PULP: Scalable Multi-Objective
Multi-Constraint Partitioning
for Small-World Networks

George M. Slota'? Kamesh Madduri?
Sivasankaran Rajamanickam?

1Sandia National Laboratories, 2The Pennsylvania State University
gslota@psu.edu, madduri@cse.psu.edu, srajama@sandia.gov

BigDatald 28 Oct 2014

Highlights

m We present PULP, a multi-constraint multi-objective
partitioner designed for small-world graphs

m PULP demonstrates an average speedup of 14.5x
relative to state-of-the-art partitioners

m PULP requires 8-39x less memory than state-of-the-art
partitioners

m PULP produces partitions with comparable or better
quality than state-of-the-art partitioners for small-world
graphs

Overview

m PULP: Partitioning Using Label Propagation

m Overview
m Graph partitioning formulation
m Label propagation
m Using label propagation for partitioning

m PULP Algorithm
m Degree-weighted label prop
m Label propagation for balancing constraints and

minimizing objectives

m Label propagation for iterative refinement

m Results
m Performance comparisons with other partitioners
m Partitioning quality with different objectives

Overview

Partitioning

m Graph Partitioning: Given a graph G(V, E) and p
processes or tasks, assign each task a p-way disjoint
subset of vertices and their incident edges from G

m Balance constraints — (weighted) vertices per part,
(weighted) edges per part

m Quality metrics — edge cut, communication volume,
maximal per-part edge cut

m We consider:

m Balancing edges and vertices per part
m Minimizing edge cut (EC) and maximal per-part edge
cut (EChaz)

Overview

Partitioning - Objectives and Constraints

m Lots of graph algorithms follow a certain iterative model
m BFS, SSSP, FASCIA subgraph counting (Slota and
Madduri)
m computation, synchronization, communication,
synchronization, computation, etc.
m Computational load: proportional to vertices and edges
per-part
m Communication load: proportional to total edge cut and
max per-part cut

m We want to minimize the maximal time among tasks for
each comp/comm stage

Overview

Partitioning - Balance Constraints

m Balance vertices and edges:

Ml el <sey V]
a-a) <y <ava)l 1)
B(m)| <<1+nu>'%' 2)

€; and €,: lower and upper vertex imbalance ratios

[
m 7),: upper edge imbalance ratio
m V(m;): set of vertices in part m;
[

E(m;): set of edges with both endpoints in part 7;

Overview

Partitioning - Objectives

m Given a partition II, the set of cut edges (C(G,1I)) and
cut edge per partition (C(G, 7)) are

C(G.11) = {{(u,v) € E} | Il(u) # II(v)} (3)
C(G,m) = {{(u,v) e C(G, I} | (uem Vv e} (4)

m Our partitioning problem is then to minimize total edge

cut £C and max per-part edge cut EC) 4,

EC(G.,1) = |C(G,)| (5)
ECa: (G, 1T) = max [C(G, my)| (6)

Overview

Partitioning - HPC Approaches

m (Par)METIS (Karypis et al.), PT-SCOTCH (Pellegrini et
al.), Chaco (Hendrickson et al.), etc.
m Multilevel methods:
m Coarsen the input graph in several iterative steps
m At coarsest level, partition graph via local methods
following balance constraints and quality objectives
m lteratively uncoarsen graph, refine partitioning
m Problem 1: Designed for traditional HPC scientific
problems (e.g. meshes) — limited balance constraints and
quality objectives
m Problem 2: Multilevel approach — high memory
requirements, can run slowly and lack scalability

Overview

Label Propagation

m Label propagation: randomly initialize a graph with
some p labels, iteratively assign to each vertex the
maximal per-label count over all neighbors (Raghavan et

al.)
m Clustering algorithm - dense clusters hold same label
m Fast - each iteration in O(n + m), usually fixed iteration
count (doesn’t necessarily converge)
m Naively parallel - only per-vertex label updates
m Observation: Possible applications for large-scale
small-world graph partitioning

