
High-performance Graph Analytics
on Manycore Processors

George M. Slota∗, Sivasankaran Rajamanickam†, and Kamesh Madduri∗
∗Computer Science and Engineering, The Pennsylvania State University. Email: gslota@psu.edu, madduri@cse.psu.edu

†Scalable Algorithms Department, Sandia National Laboratories, Email: srajama@sandia.gov

Abstract—The divergence in the computer architecture land-
scape has resulted in different architectures being considered
mainstream at the same time. For application and algorithm
developers, a dilemma arises when one must focus on using
underlying architectural features to extract the best performance
on each of these architectures, while writing portable code at
the same time. We focus on this problem with graph analytics
as our target application domain. In this paper, we present an
abstraction-based methodology for performance-portable graph
algorithm design on manycore architectures. We demonstrate
our approach by systematically optimizing algorithms for the
problems of breadth-first search, color propagation, and strongly
connected components. We use Kokkos, a manycore library
and programming model, for prototyping our algorithms. Our
portable implementation of the strongly connected components
algorithm on the NVIDIA Tesla K40M is up to 3.25× faster than
a state-of-the-art parallel CPU implementation on a dual-socket
Sandy Bridge compute node.

Index Terms—graph computations; BFS; Color propagation;
GPUs; parallel performance; portability

I. INTRODUCTION

Our work attempts to answer the following questions in the
context of graph computations and GPUs:
(a) Can we identify frequently-used optimization strategies

from the large and growing collection of tuned parallel
graph computation implementations (e.g., [2], [5], [9],
[23], [36]), and create a structured methodology for
designing new parallel algorithms? If one were to build
a new framework for high-performance domain-specific
graph computations, what would be the key optimization
strategies to consider, and best practices to follow?

(b) In addition to a parallel-for, data-parallel scans, reduc-
tions, and sorting methods, what are some common
abstractions used to design parallel graph algorithms?

(c) Is it possible to develop performance-portable imple-
mentations of graph algorithms using advanced parallel
programming libraries and frameworks with the optimiza-
tions and abstractions identified above?

We begin by observing that several recent graph algo-
rithms and their efficient implementations follow the loop
nest structure shown in Algorithm 1. This is particularly
true for computations on large, sparse, and static graphs.
The first point to note in Algorithm 1 is that the listing
uses only simple, array-based data structures. Current state-
of-the-art parallel implementations for several graph problems
use array-based stacks, queues, and priority queues, as these

Algorithm 1 A template followed by several serial and parallel
graph algorithms operating on a sparse graph G(V,E). m =
|E|, n = |V |, and m = O(n log n).

Initialize temp/result arrays At[1..n], 1 ≤ t ≤ l. . l = O(1)
Initialize S1[1..n].
for i = 1 to niter do . niter = O(logn)

Initialize Si+1[1..n]. .
∑

i |Si| = O(m)
for j = 1 to |Si| do . |Si| = O(n)

u← Si[j]
Read/update At[u], 1 ≤ t ≤ l.
for k = 1 to |E[u]| do . |E[u]| = O(n)

v ← E[u][k]
Read/update At[v].
Read/update Si+1.

Read/update At[u].

structures are more amenable to applying data-parallel oper-
ations such as scans and reductions. Implementations of this
general template differ in terms of graph representation, data
structure access patterns, number of iterations of the outer
loop, graph topology-based heuristics to reduce total work,
synchronization overhead, etc. Intra- and inter-iteration depen-
dencies hinder automatic compiler-based loop transformations
such as unrolling, coalescing, collapse, and fusion.

Consider level-synchronous parallelizations of Breadth-First
Search (BFS). niter, the number of outer-loop iterations, is
bounded by the graph diameter. The arrays Si correspond to
the vertices in the current frontier, and the adjacencies of these
vertices can be visited in parallel. Arrays of size n (At) are
used to store parent information, whether a vertex has been
previously visited or not, and distance from the source vertex.
Finally, there is a barrier synchronization before every iteration
of the outer loop. For low-diameter (diameter is O(log n))
graphs, the overhead of barrier synchronization is insignificant
in comparison to the work performed in the inner loops. The
arrays Si store vertices in an arbitrary order for BFS. For
other algorithms, such as ones for single-source shortest paths
(SSSP), the ordering of vertices in Si may be important to
reduce the outer-loop iteration count. The direction-optimizing
heuristic in a recent BFS algorithm [3] and the push-pull
optimization in a recent parallel SSSP algorithm [6] can be
viewed as work-reducing heuristics to switch between alternate
representations of Si in the inner loop.

The label propagation community detection heuristic [29]
and the PULP graph partitioning strategy [34] also fit within
this general template. They differ in the access patterns of

SAND2014-19275C

the temporary arrays and the result arrays in the inner loops.
Algorithms that are similar to level-synchronous BFS, such
as betweenness centrality [22], approximate diameter [8],
strongly connected components [33], and biconnected com-
ponents [32], also follow a similar structure. In fact, several
PRAM graph algorithms can be viewed as instances of this
template, and they would result in polylogarithmic paral-
lel time algorithms (assuming low-diameter graphs and/or a
O(log n) bound for the outer-loop iterations). This template
is not restricted to shared-memory algorithms. Distributed-
memory approaches for K-core decomposition also use a
label propagation-like strategy [25], and implementations dif-
fer in the number of outer-loop iterations. Finally, open-
source software packages providing state-of-the-art parallel
implementations of graph algorithms, such as Parallel Boost
graph library [15], MTGL [4], Galois [19], SNAP [21],
PowerGraph [14], Ligra [31], NetworKit [35], etc., include
several programs that fall under the Algorithm 1 template.

So we hypothesize that the first step towards creating an
efficient parallel implementation of a graph algorithm would
be to recast it such that it fits the general template shown
in Algorithm 1. The focus of the current work is efficient
graph analytics on manycore platforms such as NVIDIA and
AMD GPUs, and the Intel Xeon Phi MIC coprocessor. We
do not want to reinvent the wheel for data-parallel subroutine
implementations and parallel-for support. Hence, we use an
emerging node-level library and programming model called
Kokkos [11], that lets us write code that is portable to GPUs,
Intel Xeon Phi, as well as Intel and AMD x86 CPUs. In
Section II, we discuss key Kokkos features that enable us to
quickly develop and compare alternate implementations.

