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Highlights

We present PuLP, a multi-constraint multi-objective
partitioner designed for small-world graphs

PuLP demonstrates an average speedup of 14.5×
relative to state-of-the-art partitioners

PuLP requires 8-39× less memory than state-of-the-art
partitioners

PuLP produces partitions with comparable or better
quality than state-of-the-art partitioners for small-world
graphs
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Overview

PuLP: Partitioning Using Label Propagation
Overview

Graph partitioning formulation
Label propagation
Using label propagation for partitioning

PuLP Algorithm

Degree-weighted label prop
Label propagation for balancing constraints and
minimizing objectives
Label propagation for iterative refinement

Results

Performance comparisons with other partitioners
Partitioning quality with different objectives
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Overview
Partitioning

Graph Partitioning: Given a graph G(V,E) and p
processes or tasks, assign each task a p-way disjoint
subset of vertices and their incident edges from G

Balance constraints – (weighted) vertices per part,
(weighted) edges per part
Quality metrics – edge cut, communication volume,
maximal per-part edge cut

We consider:

Balancing edges and vertices per part
Minimizing edge cut (EC) and maximal per-part edge
cut (ECmax)
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Overview
Partitioning - Objectives and Constraints

Lots of graph algorithms follow a certain iterative model

BFS, SSSP, FASCIA subgraph counting (Slota and
Madduri)
computation, synchronization, communication,
synchronization, computation, etc.

Computational load: proportional to vertices and edges
per-part

Communication load: proportional to total edge cut and
max per-part cut

We want to minimize the maximal time among tasks for
each comp/comm stage
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Overview
Partitioning - Balance Constraints

Balance vertices and edges:

(1− εl)
|V |
p
≤ |V (πi)| ≤ (1 + εu)

|V |
p

(1)

|E(πi)| ≤ (1 + ηu)
|E|
p

(2)

εl and εu: lower and upper vertex imbalance ratios

ηu: upper edge imbalance ratio

V (πi): set of vertices in part πi

E(πi): set of edges with both endpoints in part πi
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Overview
Partitioning - Objectives

Given a partition Π, the set of cut edges (C(G,Π)) and
cut edge per partition (C(G, πk)) are

C(G,Π) = {{(u, v) ∈ E} | Π(u) 6= Π(v)} (3)

C(G, πk) = {{(u, v) ∈ C(G,Π)} | (u ∈ πk ∨ v ∈ πk)} (4)

Our partitioning problem is then to minimize total edge
cut EC and max per-part edge cut ECmax:

EC(G,Π) = |C(G,Π)| (5)

ECmax(G,Π) = max
k
|C(G, πk)| (6)

7 / 34



Overview
Partitioning - HPC Approaches

(Par)METIS (Karypis et al.), PT-SCOTCH (Pellegrini et
al.), Chaco (Hendrickson et al.), etc.

Multilevel methods:

Coarsen the input graph in several iterative steps
At coarsest level, partition graph via local methods
following balance constraints and quality objectives
Iteratively uncoarsen graph, refine partitioning

Problem 1: Designed for traditional HPC scientific
problems (e.g. meshes) – limited balance constraints and
quality objectives

Problem 2: Multilevel approach – high memory
requirements, can run slowly and lack scalability
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Overview
Label Propagation

Label propagation: randomly initialize a graph with
some p labels, iteratively assign to each vertex the
maximal per-label count over all neighbors (Raghavan et
al.)

Clustering algorithm - dense clusters hold same label
Fast - each iteration in O(n+m), usually fixed iteration
count (doesn’t necessarily converge)
Näıvely parallel - only per-vertex label updates
Observation: Possible applications for large-scale
small-world graph partitioning
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Overview
Partitioning - “Big Data” Approaches

Methods designed for small-world graphs (e.g. social
networks and web graphs)

Exploit label propagation/clustering for partitioning:
Multilevel methods - use label propagation to coarsen
graph (Wang et al. 2014, Meyerhenke et al. 2014)
Single level methods - use label propagation to directly
create partitioning (Ugander and Backstrom 2013,
Vaquero et al. 2013)

Problem 1: Multilevel methods still can lack scalability,
might also require running traditional partitioner at
coarsest level

Problem 2: Single level methods can produce
sub-optimal partition quality
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Overview
PuLP

PuLP: Partitioning Using Label Propagation

Utilize label propagation for:

Vertex balanced partitions, minimize edge cut (PuLP)
Vertex and edge balanced partitions, minimize edge cut
(PuLP-M)
Vertex and edge balanced partitions, minimize edge cut
and maximal per-part edge cut (PuLP-MM)
Any combination of the above - multi objective, multi
constraint
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Algorithms
Primary Algorithm Overview

PuLP-MM Algorithm
Constraint 1: balance vertices, Constraint 2: balance
edges
Objective 1: minimize edge cut, Objective 2: minimize
per-partition edge cut
Iterations: value bracketed is number of iterations for
each step

