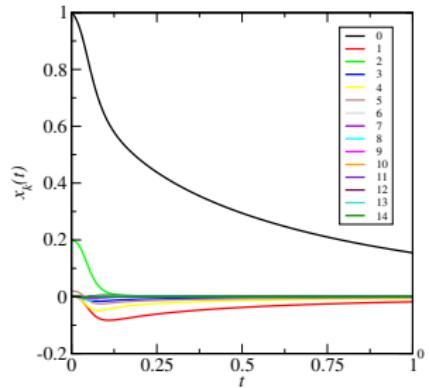
$$x^0(\xi) = \sum_k x_k^0 \Psi_k(\xi) = x^0(\xi_1)$$

$$\beta(\xi) = \sum_k \beta_k \Psi_k(\xi) = \beta(\xi_2)$$

$$x(t, \xi) = \sum_k x_k(t) \Psi_k(\xi)$$

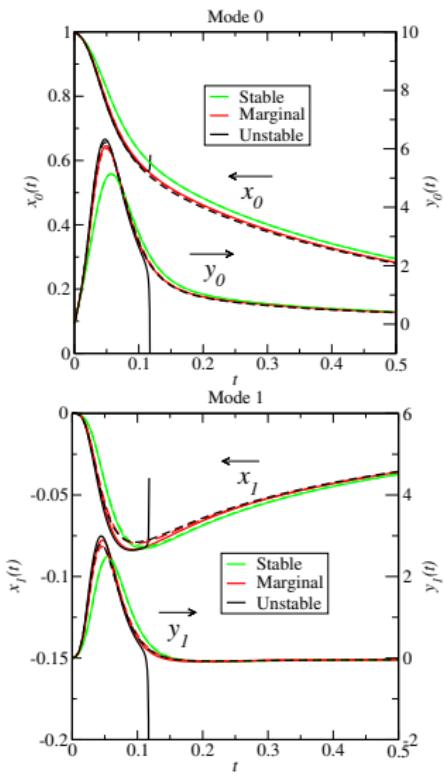
$$y(t, \xi) = \sum_k y_k(t) \Psi_k(\xi).$$

Galerkin ODE system: $k = 0, \dots, P$,

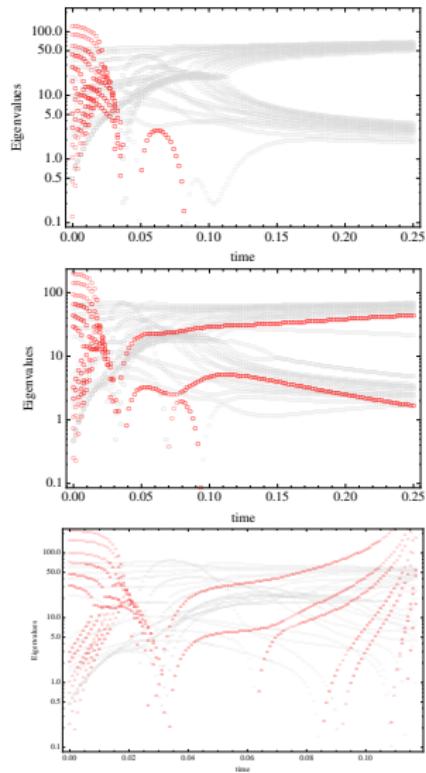


$$\dot{x}_k = -x_k - \sum_{i,j} x_i y_j C_{ijk}$$

$$\dot{y}_k = \epsilon^{-1} (x_k - \gamma y_k + \sum_{i,j,\ell} x_i y_j \beta_\ell C_{ij\ell k})$$

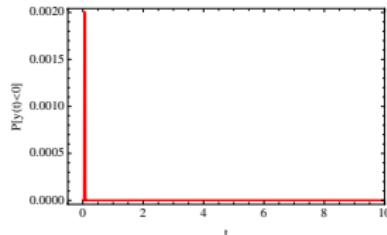
where


$$C_{ijk} \equiv \langle \Psi_i \Psi_j \Psi_k \rangle / \langle \Psi_k^2 \rangle$$