As the next step, we develop several manycore implemen-
tations for the graph problems of BFS, color propagation, and
strongly-connected components (SCC) expressing them in the
template shown in Algorithm 1. The inner loop nests of BFS
and color propagation have several differences, and so we
explore both of these problems. The general manycore SCC
algorithm is based on our prior multicore SCC approach called
Multistep [33]. Use of Kokkos lets us develop several alter-
natives for each problem and conduct a methodical evaluation
of optimizations.

In Section III, we present the third step, the key optimiza-
tions that are critical to manycore performance and portabil-
ity. We primarily evaluate several tuned loop transformation
strategies for the inner loop nest, and we customize these
strategies for our use case of small-world graph analytics.
These loop transformations, in essence, improve load balance
and reduce irregular memory accesses. Our proposed strate-
gies are similar to a compiler-based loop collapse [1], [30].
However, compilers cannot automatically do this because of
loop-carried dependencies. To the best of our knowledge, this
is the first work to explore the loop transformations and GPU
optimizations for SCC and color propagation problems. We
arrive at this portable and performant manycore implementa-
tion of SCC using our algorithmic template, a Kokkos based
implementation, and architecture-aware optimizations.

The main observations from our empirical performance
evaluation (see Section IV) are as follows:
• Our new loop collapse strategy, termed Local Manhattan

collapse, is very effective on GPUs and consistently results
in the highest-performing variant for several problems.

• A GPU SCC implementation using the Local Manhattan col-
lapse strategy demonstrates up to a 3.25× speedup relative
to a state-of-the-art parallel CPU implementation running
on a dual-socket compute node.

• We find our GPU BFS implementation averages 1.74
GTEPS across a suite of 12 test graphs, comparable to
the current state-of-the-art, without any explicit BFS-specific
tuning.

II. PORTABLE GRAPH ALGORITHMS FOR MANYCORE

A. The Kokkos Programming Model

The Kokkos library [11] was originally developed as a
back-end for providing portable performance for scientific
computing frameworks, but has since been extended to a more
general-purpose library for parallel execution. The two pri-
mary capabilities of Kokkos include polymorphic multidimen-
sional arrays optimized for varying data access patterns/layouts
in different architectures and thread parallel execution that
allows for fine-grained data parallelism on manycore devices.

The parallel execution model follows a dispatch model,
where a single master CPU thread divides some N units
of work to be processed on GPU. Each unit of work is
executed by a single thread or thread team. On GPU, a
thread team is comprised of multiple warps each executing
on the same multiprocessor. This team of threads operates in
a data parallel SIMT fashion, and is able to “communicate”
via shared memory. In addition to optimizing the data layout
in different devices, Kokkos also provides us the option to
use the hierarchy of memory in manycore devices, such as
thread block shared memory and texture cache. We use these
features of Kokkos for the appropriate data structures. We also
use the fast atomic operations and “thread team level” scan and
reduction operations to synchronize between different threads
in a thread block. One of the key design decision we made,
to use low-level simple array-based data structures, helps us
when using Kokkos, as the layout of these simple arrays is
then optimized by Kokkos in different devices (CPUs, GPUs
and Phis), different types of memory (e.g., shared memory)
and different access patterns (e.g., coalesced access). Use
of custom data structures that are optimized for any single
architecture would have prevented Kokkos level optimizations,
in turn affecting portability.

B. BFS

BFS is one of the most widely used and basic graph
subroutines, appearing in a vast number of more complex
graph analytics. The goal of BFS is commonly to determine
from a given root either reachability status, distance, or BFS
tree parent-child relationships for all or some subset of vertices
in a graph. On each iteration i ∈ niter of the algorithm, the
status for all vertices that are distance i away from the root

is updated. Described in terms of Algorithm 1, we would first
initialize S1 to contain only the root. To determine distances,
our result array A would be initialized to −1 for all vertices
except for the root, which would be initialized to 0. Each
iteration will examine all edges of all vertices in Si. When a
vertex v is encountered such that A[v] < 0, we update A[v]
to 1 and place v into Si+1.

There has been a lot of recent work focused on optimizing
both CPU and manycore-based implementations of BFS [3],
[7], [12], [16], [17], [23]. We don’t explicitly consider fully
optimizing BFS itself through our framework, but rather show
how close we can get to state-of-the-art traversal rates by
only considering simple techniques that affect per-unit-work
assignments and which are applicable to a much broader class
of algorithms.

C. Color Propagation

Color propagation is an iterative procedure that is useful for
many different graph connectivity problems [27], [31]–[33].
An overview of the general algorithm is given by Algorithm 2.
Note how it also follows the Algorithm 1 template, where Si

is our current queue and the result array A can be considered
as the current coloring of the graph.

Algorithm 2 Color Propagation pseudocode.
A[1..n]← 1..n . Set A[i] = i, 1 ≤ i ≤ n
S1[1..n]← 1..n . Set S1[i] = i, 1 ≤ i ≤ n
i← 1
while Si 6= ∅ do

Si+1 ← ∅
for j = 1 to |Si| do

u← Si[j]
for k = 1 to |E[u]| do

v ← E[u][k]
if A[u] > A[v] then

A[v]← A[u]
Add u to Si+1

i← i+ 1

We initialize A to be unique vertex identifiers and S1 as all
vertices in the graph. We then examine all edges, and when
there exists a source vertex that has a higher color than one of
its neighbors, that vertex propagates its color to the neighbor.
The next work set Si+1 is comprised of vertices that have had
their color altered. This process continues iteratively until no
further propagations occur. As with BFS, we implement color
propagation in a straightforward manner within our general
framework. Outside of initializations and the work performed
on the innermost loop, there are few differences between the
BFS and color propagation codes.

D. Strongly Connected Components

The problem of computing strongly connected components
(SCCs) in large directed small-world graphs is a common an-
alytic for social networks [24] and a preprocessing step in sci-
entific computing (among other uses) [28]. Using either BFS
or coloring, straightforward parallel strongly connected com-
ponent decomposition algorithms can be implemented [18],

[27]. Combining both subroutines into an efficient Multistep
procedure can result in considerable speedup for small-world
graphs [33].

We use the BFS and color propagation subroutines imple-
mented in our framework to perform graph SCC decomposi-
tion via the Multistep procedure (we refer the reader to [33]
for a more detailed description). Once again, outside of a
few changes to initializations and the very innermost loops,
few alterations need to occur to the original BFS and color
propagation codes for the SCC problem.