Overview

Partitioning - “Big Data" Approaches

m Methods designed for small-world graphs (e.g. social
networks and web graphs)
m Exploit label propagation/clustering for partitioning:

m Multilevel methods - use label propagation to coarsen
graph (Wang et al. 2014, Meyerhenke et al. 2014)

m Single level methods - use label propagation to directly
create partitioning (Ugander and Backstrom 2013,
Vaquero et al. 2013)

m Problem 1: Multilevel methods still can lack scalability,
might also require running traditional partitioner at
coarsest level

m Problem 2: Single level methods can produce
sub-optimal partition quality

10 /34

Overview

PuLP

PulLP: Partitioning Using Label Propagation

m Utilize label propagation for:

m Vertex balanced partitions, minimize edge cut (PULP)

m Vertex and edge balanced partitions, minimize edge cut
(PULP-M)

m Vertex and edge balanced partitions, minimize edge cut
and maximal per-part edge cut (PULP-MM)

m Any combination of the above - multi objective, multi
constraint

11/34

Algorithms

Primary Algorithm Overview

m PULP-MM Algorithm
m Constraint 1: balance vertices, Constraint 2: balance
edges
m Objective 1: minimize edge cut, Objective 2: minimize
per-partition edge cut
m lterations: value bracketed is number of iterations for
each step

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k; iterations [1] do
for k; iterations [3] do
Balance partitions with LP to satisfy constraint 1 [5]
Refine partitions with FM to minimize objective 1 [10]
for k3 iterations [3] do
Balance partitions with LP to satisfy constraint 2
and minimize objective 2 [5]
Refine partitions with FM to minimize objective 110]
12 /34

Algorithms

Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k; iterations [1] do
for k, iterations [3] do
Balance partitions with LP to satisfy vertex
constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k; iterations [3] do
Balance partitions with LP to satisfy edge
constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]

13/34

Algorithms

Primary Algorithm Overview

Randomly initialize p partitions (p = 4)

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

14/34

Algorithms

Primary Algorithm Overview

m After random initialization, we then perform label
propagation to create partitions
m Initial Observations:
m Partitions are unbalanced, for high p, some partitions
end up empty
m Edge cut is good, but can be better
m PuLP Solutions:

m Impose loose balance constraints, explicitly refine later
m Degree weightings - cluster around high degree vertices,
let low degree vertices form boundary between partitions

15/34

Algorithms

Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k; iterations [1] do
for k, iterations [3] do
Balance partitions with LP to satisfy vertex
constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k; iterations [3] do
Balance partitions with LP to satisfy edge
constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]

16 /34

Algorithms

Primary Algorithm Overview

Part assignment after random initialization.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

17/34

Algorithms

Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

18 /34

Algorithms

Primary Algorithm Overview

m After label propagation, we balance vertices among
partitions and minimize edge cut (baseline PULP ends
here)

m Observations:

m Partitions are still unbalanced in terms of edges
m Edge cut is good, max per-part cut isn't necessarily

m PuLP-M and PuLP-MM Solutions:

m Maintain vertex balance while explicitly balancing edges

m Alternate between minimizing total edge cut and max
per-part cut (for PULP-MM, PULP-M only minimizes
total edge cut)

19/34

Algorithms

Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k; iterations [1] do
for k, iterations [3] do
Balance partitions with LP to satisfy vertex
constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k; iterations [3] do
Balance partitions with LP to satisfy edge
constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]

20/ 34

Algorithms

Primary Algorithm Overview

Part assignment after degree-weighted label propagation.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/)

21/34

Algorithms

Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/) 20 /34

Algorithms

Primary Algorithm Overview

Initialize p random partitions
Execute degree-weighted label propagation (LP) [3]
for k; iterations [1] do
for k, iterations [3] do
Balance partitions with LP to satisfy vertex
constraint [5]
Refine partitions with FM to minimize edge cut [10]

for k; iterations [3] do
Balance partitions with LP to satisfy edge
constraint and minimize max per-part cut [5]
Refine partitions with FM to minimize edge cut [10]

23/34

Algorithms

Primary Algorithm Overview

Part assignment after balancing for vertices and minimizing
edge cut.