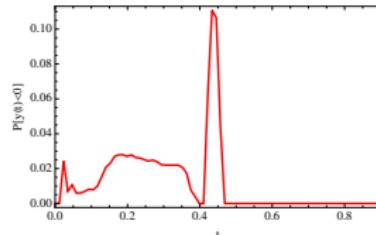
$$C_{ij\ell k} \equiv \langle \Psi_i \Psi_j \Psi_\ell \Psi_k \rangle / \langle \Psi_k^2 \rangle$$

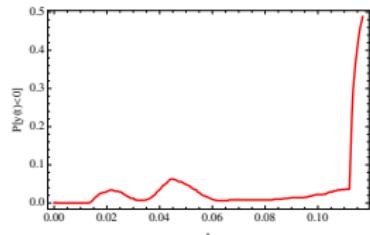

Galerkin system instability for high σ_{x^0}

- Fourth order PC solution
- Implicit stiff time integrator
 - **DVODE**
- Consequences of increased uncertainty in x^0
 - Case 1 – stable
 - Case 2 – marginal
 - Case 3 – unstable
- Increasing PC order makes the problem worse
 - Unstable for lower degrees of uncertainty



Spurious persistent growth of positive eigenvalues


- Physically meaningful positive eigenvalues during brief phases of system dynamics
 - Initial fast time evolution of the system
 - Brief phase of explosive growth typical of ignition
 - Growth of initial uncertainty
- Marginal case exhibits persistent positive eigenvalues
- Unstable case exhibits fast growth of positive eigenvalues


Instability consequences on $p(x, y)$

Case 1

Case 2

Case 3

- Probability density function $p(x(t), y(t))$ based on sampling PCEs of $(x(t), y(t))$
- Instability leads to large/increasing $P(Y < 0)$
 - Unphysical and inconsistent with sampled solution PDF
- Employ filtering that minimizes $\max(P_{X < 0}, P_{Y < 0})$

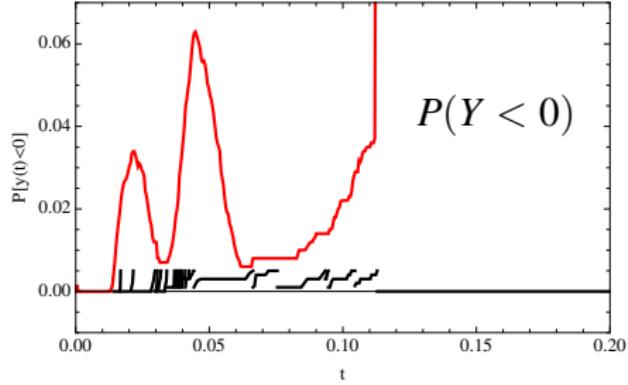
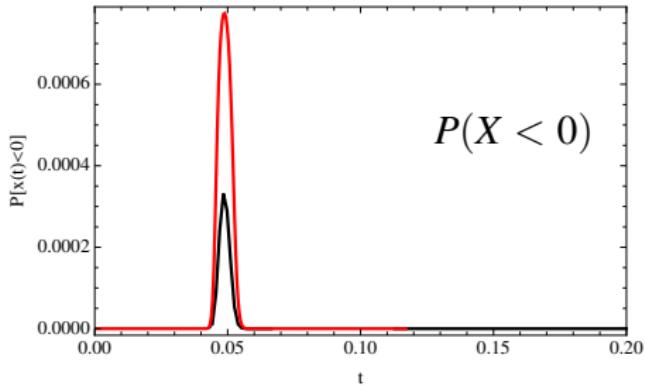
Filter Design

Given a PCE $\tilde{u}(\xi) = \sum_{k=0}^P \tilde{u}_k \Psi_k(\xi)$.

Then, with $U \equiv (u_0, u_1, \dots, u_P)^T$, and $u = \sum_k u_k \Psi_k(\xi) = u(U, \xi)$, seek filtered PCE $\hat{u}(\xi) = \sum_{k=0}^P \hat{u}_k \Psi_k(\xi)$, where