III. OPTIMIZATION METHODOLOGIES

In this section, we describe the optimization techniques used
to achieve scalable performance on manycore architectures.
These techniques are general enough for any algorithm that
fits the template described in Algorithm 1. Furthermore, the
optimizations are general enough for architectures that share
similar characteristics, such as a very high core count, hierar-
chical memories, and small amounts of memory per thread.
These characteristics of present day GPUs is expected to
hold or become increasingly important in future manycore
architectures. As a result, the optimizations described here are
critical for scalable algorithms on current GPUs and future
manycore architectures.

A. Thread teams, local synchronization, shared and global
memory

Current GPUs are organized as a number of streaming mul-
tiprocessors (for instance, 16 in NVIDIA Maxwell GM204),
each with a number of smaller cores (e.g., 128 CUDA cores
in GM204). The number of threads that can be scheduled
in a single streaming multiprocessor of a GPU can be up to
2048. The number of warps per streaming multiprocessor is
48-64, and the number of thread blocks is 8-16, depending on
the microarchitecture. A similar hierarchy is also seen in the
multiple hyperthreads per core in a Xeon Phi coprocessors,
along with NUMA effects due to placement of cores near
different memory regions. This results in multiple levels of
parallelism that algorithm developers need to design for. The
programming model in Kokkos abstracts this to a thread team,
where a thread team corresponds to a thread block on GPU. In
order to effectively utilize a streaming multiprocessor (SM), it
is crucial to be able to schedule multiple thread blocks in each
SM. Within each thread block, there is enough concurrency for
thousands of threads, so that multiple warps can be kept busy
at the same time. All of our algorithms use the thread teams
concept to synchronize locally and utilize shared memory to
communicate within a team when necessary.

The number of thread blocks that can be scheduled concur-
rently in a single SM is determined by the amount of shared
memory used by each thread block (or a thread team). As all
the threads in a team use the shared memory to synchronize
among themselves before synchronizing to the global memory,
the amount of shared memory used is an important resource.
Increasing its size would reduce the number of writes to
global memory by doing more local synchronizations, but it

would also decrease the number of concurrent thread blocks
that can be scheduled. Our approach balances shared memory
usage with the parallelism available within each thread block.
Finally, it is important that reads and writes to global memory
are coalesced. Essentially, we want reads and writes for a
single warp to be to be performed at neighboring global
memory addresses to reduce total memory bandwidth, improve
cache utilization, and ensure that threads in the warp are not
idle waiting for the memory request of a single thread.

B. Hierarchical Exploration to Improve SM Utilization

A common optimization technique for algorithms dealing
with irregular graph structure is special handling of the fringe
cases, i.e., vertices with degree much larger than the aver-
age [16], [23]. This can be done at the granularity of a single
level or through considering multiple classes of vertices in
a hierarchy. In the GPU context, this might translate to a
thread block working together to explore the edges of a vertex
with an out-degree greater than the number of threads in
the thread block, while a warp would explore vertices with
an out-degree greater than the number of threads in a warp,
but smaller than the number of threads in a block. Smaller
vertices would be handled by individual threads. This general
hierarchical technique has been previously used for irregular
graph problems, referred to as the deferring outliers [16] and
the CTA+Warp+Scan [9], [23] approaches.

Algorithm 3 Hierarchical Expansion.
Initialize A and S1

for i = 1 to niter do
Initialize Si+1[1..n].
for all Thread Teams do . Team-level parallelism

Retrieve subset VT from Si

for j = 1 to |VT | do . Thread-level parallelism
v ← VT [j]
if |E[v]| > |T | then

Add v to QT . Team-shared Queue
else if |E[v]| > |W | then

Add v to QW . Warp-shared Queue
else

Add v to Qt . Thread-owned Queue
Team-level synchronization
for j = 1 to |QT | do

v ← QT [j]
for k = 1 to |E[v]| do . Thread-level parallelism

u← E[v][k]
Read/update A[u]

Warp-level synchronization
for j = 1 to |QW | do . Warp-level parallelism

v ← QW [j]
for k = 1 to |E[v]| do . Thread-level parallelism

u← E[v][k]
Read/update A[u]

for j = 1 to |Qt| do . Serial expansion by thread
v ← Qt[j]
for k = 1 to |E[v]| do

u← E[v][k]
Read/update A[u]

Team-level synchronization
Update Si+1

Our implementation of this technique, which we term as
Hierarchical Expansion, is given by Algorithm 3. In the
Kokkos model, we consider parallelism at three hierarchies:
team-level, warp-level, and thread-level. For each iteration of
our algorithm, we remove a chunk of vertices VS from the
input work set Si and pass it to a Kokkos thread team T . For
good team-level work balance and multiprocessor utilization,
the size of VS is usually within a small factor of the size of
T . The threads in each team work to process their input set,
placing the high-degree vertices they encounter into a team-
shared queue (when the degree is greater than the size of the
thread team |T |) or warp-shared queue (when the degree is
smaller than the size of a thread team, but larger than the
size of a warp |W |). Smaller vertices get placed into a small
thread-owned buffer Qt for later serial expansion.

The vertices in the team-level queue QT are collectively
expanded by all threads, with potential updates to Si+1 kept in
team-level shared memory. Once the QT queue is exhausted,
the warp queue QW is examined. Each warp removes a vertex
from the queue, and cooperatively expands its adjacencies.
Finally, each individual thread serially expands the vertices in
its buffer. Once all work is exhausted, the team collectively
pushes their updates to the next iteration’s work set Si+1.
We use team-level scans and reductions whenever possible to
minimize global synchronizations.

The primary benefit to this type of approach is that it allows
fine-grained warp utilization by limiting the serial expansion of
high degree vertices by a single thread or warp. This leads to
better load balance at the thread and warp level. This approach
also allows the use of shared memory to create new queues
for the next iteration of an irregular graph problem, reducing
the number of global synchronizations required. However, as
vertices are assigned to a single team statically, there can still
be some imbalance at the highest level. All teams might finish
their work long before the team owning a highly-skewed vertex
completes, delaying the start of the next iterations and vastly
under-utilizing available processing resources.

C. Loop collapse For Better Load Balance

As shown by the template in Algorithm 1, many graph
algorithms follow the pattern of two nested loops, where the
outer loop is over the vertices and the nested inner loop is over
the edges. In typical graph analytic algorithms, these two loops
are not perfectly nested, as the vertex contents of the outer loop
determine the start and end indices for the edges examined of
the inner loop. There might be additional operations within the
outer loop, such as changing the properties of vertices, adding
vertices to the next queue, etc. While perfectly nested loops
are great candidates for compiler-based optimizations, loops
containing these other operations cannot be automatically
optimized by compilers.

