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Motivation for nanolasers 

First-principles modeling approach 

Examples of applications: 

a) Laser threshold and thresholdless lasing 

b) Single-photon sources and photon statistics 

First principle study of nanolasers: 

photon statistics and laser threshold 
SAND2014-19338C



Why nano-emitter  development? 

Information communication and processing growth: 

Talk:  Attojoule optoelectronics – why and how 

              David Miller, Stanford University 

            IEEE Photonics Summer Topicals 2013 

Save energy 

• Energy per bit has to reduce 

• At limits for electrical approaches 

1 

Lasers: can still reduce required electrical energy by reducing volume 

Safe communication and quantum computing: 2 

Single-photon sources 

Time 

Laser (random) Single-photon (antibunched)  

Types of light 



Combining semiconductors 

and metals … factor 100 

smaller than … VCSEL. 

 

Adapted from a figure by Lu 

et al., UIUC. 

Taken from D. Bimberg, IEEE Photonics Society Research Highlights 
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Towards smaller and smaller lasers 
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Electronic structure 
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Nano-emitter model 
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Injection current 
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Emphasis now is on correlations involving light-matter interaction 

instead of Coulomb interaction 

Nano-emitter model 
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Spontaneous emission factor 
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Questions: 

1) Is thresholdless lasing real? 

2) What is lasing?  

Early answer in Jin, Boggavarapu, Sargent, Meystre, Gibbs, Khitrova, Phy Rev A 49, 1994 

Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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Example 1: Laser threshold and thresholdless lasing 
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Additional question: 

How to tell difference between 

thresholdless lasing and non-lasing with 

 < 1 (with y-axis in arbitrary units)? 

Conventional laser 

Cavity-enhanced LED 
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Thresholdless laser 

Criterion for lasing 
NQD = 50, inh = 20meV 
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Criterion for lasing 
NQD = 50, inh = 20meV 
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Criterion for lasing: g(2)(0) 
NQD = 50, inh = 20meV 
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 = 1, NQD = 50, inh = 20meV 

Other criteria for lasing 

Coherence time 
Population clamping 

and hole burning 
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 = 0.01 
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Interesting physics with nanolasers 

Most lasers     << 1 

Some nanolasers     = 1 
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Example 1 

Thresholdless lasing 

Example 2 
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Example 2: Single-photon sources and photon statistics 
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Intracavity 

photon 

Cavity enhancement: 
Purcell and directionality 

Example 2: Single-photon purity and emission rate 
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Example 2: Single-photon purity and emission rate 
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Example 2: Single-photon purity and emission rate 
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Extraneous emitters 
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1)Single-photon sources 

2)Emission rate vs. single-photon purity 

3)  > one quantum dot – good or bad? 

4)g(2)(0) adequate for N-emitter systems? 

5)How would a dimmed laser compare? 

First principle study of nanolasers: photon statistics and laser threshold 

First-principles: Quantized light and carriers 

Consistent account of light-carrier correlations 

Photon statistics: 

1)Combination of intensity & g(2)(0) 

gives definitive description of lasing 

2)There is no thresholdless lasing 

Laser threshold: 
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