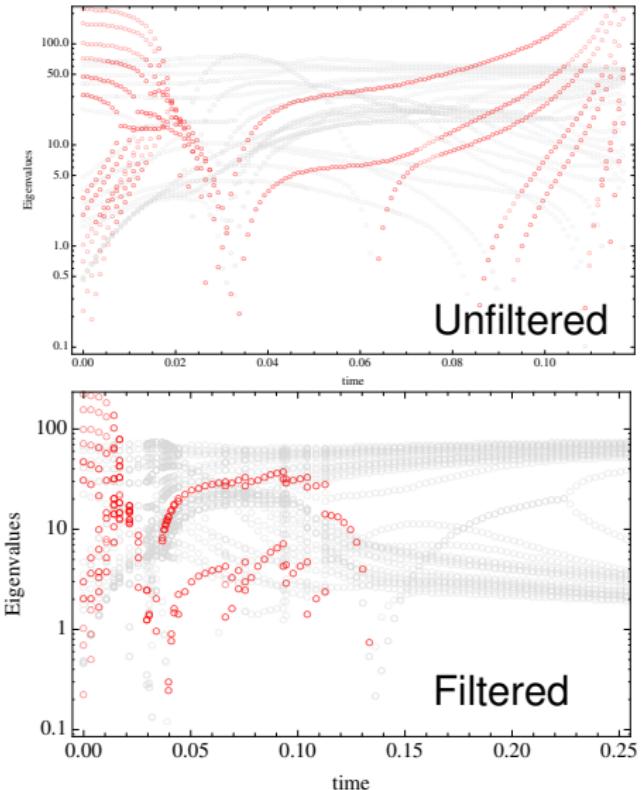
$$\hat{U} = \underset{U}{\operatorname{argmin}} \{ \|u - \tilde{u}\|_2^2 + w \Phi_N(U) \}$$

with

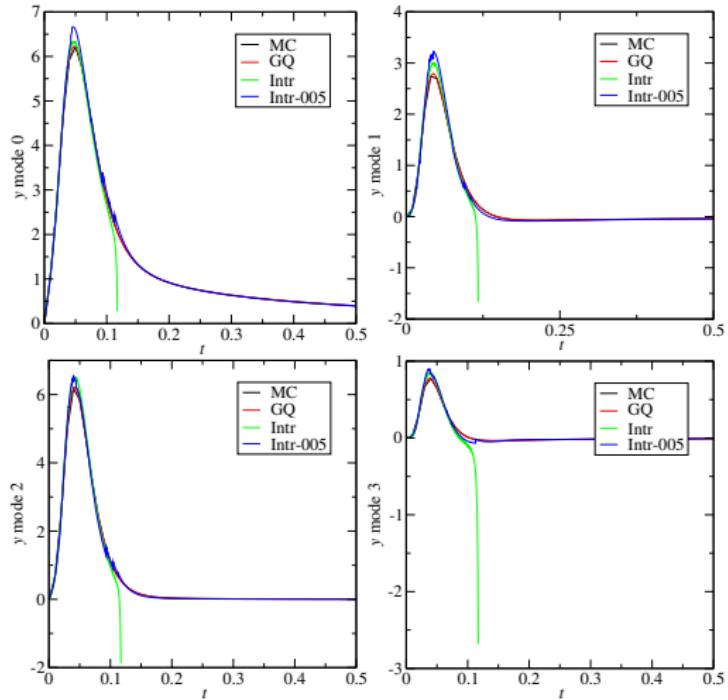


$$\Phi_N(U) \equiv \frac{1}{N} \sum_{i=1}^N (1 - H(u(U, \xi^i))) \approx P(u < 0)$$

where w is a chosen weight factor

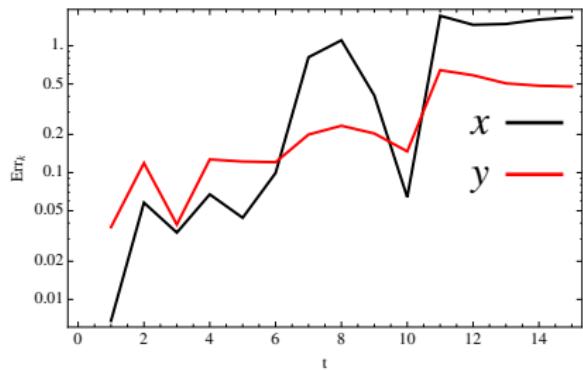
- Filter applied at any time step where $\Phi_N > \Phi_{\text{thr}}$
- Procedure finds $\hat{u}(\xi)$ that is both
 - near to $\tilde{u}(\xi)$, and has minimal Φ_N


Filtered system reduction in $P_{\text{neg}} = \max[P(X < 0), P(Y < 0)]$

- Growth in P_{neg} is halted
- Filtered time integration maintains $P_{\text{neg}} < \Phi_{\text{thr}}$