The importance of collapsing these loops increases when
both loops are parallelizable and when the work in different
outer loop iterations is heavily unbalanced. In graph analytic
algorithms on graphs with skewed degree distributions, when
the work in the outer loop varies based on the degree of the

vertices, collapsing the inner loop is critical. When there are
few threads, like in the CPU, a simple dynamic scheduling
runtime can alleviate the problem [33]. However, it is hard to
scale this approach to the thousands of threads in manycore
devices. In our framework, we do the optimization a compiler
might do, and collapse the two loops over vertices and edges
into a single loop over all possible edges.

We employ the Manhattan collapse [30], where a prefix-
sum operation, easily parallelizable on GPUs with a scan-
based procedure, is used to compute the bounds of each
outer loop iteration. With the results of the prefix sums, a
binary search is then used to compute the indices of the
original inner-loop and outer-loop within the collapsed loop
(given by Algorithm 4). The overhead associated with reverse-
engineering the vertex information is offset by the good load
balance achieved by each thread. This general approach has
been explored before by Merrill et al. for GPUs in the context
of BFS [23] and by Davidson et al. for SSSP [9]. As with
the work of Davidson et al., we consider two forms of the
Manhattan collapse, implementing it at both the global and
local level.

1) Local Manhattan collapse: For our local implementa-
tion, we do not require any additional global storage, apart
from the queues and work arrays updated in the algorithm.
An overview of this approach is given by Algorithm 5. We
statically partition our work set Si on a per-vertex basis and
pass each partition VT to our thread teams. The thread team
computes prefix sums P over VT based on out-degree. P is
stored in shared memory. The final prefix sum in P is the sum
of edges for VT , and therefore proportional to the total work
that the team needs to do. We can then equally distribute this
work among all the threads in the team.

Algorithm 4 Psueudocode for the HIGHESTLESSTHAN sub-
routine, used in both local and global Manhattan loop collapse.

procedure HIGHESTLESSTHAN(P, val)
found← 0
boundlow ← 0
boundhigh ← |P | − 1
while found = 0 do

index = (boundhigh + boundlow)/2
if P (index) ≤ val and P (index+ 1) > val then

found = 1
else if P (index) < val then

boundlow = index
else

boundhigh = index

return index

To get a specific edge based on a per-thread work assign-
ment j, the source vertex is determined by examining the
prefix sums array, and finding the index k that corresponds
to a value in P greater than or equal to j, and less than the
value at the next highest index (Algorithm 4). The specific
out-edge u from the source vertex can be found by using the
difference between the work assignment and the value at the
found index in the prefix sums. With the (u, v) pair, the thread

Algorithm 5 Local Manhattan loop collapse.
Initialize At and S1

for i = 1 to niter do
Initialize Si+1[1..n]
for all Thread Teams do . Team-level parallelism

Retrieve subset VT from Si

P ← PrefixSums(VT)
Max← max(P)
for j = 1 to Max do . Thread-level parallelism

k ← HIGHESTLESSTHAN(P, j)
u← VT [k]
v ← E[u][j − P [k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1

Algorithm 6 Global Manhattan loop collapse.
Initialize At and S1

Initialize P1

for i = 1 to niter do
Initialize Si+1[1..n]
for all Thread Teams do

Retrieve subset jT to jT+1 of max(Pi)
for j = jT to jT+1 do . Thread-level parallelism

k ← HIGHESTLESSTHAN(Pi, j)
u← VT [k]
v ← E[u][j − Pi[k]]
Read/update At[u] and At[v]

Team-level synchronization
Update Si+1 and Pi+1

can now perform its assigned work.
The primary benefit of the Local Manhattan collapse is

that it leads to full warp and thread utilization of processor
resources. When the cost of looking up a work assignment is
low compared to the work that needs to be done, this approach
is highly beneficial. As with Hierarchical Exploration, a major
drawback to doing the Local Manhattan collapse is that a
vertex is still assigned to a single team, which might lead
to work imbalances for highly skewed graphs.

2) Global Manhattan collapse: To alleviate any potential
work imbalance issues, we implemented a fully-partitioned
approach, where the prefix sums for the current iteration are
computed on the previous iteration as updates were pushed
to the next-iteration work set Si+1. By doing this, we can
statically distribute an equal number of edges to each team
instead of vertices. As can be seen in Algorithm 6, the
approach closely follows our local method.

The primary difference lies in the prefix sum array Pi,
which must be globally stored and synchronously updated.
To minimize data transfer requirements, each thread team can
determine its start and end offsets in Pi and do a single transfer
of the needed portion to shared memory. Additionally, pushes
to Pi+1 and Si+1 can also be coalesced, with only a single
atomic update required per team. Because each team needs
to determine the offset to start writing to Pi+1, as well as
the current running sum, we package both these values into a
single atomically-updated 64-bit long int and perform an
atomic fetch-and-add on the current global value.

Ideally, the Global Manhattan collapse should offer the best

work partitioning among thread teams and fastest execution
times for a given algorithm. However, as we will show in our
results, there are other key factors that hurt the performance of
the Global Manhattan collapse relative to the Local method.
For simple graph algorithms with minimal work per edge,
the cost of reading and writing to an additional global array
is relatively high. Amortizing this startup and end cost by
increasing work per team is not necessarily a good solution, as
we would ideally like to have a as-large-as-is-practical number
of teams to hide the memory access latencies inherent to the
rest of the implemented algorithm. Further, on graphs with a
relatively-consistent degree, or a modest number of outliers,
this method offers no additional benefit in terms of equal per-
team work distribution, relative to the Local collapse. Finally,
the maximal degree of many real-world graphs is bounded by
O(
√
n). As long as the maximal degree is less than O(n) and

there are relatively few outliers, the level of fine-grained global
work distribution offered by the global collapse is likely not
necessary.

