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§ July	
  1945:	
  Los	
  Alamos	
  
creates	
  Z	
  Division	
  

§ Nonnuclear	
  component	
  
engineering	
  

§ November	
  1,	
  1949:	
  
Sandia	
  Laboratory	
  
established	
  	
  

In my opinion you have here an opportunity 

to render an exceptional service in the national interest. 

Sandia’s	
  History	
  



Sandia	
  Corpora0on	
  	
  
§ 	
  AT&T:	
  1949–1993	
  	
  
§ 	
  Mar<n	
  MarieRa:	
  1993–1995	
  
§ 	
  Lockheed	
  Mar<n:	
  1995–present	
  
§ 	
  Exis<ng	
  contract	
  expires:	
  April	
  30,	
  2016,	
  with	
  a	
  one-­‐year	
  contract	
  extension	
  op<on	
  
§ Government	
  owned,	
  contractor	
  operated	
  

Federally	
  funded	
  
research	
  and	
  development	
  center	
  

Governance	
  of	
  Sandia	
  Laboratories	
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Albuquerque,	
  New	
  Mexico	
  

Waste	
  Isola6on	
  Pilot	
  Plant,	
  
Carlsbad,	
  New	
  Mexico	
  

Pantex	
  Plant,	
  
Amarillo,	
  Texas	
  

Kauai,	
  Hawaii	
  

Livermore,	
  California	
  

Tonopah,	
  
Nevada	
  

Sandia	
  Sites	
  



Sandia	
  Addresses	
  Na<onal	
  
Security	
  Challenges	
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Nuclear	
  weapons	
  
	
  
	
  

	
  Produc0on	
  and	
  
manufacturing	
  
engineering	
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Development	
  	
  
engineering	
  

	
  
	
  
	
  

Vietnam	
  conflict	
  
	
  	
  
 

1960s	
  
Mul0program	
  	
  
laboratory	
  

	
  
	
  
	
  

Energy	
  crisis	
  
	
  	
  
 
 

1970s	
  
Missile	
  defense	
  	
  

work	
  
	
  
	
  
	
  	
  

Cold	
  War	
  
 
 
 
 
	
  
 
 
 
 

1980s	
  
Post−Cold	
  War	
  
	
  transi0on	
  

	
  
	
  

Stockpile	
  	
  
stewardship	
  

	
   
 

1990s	
  
START	
  

Post	
  	
  9/11	
  
	
  
	
  
	
  

Na0onal	
  security	
  

2000s	
  
LEPs	
  

Cyber,	
  biosecurity	
  
prolifera0on 

 
Evolving	
  na0onal	
  

	
  security	
  challenges	
  	
  
 

2010s	
  



Our	
  Research	
  Framework	
  	
  
Strong	
  research	
  founda0ons	
  play	
  a	
  differen0a0ng	
  role	
  in	
  our	
  mission	
  delivery	
  

Compu0ng	
  &	
  	
  
Informa0on	
  Sciences	
  

Radia0on	
  Effects	
  &	
  	
  
High	
  Energy	
  Density	
  Science	
  

Materials	
  Science	
  

Engineering	
  Sciences	
   Nanodevices	
  &	
  
Microsystems	
  

Bioscience	
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Materials	
  Sciences	
  

Geoscience	
  



History	
  of	
  Equa<on	
  of	
  State	
  at	
  Sandia	
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TIGER

CHEETAH
Fried,8 1994

Graphical interface

BKWC, Fried
et al.,9 1996
Exp-6, Fried
et al.,10 2002

CTH-TIGER

JCZS2i

BKWS7

Large EOS
database

Cowperthwaite
& Zwisler,2,5 1973

LLNLe

Hobbs & 
Baer,7 1992

JCZS, Hobbs
et al.,1 1999

SNLd

Piecewise Cp fits
Over 200 ions
New water EOS
Coupled shock code

aLawrence Radiation Laboratory (LRL)
bLos Alamos Scientific Laboratory (LASL)
cStanford Research Institute (SRI)
dSandia National Laboratories (SNL)
eLawrence Livermore National Laboratory (LLNL)

Hobbs, M. L. Tanaka, K., Iida, M. and 
Matsunaga, T., “Equilibrium Calculations of 
Firework Mixtures,” 3rd (Beijing) International 
Symposium on Pyrotechnics and Explosives, 
Beijing, China (1995).  