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/) 24 /34

Algorithms

Primary Algorithm Overview

Part assignment after balancing for edges and minimizing total
edge cut and max per-part edge cut

Network shown is the Infectious network dataset from KONECT (http://konect.uni-koblenz.de/) 25 /34

Results

Test Environment and Graphs

m Test system: Compton
m Intel Xeon E5-2670 (Sandy Bridge), dual-socket, 16 cores, 64
GB memory.

m Test graphs:
B LAW graphs from UF Sparse Matrix, SNAP, MPI, Koblenz
m Real (one R-MAT), small-world, 60 K=70 M vertices,
275 K-2 B edges

Test Algorithms:

METIS - single constraint single objective
METIS-M - multi constraint single objective
ParMETIS - METIS-M running in parallel
KaFFPa - single constraint single objective
PuLP - single constraint single objective
PuLP-M - multi constraint single objective
B PuLP-MM - multi constraint multi objective

m Metrics: 2-128 partitions, serial and parallel running times, memory
utilization, edge cut, max per-partition edge cut

26 /34

Results

Running Times - Serial (top), Parallel (bottom)

m In serial, PULP-MM runs 1.7x faster (geometric mean) than next
fastest

Partitioner -~ PULP -4 PULP-M -&- PULP-MM —+ METIS -# METIS-M - KaFFPa-FS

LiveJournal | [R-MAT Twitter

puumny

Running Time
BN oW
5 8 8
8 8 8
TS

T T T L S S S S
16 32 64 128 2 4 8 16 32 64 128

Number of Partitions

m In parallel, PULP-MM runs 14.5x faster (geometric mean) than
next fastest (ParMETIS times are fastest of 1 to 256 cores

Partitioner =~ PULP -4~ PULP-M -&- PULP-MM — ParMETIS -&- METIS-M (Serial) % PULP-M (Serial)

LiveJournal R-MAT Twitter
o 1500 1 15000
E
= 1000 10000 —
g R
5 500 - 5000,
x St
0 oA
I L I R I B R
2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128

Number of Partitions 27 /34

Results

Memory utilization for 128 partitions

m PULP utilizes minimal memory, O(n), 8-39x less than
other partitioners

m Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.
Network METIS-M KaFFPa = PULP-MM Graph Size
LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21x
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23x
R-MAT 42 GB - 1.2 GB 1.02 GB 35x%x
DBpedia 46 GB - 2.8 GB 1.6 GB 28 %
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25x%
sk-2005 121 GB - 16 GB 13.7 GB 8%
Twitter 487 GB - 14 GB 12.2 GB 39x

28 /34

Results

Performance - Edge Cut and Edge Cut Max

m PULP-M produces better edge cut than METIS-M over most graphs
m PULP-MM produces better max edge cut than METIS-M over most graphs

Partitioner -+~ PULP-M -4~ PULP-MM -=- METIS-M
LiveJournal R-MAT
1.0+

o 0.4+ 0.8+

E —

@ 0.3 _ 0.8 064

3

202 0.6 0.4

g

wo.1+ 0.4+ 0.2+

e S e e A B B e R A

2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

Partitioner —— PULP-M -4 PULP-MM -=- METIS-M

LiveJournal R-MAT Twitter
8 0.3+
20
o
- ha 0.2+
a
L
9] .1
& 0.1
3
= 0.0+

T T T T T T : T T T T T T T T T T T T T T
2 4 8 16 32 64 128 2 4 8 16 32 64 128 2 4 8 16 32 64 128
Number of Partitions

29 /34

Results

Balanced communication

m uk-2005 graph from LAW, METIS-M (left) vs. PULP-MM (right)

m Blue: low comm; White: avg comm; Red: High comm

m PULP reduces max inter-part communication requirements and
balances total communication load through all tasks

s W

Part Number
Part Number

o
=

T 0w o 4 N ® ¥ W o~ ®© o Q9
S a4 =

N o %
= S G

S 3

4N ® YT WL O~ ®©® o 9 AN
ERR= I

Part Number Part Number

)
=

30/34

Future Work

m Explore techniques for avoiding local minima, such as
simulated annealing, etc.

m Further parallelization in distributed environment for
massive-scale graphs

m Demonstrate performance of PULP partitions with graph
analytics

m Explore tradeoff and interactions in various parameters
and iteration counts

31/34

Conclusions

m We presented PULP, a multi-constraint multi-objective
partitioner designed for small-world graphs

m PULP demonstrates an average speedup of 14.5x
relative to state-of-the-art partitioners

m PULP requires 8-39x less memory than state-of-the-art
partitioners

m PULP produces partitions with comparable or better
quality than METIS/ParMETIS for small-world graphs

32/34

Conclusions

m We presented PULP, a multi-constraint multi-objective
partitioner designed for small-world graphs

m PULP demonstrates an average speedup of 14.5x
relative to state-of-the-art partitioners

m PULP requires 8-39x less memory than state-of-the-art
partitioners

PULP produces partitions with comparable or better
quality than METIS/ParMETIS for small-world graphs

Questions?