IV. PERFORMANCE ANALYSIS AND DISCUSSION

A. Experimental Setup

We evaluate our algorithms on single nodes of three clusters,
the Shannon and Compton systems at Sandia, and the NSF
Blue Waters system at NCSA. A Shannon node has two Intel
Xeon E5-2670 Sandy Bridge-EP processors with 128 GB main
memory and an NVIDIA Tesla K40M GPU. The K40M GPU
has 12 GB DDR5 memory, 2880 cores, and a peak memory
bandwidth of 288 GB/s. Each GPU-enabled compute node of
Blue Waters has one AMD 6276 Interlagos processor with
32 GB main memory and an NVIDIA Tesla K20X GPU. The
K20X GPU has 6 GB DDR5 memory, 2688 cores, and a peak
memory bandwidth of 250 GB/s. We use Compton nodes for
running our Kokkos and OpenMP implementations on Intel
Xeon Phi MIC coprocessors. Compton nodes are identical
to Shannon nodes but only have 64 GB memory and house
MICs containing 57 cores at 1.1 GHz with 6 GB memory. In
all cases, the version of Kokkos used in our evaluation came
from release 11.10.1 of Trilinos, we used icc and nvcc for
compilation along with the -O3 optimization option.

We used several real small-world directed graphs that range
in size from 5.1 million to 936 million edges for testing.
These are listed in Table I. The graphs are from the SNAP
database [21], the Koblenz Network Collection [20], and
the University of Florida Sparse Matrix Collection [10]. We
selected these graphs to represent a wide mix of graph sizes
and topologies. Graph topology also has a strong influence
on the performance of BFS and color propagation, while the
number of total and nontrivial SCCs, as well as the size
of the largest SCC, play an important role in determining
performance of the SCC algorithm.

We report BFS and color propagation performance in terms
of the Giga Traversed Edges per Second (GTEPS) metric,
which normalizes running time to the total number of edges
accessed (in billions). Note that our input graphs are directed
and most of them have a large SCC. For each BFS execution,

TABLE I
INFORMATION ABOUT TEST NETWORKS. COLUMNS ARE # VERTICES, #

EDGES, AVERAGE AND MAX. DEGREE, # OF SCCS, # NUMBER OF
NONTRIVIAL SCCS, AND SIZE OF THE LARGEST SCC.

Degree (S)CCsNetwork n m
avg max Count nontriv. max

Google 875 K 5.1 M 5.8 5 K 370 K 12 K 410 K
Flickr 820 K 9.8 M 12 10 K 277 K 7.3 K 530 K
XyceTest 1.9 M 8.2 M 4.2 250 400 K 2.0 K 1.5 M
LiveJournal 4.8 M 69 M 14 20 K 970 K 23 K 3.8 M
RMAT2M 2.0 M 128 M 64 8.7 K 1 M 1 1.0 M
GNP2M 2.0 M 128 M 64 95 1 1 2.0 M
Indochina 7.4 M 194 M 26 180 K 1.6 M 40 K 3.8 M
DBpedia 67 M 258 M 3.9 650 K 55 M 2.9 M 8.9 M
HV15R 2.0 M 283 M 140 170 K 24 K 15 120 K
uk-2002 18 M 398 M 16 4 K 3.7 M 70 K 12 M
WikiLinks 26 M 600 M 23 400 K 6.6 M 60 K 19 M
uk-2005 39 M 936 M 24 130 K 5.8 M 223 K 26 M

we track the total number of edges visited. Similarly, we count
the number of vertex color and edge updates to determine
overall performance for color propagation. We also run mul-
tiple iterations of both algorithms on all the target systems to
reduce any variation in running time. In order to be consistent
with BFS and color propagation results, we normalize SCC
performance also by the number of edges and report an overall
GEPS (Giga Edges per second) rate for each graph.

For the Kokkos GPU approach, we fix thread queue sizes at
16, work chunks at 256 vertices per thread team for Hierarchi-
cal and Local Manhattan, and work chunks at 2048 per thread
team for Baseline (vertex chunks) and Global Manhattan (edge
chunks). For Xeon Phi and CPU, we used larger queues of size
1024 and work chunks of 2048. These values were selected
for exhibiting the fastest performance across a range of values
on our test suite. We will fully explore the performance impact
of these algorithmic parameters in future work.

B. BFS performance

Figure 1 gives the performance rates of the Kokkos-based
BFS implementations on the Tesla K40M GPU. The base-
line rate in the figure corresponds to performance with a
vertex-based partitioning of the frontier array among thread
teams. It is not a trivial implementation and our speedup
numbers are conservative in that sense. We see consistent and
significant speedups with three loop collapse strategies (H:
hierarchical, MG: Manhattan collapse using global memory,
ML: Manhattan collapse using GPU shared memory). Using
H, MG, and ML, the speedups (geometric mean) over baseline
are 1.82×, 1.82×, 3.85×, respectively, for the twelve graphs
considered. The graphs are ordered in the figure in increasing
order of average vertex degree, from DBpedia (3.9) to HV15R
(140). Apart from a couple of anomalies, there is a reasonable
correlation between average vertex degree in the graph and the
BFS performance of the best variant (ML). Prior GPU graph
algorithms work [17] has also made similar observations.
However, one striking aspect is that the tuned variant can be
more than an order-of-magnitude faster than the baseline, as
we note for the Flickr graph. This is a bit surprising, given

●

●

●

●

●

●
●

●

●●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S
Algorithm ● H MG ML

●

●

● ●
● ●

●

● ●●

●

●

2.5

5.0

7.5

10.0

12.5

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Algorithm ● H MG ML

Fig. 1. BFS performance on Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG), and Hierarchical (H) loop collapse strategies.

●

●●

●

●

●

●
●

●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

G
T

E
P

S

Optimizations ● M(+C+S+)L M(+C+S) M(+C) Baseline+M

●

●

●

●
●

● ●
●

●

●

0.0

2.5

5.0

7.5

10.0

12.5

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Optimizations ● M(+C+S+)L M(+C+S) M(+C) Baseline+M

Fig. 2. Impact of various optim. strategies (Manhattan collapse (M), coalescing (C), team-scan (S), and local primitives (L)) on Tesla K40M BFS performance.

●
●

●

●

●
●

●

●

●

●
●

●

0

1

2

3

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

G
T

E
P

S

Algorithm ● H MG ML

●

●

● ●

● ●

●

●

●

●

●

●1

2

3

4

D
B

p
e
d
ia

X
y
c
e
T
e
s
t

G
o
o
g
le

F
lic

k
r

L
iv

e
J
o
u
rn

a
l

u
k
−

2
0
0
2

W
ik

iL
in

k
s

u
k
−

2
0
0
5

In
d
o
C

h
in

a

R
M

A
T

2
M

G
N

P
2
M

H
V

1
5
R

Graph

S
p

e
e

d
u

p
 v

s
.