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k1 iterations [1] do

for k2 iterations [3] do
Balance partitions with LP to satisfy constraint 1 [5]
Refine partitions with FM to minimize objective 1 [10]

for k3 iterations [3] do
Balance partitions with LP to satisfy constraint 2

and minimize objective 2 [5]
Refine partitions with FM to minimize objective 1 [10]
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k1 iterations [1] do

for k2 iterations [3] do
Balance partitions with LP to satisfy vertex

constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k3 iterations [3] do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]
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Algorithms
Primary Algorithm Overview

Randomly initialize p partitions (p = 4)

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

After random initialization, we then perform label
propagation to create partitions

Initial Observations:

Partitions are unbalanced, for high p, some partitions
end up empty
Edge cut is good, but can be better

PuLP Solutions:

Impose loose balance constraints, explicitly refine later
Degree weightings - cluster around high degree vertices,
let low degree vertices form boundary between partitions
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k1 iterations [1] do

for k2 iterations [3] do
Balance partitions with LP to satisfy vertex

constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k3 iterations [3] do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]
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Algorithms
Primary Algorithm Overview

Part assignment after random initialization.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

After label propagation, we balance vertices among
partitions and minimize edge cut (baseline PuLP ends
here)

Observations:

Partitions are still unbalanced in terms of edges
Edge cut is good, max per-part cut isn’t necessarily

PuLP-M and PuLP-MM Solutions:

Maintain vertex balance while explicitly balancing edges
Alternate between minimizing total edge cut and max
per-part cut (for PuLP-MM, PuLP-M only minimizes
total edge cut)
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k1 iterations [1] do

for k2 iterations [3] do
Balance partitions with LP to satisfy vertex

constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k3 iterations [3] do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]

20 / 34



Algorithms
Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k1 iterations [1] do

for k2 iterations [3] do
Balance partitions with LP to satisfy vertex

constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k3 iterations [3] do
Balance partitions with LP to satisfy edge

constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Algorithms
Primary Algorithm Overview

Part assignment after balancing for edges and minimizing total
edge cut and max per-part edge cut

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)
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Results
Test Environment and Graphs

Test system: Compton
Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64
GB memory.

Test graphs:
LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
Real (one R-MAT), small-world, 60 K–70 M vertices,
275 K–2 B edges

Test Algorithms:
METIS - single constraint single objective
METIS-M - multi constraint single objective
ParMETIS - METIS-M running in parallel
KaFFPa - single constraint single objective
PuLP - single constraint single objective
PuLP-M - multi constraint single objective
PuLP-MM - multi constraint multi objective

Metrics: 2–128 partitions, serial and parallel running times, memory
utilization, edge cut, max per-partition edge cut
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Results
Running Times - Serial (top), Parallel (bottom)

In serial, PuLP-MM runs 1.7× faster (geometric mean) than next
fastest
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In parallel, PuLP-MM runs 14.5× faster (geometric mean) than
next fastest (ParMETIS times are fastest of 1 to 256 cores)
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Results
Memory utilization for 128 partitions

PuLP utilizes minimal memory, O(n), 8-39× less than
other partitioners

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs

PuLP-MM produces better max edge cut than METIS-M over most graphs
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Results
Balanced communication

uk-2005 graph from LAW, METIS-M (left) vs. PuLP-MM (right)
Blue: low comm; White: avg comm; Red: High comm
PuLP reduces max inter-part communication requirements and
balances total communication load through all tasks
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Future Work

Explore techniques for avoiding local minima, such as
simulated annealing, etc.

Further parallelization in distributed environment for
massive-scale graphs

Demonstrate performance of PuLP partitions with graph
analytics

Explore tradeoff and interactions in various parameters
and iteration counts
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Conclusions

We presented PuLP, a multi-constraint multi-objective
partitioner designed for small-world graphs

PuLP demonstrates an average speedup of 14.5×
relative to state-of-the-art partitioners

PuLP requires 8-39× less memory than state-of-the-art
partitioners

PuLP produces partitions with comparable or better
quality than METIS/ParMETIS for small-world graphs

Questions?
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Results
Running Times - Serial (top), Parallel (bottom)

PuLP faster than others over most tests in serial
In parallel, PuLP always faster than other
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In parallel, PuLP runs 14.5× faster (geometric mean)
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Results
Memory utilization for 128 partitions

PuLP utilizes minimal memory - O(n)

Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.Network
METIS-M KaFFPa PuLP-MM Graph Size

LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21×
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23×
R-MAT 42 GB - 1.2 GB 1.02 GB 35×
DBpedia 46 GB - 2.8 GB 1.6 GB 28×
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25×
sk-2005 121 GB - 16 GB 13.7 GB 8×
Twitter 487 GB - 14 GB 12.2 GB 39×
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs

PuLP-MM produces better max edge cut than METIS-M over most graphs

Taken together, these demonstrate the tradeoff for multi objective

Across all Lab for Web Algorithmics graphs
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs
PuLP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective
Across all Lab for Web Algorithmics graphs
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Results
Performance - Edge Cut and Edge Cut Max

PuLP-M produces better edge cut than METIS-M over most graphs
PuLP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective
Across all Lab for Web Algorithmics graphs
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