Filter eliminates spurious positive eigenvalues

- Filtered system has positive eigenvalues over a limited time range
- Persistent and growing spurious positive eigenvalues eliminated


Filtered Galerkin ODE system is Stable

- Stable time evolution of PC mode coefficients
- Filtered system intrusive solution consistent with that based on non-intrusive Monte Carlo and Gauss Quadrature results

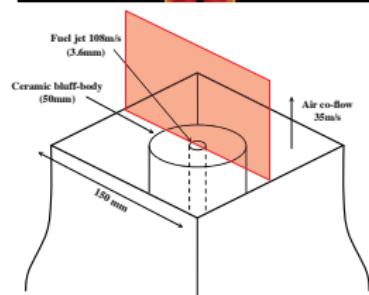
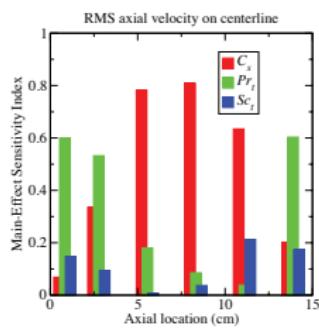
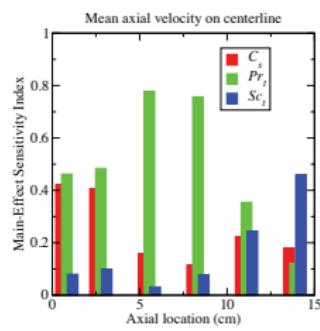
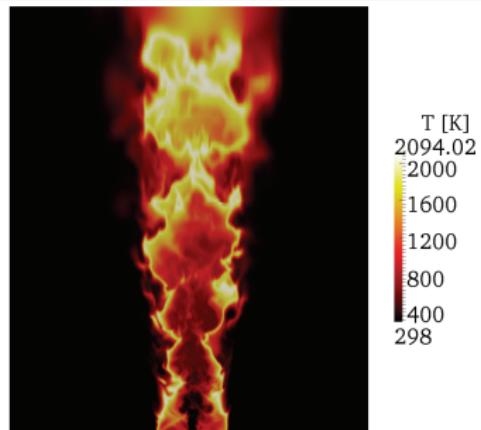
Filtered system PC mode errors

- PC mode errors are higher in the higher-order terms
- $\mathcal{O}(10\%)$ normalized RMS errors in low-order modes
- Other challenges:
 - Filtered system stability impacted by
 - degree of uncertainty
 - PC order
 - P_{neg} threshold ϕ_{thr}

Error between PC mode coefficients from the intrusive Galerkin solution and the non-intrusive Gauss-Quadrature solution

Non-intrusive PC UQ

- *Sampling-based*
- Relies on black-box utilization of the computational model
- Evaluate projection integrals *numerically*
- For any quantity of interest $\phi(\mathbf{x}, t; \lambda) = \sum_{k=0}^P \phi_k(\mathbf{x}, t) \Psi_k(\boldsymbol{\xi})$





$$\phi_k(\mathbf{x}, t) = \frac{1}{\langle \Psi_k^2 \rangle} \int \phi(\mathbf{x}, t; \lambda(\boldsymbol{\xi})) \Psi_k(\boldsymbol{\xi}) p_{\boldsymbol{\xi}}(\boldsymbol{\xi}) d\boldsymbol{\xi}, \quad k = 0, \dots, P$$

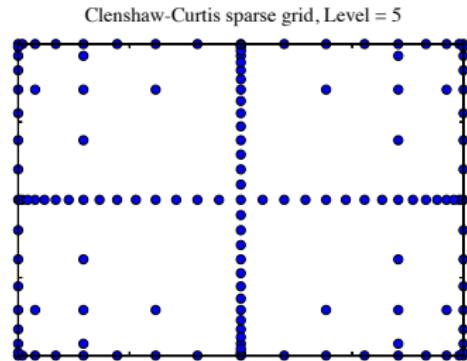
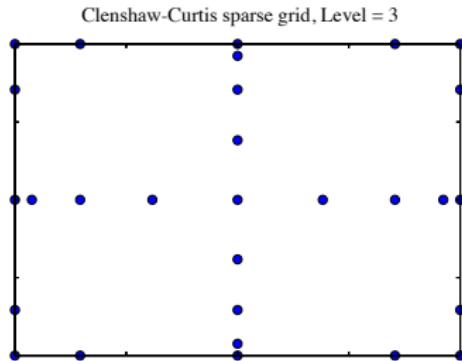
- Integrals can be evaluated using
 - A variety of (Quasi) Monte Carlo methods
 - Slow convergence; \sim indep. of dimensionality
 - Quadrature/Sparse-Quadrature methods
 - Fast convergence; depends on dimensionality