B
a

s
e

lin
e

Algorithm ● H MG ML

Fig. 3. Color propagation performance on Tesla K40M using Manhattan-Local (ML), Manhattan-Global (MG), and Hierarchical (H) loop collapse strategies.

that Flickr is not a very large graph, and neither does it have
a high average degree.

Next, we summarize the impact of other optimization strate-
gies discussed in Section III. Figure 2 gives BFS performance
of the baseline and the ML variant again. In addition, we
add optimizations in a structured manner to the code, starting
with Baseline and finally getting to tuned ML (indicated by
M+C+S+L in the figure). The intermediate steps are untuned
Manhattan collapse (indicated by Baseline+M), Manhattan
collapse with memory coalescing (M+C), Manhattan collapse
with memory coalescing and utilizing team-based scan pro-

cedures (M+C+S). The final step is the usage of temporary
shared memory arrays for each thread team. It is interesting
to note that Manhattan collapse by itself does not provide
much performance improvement. It is only after a methodical
restructuring of the code, including optimizations such as
coalescing and use of optimized scan primitives, that we are
able to get the full benefit of the loop collapse optimization.

C. Color Propagation performance
Figure 3 shows the performance of the loop collapse strate-

gies on color propagation. Unlike BFS, the global Manhattan
collapse strategy does not consistently improve performance

over the baseline. For a majority of the graphs, it is actually
slower than baseline. Using H and ML, though, the speedups
(geometric mean) over baseline are 3.10× and 1.72×, re-
spectively, for the twelve graphs considered. Performance of
the best variant (ML) seems to well-correlated with average
graph degree, with the exception of the synthetic RMAT2M
and GNP2M graphs. We see the highest overall speedup over
baseline (nearly 4.5×) with the Flickr graph. MG performs
poorly on several instances due to the nature of iterative color
propagation, which tends to have a long tail containing lots of
low degree vertices. This effect is especially pronounced on the
web graphs (uk, IndoChina), which tend to have long strings
of singly-connected vertices. This hurts the performance of
MG relative to ML in two ways. Firstly, the low average
degree increases the amount of total transfer per team to and
from the global prefix sum array. Secondly, the consistently
low degree offers no benefit with regards to work partitioning
among teams relative to the other approaches.

D. SCC evaluation, performance portability

We finally evaluate performance of various SCC imple-
mentations. Recall that SCC algorithms use both BFS-like
and color propagation-like loop nests, in addition to other
graph topology-related work reduction heuristics [18], [33].
Our baseline Kokkos implementation for SCC is based on our
prior Multistep [33] multicore parallel algorithm. Note that the
BFS subroutine in Multistep is direction-optimizing, similar
to [3], [7]. Thus we have also been able to express a fast
heuristic work-reduction strategy in our Kokkos framework.
We further improved the baseline approach using the ML
and MG loop collapse strategies, and other GPU-specific
optimizations. Figure 4 provides a cross-platform comparison
of the various approaches on our test suite. Performance rates
are indicated in terms of billions of edges per second. Our
prior CPU Multistep implementation uses OpenMP, and can
be compiled and run on x86 systems as well as Intel’s Xeon
Phi coprocessors. We thus report these results on the Sandy
Bridge-EP host processor and the Xeon Phi coprocessor. The
platforms are indicated as SNB and KNC in the figure, and
the OpenMP Multistep implementation is labeled OMP. The
Kokkos baseline approach runs on all four platforms, and
it is labeled as previous (B). Because Kokkos uses a single
thread per team for the Xeon Phis and CPU, we only report
performance for the MG variant of loop collapse on these
systems, as the ML variant would default into an inefficient
(B).

Consider the SNB column of the figure first. We observe that
the OMP multistep performance varies between 0.1 to 5 GEPS,
nearly a 50× variation. The anomalously-high performance
on RMAT2M and GNP2M is due to the fact these synthetic
graphs are relatively easy instances for the Multistep algorithm
(there is only a single non-trivial SCC, so color propagation
is never run). The graphs are ordered from top to bottom
by average vertex degree. While OMP tends to do better
than the Kokkos baseline on smaller graphs, for four of the
twelve graphs, including the larger uk web crawls, the Kokkos

TABLE II
CROSS-ARCHITECTURAL PERFORMANCE COMPARISON OF BEST

VARIANTS.

SCC BFS Coloring
Network SNB KNC K20X K40M K40M vs K20X

GEPS GTEPS ratio

Google 0.16 0.08 0.09 0.15 1.66 1.19
Flickr 1.29 0.14 0.38 0.56 1.37 1.00
XyceTest 0.25 0.13 0.14 0.23 1.08 1.16
LiveJournal 1.03 0.24 0.53 0.68 1.11 1.04
RMAT2M 4.99 0.47 1.28 1.35 1.13 0.95
GNP2M 3.66 0.56 1.06 1.05 1.04 1.04
Indochina 0.30 0.09 0.11 0.18 1.08 1.22
DBpedia 0.20 0.33 0.34 0.82 1.16
HV15R 2.09 0.43 1.18 1.23 2.20 0.99
uk-2002 0.55 0.20 0.33 1.26 1.15
WikiLinks 0.79 0.45 1.27 1.12
uk-2005 0.22 0.18

Geom mean 0.69 0.21 0.35 0.43 1.23× 1.09×

baseline is in fact faster than the state-of-the-art OpenMP-
based Multistep. MG, the algorithmic variant designed for
GPUs, did not do as well as the baseline in SNB.

The Xeon Phi performance results are quite interesting.
The Kokkos baseline variant now consistently outperforms
Multistep OMP. In comparison to parallel SNB performance,
the absolute performance results on KNC are lower. However,
note that these results were obtained with little or no parameter
tuning for KNC. Besides three instances, MG again lags
behind baseline. Thus we can conclude that the loop collapse
strategies designed specifically for GPUs may not really lead
to portable performance on KNC, without additional tuning.

The GPU SCC performance results are as expected. No-
tably, we could easily combine the Kokkos BFS and coloring
implementations to create this SCC algorithm, and overall
performance is quite favorable in comparison to the best
parallel CPU implementation.