Tanaka, K., ‘Detonation 
Properties of High Explosives 
Calculated by Revised 
Kihara-Hikita Equation of 
State,” 8th Detonation 
Symposium, 548-557 (1985). 

どこからきたのか? 
どこえいくのか? 



High	
  pressure,	
  temperature	
  EOS	
  basics	
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BKW,	
  covolume	
  based	
   JCZ,	
  intermolecular	
  	
  
poten<al	
  based	
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Water	
  EOS	
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V = A+ BT +CPexp 1− P / D( )



Detona<on	
  predic<ons	
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59 Explosives

           Mean Absolute Error  RMS Error
JCZSa   1.76%     2.37%
Exp-6b   1.90%     2.51%
JCZS2i  1.73%     2.34%
aHobbs, M. L., Baer, M. R., McGee, B. C., Propellants, Explosives, Pyrotechnics, 24, 269-279 (1999).
bFried, L. E., Howard, W. M., Souers, P. C. 12th International Detonation Symposium, San Diego, CA p. 567 (2002)

Awesome!



Air	
  at	
  low	
  pressure,	
  high	
  temperature	
  (reentry)	
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Air at 0.01 atm 
P = 0.01 atm, improved Cp 

1950’s 
P = 0.01 atm, (Vincenti, Kruger,  1967) 
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NASA-­‐CEC	
  and	
  CTH-­‐TIGER	
  give	
  same	
  results	
  at	
  low	
  pressure.	
  



Air	
  at	
  high	
  temperature	
  and	
  pressure	
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Air Compressibility Air at 100,000 atm 
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Air	
  shock	
  from	
  TNT	
  detona<on	
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Edge	
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Air	
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  both	
  dissociates	
  and	
  ionizes	
  the	
  air	
  in	
  the	
  blast	
  wave.	
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CTH programmed burn with JCZS-EOS fit with 
CTH TIGER JWL fitter. Initial geometry is a 5 cm 
radius cylinder.  Profiles plotted at 8 and 100 µs. 



Summary	
  and	
  Conclusions	
  
§  New	
  JCZS	
  database	
  was	
  improved	
  by	
  incorpora<ng	
  piecewise	
  

specific	
  heat	
  fits	
  of	
  NASA’s	
  latest	
  specific	
  heat	
  parameters.	
  
§  The	
  new	
  JCZS2i	
  database	
  considers	
  over	
  200	
  ionic	
  species,	
  as	
  

well	
  as	
  a	
  new	
  condensed	
  water	
  equa<on	
  of	
  state.	
  
§  JCZS2i	
  database	
  gives	
  accurate	
  expansions	
  to	
  low	
  pressure	
  

when	
  liquid	
  water	
  is	
  formed.	
  
§  JCZS2i	
  database	
  was	
  used	
  to	
  calculate	
  detona<on	
  velocity	
  for	
  

59	
  explosives	
  are	
  various	
  densi<es	
  with	
  an	
  mean	
  absolute	
  error	
  
of	
  1.76%.	
  

§  Air	
  composi<on	
  calculated	
  at	
  rarefied	
  and	
  high	
  pressure	
  
condi<ons.	
  

§  Air	
  shock	
  created	
  by	
  detona<on	
  of	
  TNT	
  had	
  temperatures	
  as	
  
high	
  as	
  11,000	
  K	
  and	
  contained	
  ions	
  and	
  dissociated	
  molecules.	
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