UQ in LES computations: turbulent bluff-body flame

with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

- CH₄-H₂ jet, air coflow, 3D flow
- Re=9500, LES subgrid modeling
- 12×10^6 mesh cells, 1024 cores
- 3 days run time, 2×10^5 time steps
- 3 uncertain parameters (C_s , Pr_t , Sc_t)
- 2nd-order PC, 25 sparse-quad. pts

J. Oefelein & G. Lacaze, SNL



PC and High-Dimensionality

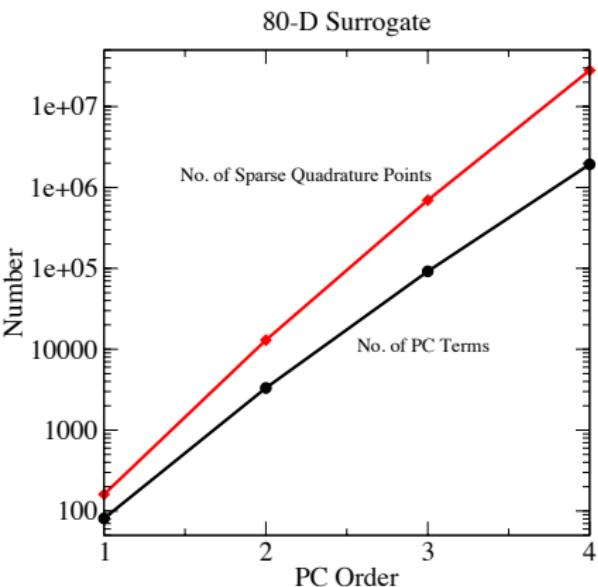
Dimensionality n of the PC basis: $\xi = \{\xi_1, \dots, \xi_n\}$

- $n \approx$ number of uncertain parameters
- $P + 1 = (n + p)!/n!p!$ grows fast with n

Impacts:

- Size of intrusive PC system
- Hi-D projection integrals \Rightarrow large # non-intrusive samples
 - Sparse quadrature methods

PC Sparse Quadrature in hi-D – Climate land model


Full quadrature: $N = (N_{1D})^n$

Sparse Quadrature

- Wide range of methods
- Nested & hierarchical
- Clenshaw-Curtis:
 $N = \mathcal{O}(n^p)$
- Adaptive – greedy algorithms

Number of points can still be excessive in hi-D

- Large no. of terms
- Reduction/sparsity

Other non-intrusive methods

- Response surface employing PC or other functional basis
- Collocation: Fit interpolant to samples
 - Oscillation concern in multi-D
- Regression: Estimate best-fit response surface
 - Least-squares
 - Sparsity via ℓ_1 constraints; compressive sensing
 - Bayesian inference
 - Sparsity via Laplace priors; Bayesian compressive sensing
 - Useful when quadrature methods are infeasible, e.g.:
 - Samples given *a priori*
 - Can't choose sample locations
 - Can't take enough samples
 - Forward model is noisy

Challenges in PC UQ – Non-Linearity

- Bifurcative response at critical parameter values
 - Rayleigh-Bénard convection
 - Transition to turbulence
 - Chemical ignition
- Discontinuous $u(\lambda(\xi))$
 - Failure of global PCEs in terms of smooth $\Psi_k()$
 - \Leftrightarrow failure of Fourier series in representing a step function
- Local PC methods
 - Subdivide support of $\lambda(\xi)$ into regions of smooth $u \circ \lambda(\xi)$
 - Employ PC with compact support basis on each region
 - A spectral-element vs. spectral construction
 - Domain mapping

