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Why nano-emitter development?
@ Save energy

Talk: Attojoule optoelectronics —why and how

David Miller, Stanford University
IEEE Photonics Summer Topicals 2013

Information communication and processing growth:

 Energy per bit has to reduce
« At limits for electrical approaches

Lasers: can still reduce required electrical energy by reducing volume

@ Safe communication and quantum computing:
Single-photon sources

Types of light

Laser (random) Single-photon (antibunched)

> Time



Towards smaller and smaller lasers
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Nano-emitter model
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Nano-emitter model
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Emphasis now is on correlations involving light-matter interaction
instead of Coulomb interaction

Light: Science and Applications, online 29 August, 2014



Interesting physics with nanolasers
Example 1: Laser threshold and thresholdless lasing

Spontaneous emission factor

Most lasers P <<1

"

Spontaneous ﬁ -

# emission spectrum Vsp
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Some nanolasers pB=1 101

Laser-mode photon number

0 m=0 0 103 .
103 101 10 103
Pump rate (10!?s-1)
Questions:
Y} _
n-1 n n+1 1) Is thresholdless lasing real?
All emission into single resonator mode 2) What is lasing?

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994



Photon number

Photon number

104

Criterion for lasing
Nop = 50, Ay = 20meV

Input/Output

Current (A)

<— Conventional laser

<— Cavity-enhanced LED
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Current (A)
104
Y. = 101052 <— Thresholdless laser
e Additional question:
- B=1 How to tell difference between
104 ! ! ! thresholdless lasing and non-lasing with
10-° 107 10

B <1 (with y-axis in arbitrary units)?



Photon number

Photon number

Criterion for lasing
Nop = 50, Ay = 20meV
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Photon number

Photon number

Criterion for lasing: g®(0)
Nop = 90, A, = 20meV
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Y. X coherence time

Other criteria for lasing

Population clamping

Coherence time )
and hole burning
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Other criteria for laser: stimulated emission
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Interesting physics with nanolasers

Example 1
Thresholdless lasing

Most lasers P <<1

Spontaneous
# emission spectrum
0 m=0 0
12 12 12
3 3 3
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n-1 n n+1

Some nanolasers pB=1

0 m=0 0

>V
n-1 n n+1

All emission into single resonator mode

Example 2
Single-photon generation

Most OD-laser active reqions

Few- OD active regions

Nonclassical light




Example 2: Single-photon sources and photon statistics
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Example 2: Single-photon purity and emission rate

Cavity enhancement:
Purcell and directionality
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Example 2: Single-photon purity and emission rate
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Example 2: Single-photon purity and emission rate
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n VS. emission rate

Extraneous emitters

Single-photon purity

_ Single-photon emission probability
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First principle study of nanolasers: photon statistics and laser threshold

First-principles: Quantized light and carriers
Consistent account of light-carrier correlations

Photon statistics:

1)Single-photon sources

2)Emission rate vs. single-photon purity
3) > one quantum dot — good or bad?
4)g®@)(0) adequate for N-emitter systems?

5)How would a dimmed laser compare?

Laser threshold:

1) Combination of intensity & g(0)
gives definitive description of lasing

2)There is no thresholdless lasing
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