The original Multistep algorithm compiled with OpenMP
and running on CPU shows the most consistent performance,
followed by the GPU Kokkos ML algorithm running on GPU.
Exploring cross-architectural and cross-implementation perfor-
mance on each graph instance, we note different reasons for
why a particular implementation is faster or slower. Multistep
was designed to run on CPU with low diameter graphs and,
as such, tends to dominate performance-wise on the smaller
graphs, where there is lower available work parallelism, the
graphs are less skewed, and the problems are generally easier
to solve. This is apparent on the two simplest instances,
the GNP and RMAT graphs. The GPU ML code arguably
shows increasing relative performance with increasing problem
difficulty, which is exemplified by DBpedia, the most skewed
graph with the largest number of nontrivial SCCs. The addi-
tional parallelism for GPU ML across the adjacencies of the
largest outliers in DBpedia makes a large relative impact. MG
for both CPU and GPU does not show as good performance for
DBpedia because, while there is improved parallelism across
the largest adjacencies, DBpedia also has a very long tail of
low degree vertices. This makes color propagation run very
slow with MG due to all of the additional read and writes to

 SNB KNC K20X K40M

0.0

0.2

0.4

0.6

0.00
0.05
0.10
0.15
0.20
0.25

0.00

0.05

0.10

0.15

0.0

0.5

1.0

0.00

0.25

0.50

0.75

1.00

0.0

0.2

0.4

0.0

0.2

0.4

0.6

0.8

0.00
0.05
0.10
0.15
0.20

0.0

0.1

0.2

0.3

0
1
2
3
4
5

0

1

2

3

0.0

0.5

1.0

1.5

2.0

D
B

p
e
d
ia

X
yce

Te
st

G
o
o
g
le

F
lickr

L
ive

Jo
u
rn

a
l

u
k−

2
0
0
2

W
ikiL

in
ks

u
k−

2
0
0
5

In
d
o
C

h
in

a
R

M
A
T

2
M

G
N

P
2
M

H
V

1
5
R

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

 B M
G

 M
L

 O
M

P

SCC Algorithms

B
ill

io
n
s

o
f
E

d
g
e
s

P
ro

ce
ss

e
d
 p

e
r

S
e
co

n
d

Fig. 4. Cross-platform performance comparison of SCC implementations.

the global prefix sums array.

In Table II, we list the SCC GEPS rate of the best-
performing variant on each platform. The geometric mean

of GEPS rates on each platform for SCC are also listed.
Overall, K20X is 1.67× faster than KNC for SCC. For BFS
and Coloring, we compare performance of the best variant on
K40M to the best-performing one on K20X. We observe that
K40M is overall 1.23× faster for BFS and 1.09× faster for
color propagation.

E. Comparisons to prior work

To the best of our knowledge, this is the first work on
Kokkos-based graph computations targeting GPUs and Xeon
Phi accelerators. For SCC, we performed direct comparisons
with our prior OpenMP based Multistep method, as discussed
in the previous subsection. In terms of mean performance
rates, we believe that 0.43 GEPS for SCC, using a high-
level framework such as Kokkos, is significant. Our mean BFS
performance rate on the K40M is 1.74 GTEPS across all the
test networks considered, and the best rate is 2.82 GTEPS for
the RMAT2M network. Recently, Nguyen et al. [26] compare
performance of several parallel graph analysis frameworks
(Ligra, Galois, PowerGraph, GraphChi, and variants) for var-
ious graph analytics routines on a 40-core Intel Westmere-
EX system. The best BFS performance reported, with Galois
on the twitter40 graph, corresponds to a GTEPS rate of 2.1.
Merrill et al. [23] report up to 3.3 GTEPS on the RMAT2M
network for an optimized CUDA BFS implementation. For
tuned CUDA-based SSSP approaches, Davidson et al. [9]
report a peak performance rate of 0.35 GTEPS on an RMAT
network and an NVIDIA GTX 680 (GK104). Thus, we believe
that our approaches are competitive with the current state-of-
the-art on multicore and manycore platforms.

V. CONCLUSIONS

We used an algorithmic template that is common to lot of
graph algorithms to express algorithms for strongly connected
components, breadth first search and color propagation. This
algorithmic template was used for a portable manycore im-
plementation using the Kokkos library and then optimized
for architecture specific features like teams of threads and
algorithmic features like loop-collapsing. We gave credence
to the the efficacy of our approach by demonstrating the
performance of a strongly connected components algorithm
that is up to 3.25× faster than parallel CPU implementation.

We conclude with some commentary on questions posed in
Section I. Wherever possible, we advocate using simple array-
based data structures and an iterative loop nest to perform
graph computations, as shown in Algorithm 1. This simplifies
transitioning from serial to multicore to manycore algorithms.
The Local Manhattan collapse optimization proved to be
the biggest contributor to performance improvement over a
baseline version. Given that most current and emerging real-
world networks have skewed degree distributions, this would
be the primary optimization strategy for graph analytics. The
algorithms we studied in this paper use the abstraction: “given
a large unordered set of vertices, how do we efficiently read
and update attributes of the vertices and their adjacencies?”
Using Kokkos, we see promising results for performance

portability. The performance of our Baseline SCC algorithm on
Xeon Phi is 1.97× faster than an OpenMP-based implementa-
tion. Further, the multicore CPU algorithm based on Kokkos
is only 30% slower than a hand-tuned OpenMP code.

We intend to apply this methodology to other graph an-
alytics in future work. There are several research efforts on
using both the host and the accelerator for graph analytic
workloads [12], [13], [17], and this is another avenue for futute
work.

ACKNOWLEDGMENT

We thank Carter Edwards and Christian Trott for adding
features to Kokkos that enabled us to do this work. This
research is part of the Blue Waters sustained-petascale com-
puting project, which is supported by the National Science
Foundation (awards OCI-0725070, ACI-1238993, and ACI-
1444747) and the state of Illinois. Blue Waters is a joint
effort of the University of Illinois at Urbana-Champaign and
its National Center for Supercomputing Applications. This
work is also supported by NSF grants ACI-1253881, CCF-
1439057, and the DOE Office of Science through the FAST-
Math SciDAC Institute. Sandia National Laboratories is a
multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-
94AL85000.

REFERENCES

[1] D. F. Bacon, S. L. Graham, and O. J. Sharp, “Compiler transformations
for high-performance computing,” ACM Computing Surveys, vol. 26,
no. 4, pp. 345–420, 1994.

[2] D. S. Banerjee, S. Sharma, and K. Kothapalli, “Work efficient parallel
algorithms for large graph exploration,” in Proc. Int’l. Conf. on High
Performance Computing (HiPC), 2013.