Challenges in PC UQ – Time Dynamics

- Systems with limit-cycle or chaotic dynamics
- Large amplification of phase errors over long time horizon
- PC order needs to be increased in time to retain accuracy
- Time shifting/scaling remedies
- Futile to attempt representation of detailed turbulent velocity field $v(x, t; \lambda(\xi))$ as a PCE
 - Fast loss of correlation due to energy cascade
 - Problem studied in 60's and 70's
- Focus on flow statistics, e.g. Mean/RMS quantities
 - Well behaved
 - Argues for non-intrusive methods with DNS/LES of turbulent flow

Inverse UQ – Estimation of Uncertain Parameters

Forward UQ requires specification of uncertain inputs

Probabilistic setting

- Require joint PDF on input space
- Statistical inference – an inverse problem

Bayesian setting

- Given Data: PDF on uncertain inputs can be estimated using Bayes formula
 - Bayesian Inference
- Given Constraints: PDF on uncertain inputs can be estimated using the Maximum Entropy principle
 - MaxEnt Methods

Bayes formula for Parameter Inference

- Data Model (fit model + noise model): $y = f(\lambda) * g(\epsilon)$
- Bayes Formula:

$$p(\lambda, y) = p(\lambda|y)p(y) = p(y|\lambda)p(\lambda)$$

$$p(\lambda|y) = \frac{\text{Likelihood} \quad \text{Prior}}{\text{Posterior}} = \frac{p(y|\lambda) \quad p(\lambda)}{p(y)}$$

Evidence

- Prior: knowledge of λ prior to data
- Likelihood: forward model and measurement noise
- Posterior: combines information from prior and data
- Evidence: normalizing constant for present context

The Prior

- Prior $p(\lambda)$ comes from
 - Physical constraints
 - Prior data
 - Prior knowledge
- The prior can be **uninformative**
- It can be chosen to impose **regularization**
- Unknown aspects of the prior can be added to the rest of the parameters as hyperparameters
- The choice of prior can be crucial when there is little information in the data relative to the number of degrees of freedom in the inference problem
- When there is sufficient information in the data, the data can overrule the prior

Construction of the Likelihood $p(y|\lambda)$

- Where does probability enter the mapping $\lambda \rightarrow y$ in $p(y|\lambda)$?
- Through a presumed error model:
- Example:
 - Model:

$$y_m = g(\lambda)$$

- Data: y
- Error between data and model prediction: ϵ

$$y = g(\lambda) + \epsilon$$

- Model this error as a random variable
- Example
 - Error is due to instrument measurement noise
 - Instrument has Gaussian errors, with no bias

$$\epsilon \sim N(0, \sigma^2)$$

Construction of the Likelihood $p(y|\lambda)$ – cont'd

For any given λ , this implies

$$y|\lambda, \sigma \sim N(g(\lambda), \sigma^2)$$

or

$$p(y|\lambda, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(y - g(\lambda))^2}{2\sigma^2}\right)$$

Given N measurements (y_1, \dots, y_N) , and presuming independent identically distributed (*iid*) noise

$$\begin{aligned} y_i &= g(\lambda) + \epsilon_i \\ \epsilon_i &\sim N(0, \sigma^2) \end{aligned}$$

$$L(\lambda) = p(y_1, \dots, y_N | \lambda, \sigma) = \prod_{i=1}^N p(y_i | \lambda, \sigma)$$

Likelihood Modeling

- This is frequently the *core* modeling challenge
 - Error model: a statistical model for the discrepancy between the forward model and the data
 - composition of the error model with the forward model
- Error model composed of discrepancy between
 - data and the truth – (data error)
 - model prediction and the truth – (model error)
- Mean bias and correlated/uncorrelated noise structure
- Hierarchical Bayes modeling, and dependence trees

$$p(\phi, \theta | D) = p(\phi | \theta, D) p(\theta | D)$$

- Choice of observable – constraint on Quantity of Interest?

Posterior

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

Continuing the above *iid* Gaussian likelihood example, consider also an *iid* Gaussian prior on λ with

$$\lambda \sim N(m, s^2)$$

$$p(\lambda) = \frac{1}{\sqrt{2\pi}s} \exp\left(-\frac{(\lambda - m)^2}{2s^2}\right)$$

Posterior cont'd

Then the posterior is

$$p(\lambda|y) \propto e^{-||y-g(\lambda)||} e^{-||\lambda-m||}$$

and the log posterior is

$$\ln p(\lambda|y) = -||y - g(\lambda)|| - ||\lambda - m|| + C_\lambda$$

Thus, the maximum a-posteriori (MAP) estimate of λ is equivalent to the solution of the regularized least-squares problem

$$\operatorname{argmin}_\lambda (||y - g(\lambda)|| + ||\lambda - m||)$$

The prior plays the role of a regularizer

Exploring the Posterior

- Given any sample λ , the un-normalized posterior probability can be easily computed

$$p(\lambda|y) \propto p(y|\lambda)p(\lambda)$$

- Explore posterior w/ Markov Chain Monte Carlo (MCMC)
 - Metropolis-Hastings algorithm:
 - Random walk with proposal PDF & rejection rules
 - Computationally intensive, $\mathcal{O}(10^5)$ samples
 - Each sample: evaluation of the forward model
 - Surrogate models
- Evaluate moments/marginals from the MCMC statistics

Surrogate Models for Bayesian Inference

- Need an inexpensive response surface for
 - Observables of interest y
 - as functions of parameters of interest x
- Gaussian Process (GP) surrogate
 - GP goes through all data points with probability 1.0
 - Uncertainty between the points
- Fit a convenient polynomial to $y = f(x)$
 - over the range of uncertainty in x
 - Employ a number of samples (x_i, y_i)
 - Fit with interpolants, regression, ... global/local
 - With uncertain x :
 - Construct Polynomial Chaos response surface

(Marzouk *et al.* JCP 2007; Marzouk & Najm JCP 2009)

Bayesian inference – High Dimensionality Challenge

- Judgement on local/global posterior peaks is difficult
 - Multiple chains
 - Tempering
- Choosing a good starting point is very important
 - An initial optimization strategy is useful, albeit not trivial
- Choosing good MCMC proposals, and attaining good mixing, is a significant challenge
 - Likelihood-informed proposals
 - Adaptive learning of proposal based on available samples
 - Hessian informs best local multivariate normal approximation of posterior
 - Adaptive, Geometric, and Langevin MCMC methods

Bayesian inference – Model Error Challenge

- Quantifying model error, as distinct from data noise, is important for assessing confidence in model validity
- Available statistical methods for accounting for model error have shortcomings when applied to physical models
- New methods are needed/under-development for assessing how best to model model error such that
 - physical constraints are satisfied
 - disambiguation of model error and data noise is feasible
 - calibrated model error terms adequately impact all model outputs of interest
 - uncertainties in predictions from calibrated model reflect the range of discrepancy from the truth

UQ Challenges - Characterization of Uncertain Inputs

- Computational Model $\mathcal{M}(u, \lambda) = 0$
 - Uncertain input parameter λ
 - Experimental Measurement $F(y, \lambda) = 0$
- Uncertain model inputs can be estimated from data on y
 - Regression
 - Bayesian inference
- Quite frequently, we have partial data/information
 - Partial missing data, e.g. failed measurements
 - Full data loss – No data, but have summary information, e.g. moments and/or quantiles on
 - data – processed data products
 - fitted parameters

Parameter Estimation in the Absence of Data

- Frequently:
 - we know summary statistics about data or parameters from previous work
 - the raw data used to arrive at these statistics is not available
- How can we construct a joint PDF on the parameters?
- In the absence of data, the structure of the fit model, combined with the summary statistics, implicitly inform the joint PDF on the parameters
- Goal: Make available information *explicit* in the joint PDF

Data Free Inference (DFI)

- Discover a consensus joint PDF on the parameters consistent with given information in the absence of data
 - MaxEnt and Approximate Bayesian Computation

DFI Algorithm Structure

Basic idea:

- Explore the space of hypothetical data sets
 - MCMC chain on the data
 - Each state defines a data set
- For each data set:
 - MCMC chain on the parameters
 - Evaluate statistics on resulting posterior
 - Accept data set if posterior is consistent with given information
- Evaluate pooled posterior from all acceptable posteriors

Logarithmic pooling:

$$p(\lambda|y) = \left[\prod_{i=1}^K p(\lambda|y_i) \right]^{1/K}$$

Closure

- Probabilistic UQ framework
 - Polynomial Chaos representation of random variables
- Forward UQ
 - Intrusive and non-intrusive forward PC UQ methods
- Inverse UQ
 - Parameter estimation via Bayesian inference
 - Missing data and MaxEnt
- Challenges
 - High dimensionality
 - Intrusive Galerkin stability
 - Nonlinearity
 - Time dynamics
 - Model error