[3] S. Beamer, K. Asanović, and D. Patterson, “Direction-optimizing
breadth-first search,” in Proc. Int’l. Conf. for High Performance Com-
puting, Networking, Storage and Analysis (SC), 2013.

[4] J. W. Berry, B. Hendrickson, S. Kahan, and P. Konecny, “Software and
algorithms for graph queries on multithreaded architectures,” in Proc.
Workshop on Multithreaded Architectures and Applications (MTAAP),
2007.

[5] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of
irregular programs on GPUs,” in Proc. IEEE Int’l. Symp. on Workload
Characterization (IISWC), 2012.

[6] V. T. Chakaravarthy, F. Checconi, F. Petrini, and Y. Sabharwal, “Scalable
single source shortest path algorithms for massively parallel systems,” in
Proc. IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS), 2014.

[7] F. Checconi and F. Petrini, “Traversing trillions of edges in real-time:
Graph exploration on large-scale parallel machines,” in Proc. IEEE Int’l.
Parallel and Distributed Proc. Symp. (IPDPS), 2014.

[8] G. H. Dal, W. A. Kosters, and F. W. Takes, “Fast diameter compu-
tation of large sparse graphs,” in Proc. IEEE Int’l. Conf. on Parallel,
Distributed and Network-based Processing (PDP), 2014.

[9] A. Davidson, S. Baxter, M. Garland, and J. D. Owens, “Work-efficient
parallel GPU methods for single-source shortest paths,” in Proc. IEEE
Int’l. Parallel and Distributed Proc. Symp. (IPDPS), 2014.

[10] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Transactions on Mathematical Software, vol. 38, no. 1,
pp. 1–25, 2011.

[11] H. C. Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, 2014, in press.

[12] T. Gao, Y. Lu, B. Zhang, and G. Suo, “Using the Intel Many Integrated
Core to accelerate graph traversal,” Sage Int’l. Journal of High Perfor-
mance Computing Applications, vol. 28, no. 3, pp. 255–266, 2014.

[13] A. Gharaibeh, L. B. Costa, E. Santos-Neto, and M. Ripeanu, “On graphs,
GPUs, and blind dating: A workload to processor matchmaking quest,”
in Proc. IEEE Int’l. Parallel and Distributed Proc. Symp. (IPDPS), 2013.

[14] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
erGraph: Distributed graph-parallel computation on natural graphs,” in
Proc. USENIX Conf. on Operating Systems Design and Implementation
(OSDI), 2012.

[15] D. Gregor and A. Lumsdaine, “Lifting sequential graph algorithms
for distributed-memory parallel computation,” in Proc. ACM SIGPLAN
Conf. on Object Oriented Programming, Systems, Languages, and Ap-
plications (OOPSLA 2005), 2005.

[16] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, “Accelerating CUDA
graph algorithms at maximum warp,” in Proc. ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming (PPoPP), 2011.

[17] S. Hong, T. Oguntebi, and K. Olukotun, “Efficient parallel graph
exploration on multi-core CPU and GPU,” in Proc. Int’l. Conf. on
Parallel Architectures and Compilation Techniques (PACT), 2011.

[18] S. Hong, N. C. Rodia, and K. Olukotun, “On fast parallel detection of
strongly connected components (scc) in small-world graphs,” in Proc.
Int’l. Conf. for High Performance Computing, Networking, Storage and
Analysis (SC), 2013.

[19] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and
L. P. Chew, “Optimistic parallelism requires abstractions,” in Proc. ACM
SIGPLAN Conf. on Programming language design and implementation
(PLDI), 2007.

[20] J. Kunegis, “KONECT - the Koblenz network collection,”
http://konect.uni-koblenz.de/, last accessed Oct 17, 2014.

[21] J. Leskovec, “SNAP: Stanford network analysis project,”
http://snap.stanford.edu/index.html, last accessed Oct 17, 2014.

[22] A. McLaughlin and D. A. Bader, “Scalable and high performance
betweenness centrality on the GPU,” in Proc. Int’l. Conf. for High
Performance Computing, Networking, Storage and Analysis (SC), 2014.

[23] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph
traversal,” in Proc. ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming (PPoPP), 2012.

[24] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and B. Bhattachar-
jee, “Measurement and analysis of online social networks,” in Proc.
ACM SIGCOMM Conf. on Internet Measurement (IMC), 2007.

[25] A. Montresor, F. D. Pellegrini, and D. Miorandi, “Distributed k-Core
decomposition,” 2011, arXiv:1103.5320.

[26] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” in Proc. ACM Symp. on Operating Systems Prin-
ciples (SOSP), 2013.

[27] S. Orzan, “On distributed verication and veried distribution,” Ph.D.
dissertation, Free University of Amsterdam, 2004.

[28] A. Pothen and C.-J. Fan, “Computing the block triangular form of a
sparse matrix,” ACM Transactions on Mathematical Software, vol. 16,
no. 4, pp. 303–324, 1990.

[29] U. N. Raghavan, R. Albert, and S. Kumara, “Near linear time algorithm
to detect community structures in large-scale networks,” Physical Review
E, vol. 76, no. 3, p. 036106, 2007.

[30] M. Ringenburg and S.-E. Choi, “Optimizing loop-level parallelism in
Cray XMT™ applications,” in Proc. Cray User Group meeting (CUG),
2009.

[31] J. Shun and G. E. Blelloch, “Ligra: a lightweight graph processing
framework for shared memory,” in Proc. ACM SIGPLAN Symp. on
Principles and Practice of Parallel Programming (PPoPP), 2013.

[32] G. M. Slota and K. Madduri, “Simple parallel biconnectivity approaches
for multicore platforms,” in Proc. IEEE Int’l. Conf. on High Performance
Computing (HiPC), 2014, to appear.

[33] G. M. Slota, S. Rajamanickam, and K. Madduri, “BFS and coloring-
based parallel algorithms for strongly connected components and related
problems,” in Proc. IEEE Int’l. Parallel and Distributed Proc. Symp.
(IPDPS), 2014.

[34] ——, “PULP: Scalable multi-objective multi-constraint partitioning for
small-world networks,” in Proc. IEEE Int’l. Conf. on Big Data (Big-
Data), 2014.

[35] C. L. Staudt, A. Sazonovs, and H. Meyerhenke, “NetworKit: An
interactive tool suite for high-performance network analysis,” 2014,
arXiv:1403.3005.

[36] J. Zhong and B. He, “Medusa: Simplified graph processing on GPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 25, no. 6,
pp. 1543–1552, 2014.