32/34

Acknowledgments

m DOE Office of Science through the FASTMath SciDAC
Institute
m Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract
DE-AC04-94AL85000.

m NSF grant ACI-1253881, OCI-0821527

m Used NERSC hardware for generating partitionings -
supported by the Office of Science of the U.S.
Department of Energy under Contract No.
DE-AC02-05CH11231

33/34

m Backup slides

34/34

REJIRS

Running Times - Serial (top), Parallel (bottom)

m PULP faster than others over most tests in serial
m In parallel, PULP always faster than other

Partitioner —— PULP - PULP-M -5~ PULP-MM —+ METIS —=- METIS-M - KaFFPa-FS

LiveJournal Orkut] [R-MAT | DBpedia | WikiLinks sk-2005 | [Twiter |
N ~ /500 1500 e 2
£ 300 * 4004 10004 A 15000 Y4
= 300 Nl IZanand
2200 10000 - o
£ 200+ L e e 7 -
£ 500
£ 1004 100
2 5000 -, - 4
J 047 |- T
o o ' U] C ' o G
2 48163264128 2 4 8163264128 2 163264128 2 4 8163264128 2 4 8 163264128 2 4 8163264128

I
48
Number of Partitions

m In parallel, PULP runs 14.5x faster (geometric mean)

Partitioner =~ PULP -~ PULP-M -=- PULP-MM —— ParMETIS -=- METIS-M (Serial) ~ PULP-M (Serial)

Orkut] [R-MAT | DBpedia | WikiLinks | sk-2005 [Twitter]
1500 —_
1500~ 1500 4 S il + 15000~
1000 T an ‘”"O’E/E/E S
=+ 1000~ L= 1000 " 10000-7 s
/ fer K 4 A <l
&4 500%\?‘:,&:?'_._._# 5001 500 500 | 5000-
il . A e 1]
lo—e—s—a—a—o=8 (_ o a,‘**s&é 0 0-0-8—5-
' G G U o Cr
2 4 8163264128 2 4 8163264128 2 4 8163264128 2 4 8 163264128 2 4 8163264128
Number of Partitions

U Vo
2 4 8163264128 2 4 8 163264128

35/34

Results

Memory utilization for 128 partitions

m PULP utilizes minimal memory - O(n)

m Savings are mostly from avoiding a multilevel approach

Memory Utilization Improv.
Network METIS-M KaFFPa = PULP-MM Graph Size
LiveJournal 7.2 GB 5.0 GB 0.44 GB 0.33 GB 21x
Orkut 21 GB 13 GB 0.99 GB 0.88 GB 23x
R-MAT 42 GB - 1.2 GB 1.02 GB 35x%
DBpedia 46 GB - 2.8 GB 1.6 GB 28x
WikiLinks 103 GB 42 GB 5.3 GB 4.1 GB 25x%
sk-2005 121 GB - 16 GB 13.7 GB 8%
Twitter 487 GB - 14 GB 12.2 GB 39x

36/34

Results

Performance - Edge Cut and Edge Cut Max

m PULP-M produces better edge cut than METIS-M over most graphs
m PULP-MM produces better max edge cut than METIS-M over most graphs
m Taken together, these demonstrate the tradeoff for multi objective

Partitioner = PULP-M -4~ PULP-MM = METIS-M

LiveJournal Orkut R-MAT DBpedia WikiLinks
204+ 06 107 £/0.4+ o.
8 £~ 04- 7 0.064
o34 MUS’ 03 Z
= 0.4- e
3 0,04
Qo2+ 0.6+ 024
@ 02+ 0024
S0.1+ [
go: 004 0.4 0.1 0.1, 0,004
o G Vo G o o G
24 8163264128 2 4 8163264128 2 4 8163264128 2 4 8 163264128 2 4 8 163264128 2 4 8 163264128 2 4 8 163264128
Number of Partitions
Orkut R-MAT o015 DBpedia WikiLinks sk=2005 Twitter
A 015+
01247
000 & 0104
0.06- 0054
§ v e ST 00 00 1000y Ve 00T
2 4 8163264128 2 4 8163264128 2 4 8163264128 2 4 8163264128 2 4 8 163264128 2 4 8163264128 2 4 B8 163264128

Number of Partitions

37/

34

Results

Performance - Edge Cut and Edge Cut Max

PULP-M produces better edge cut than METIS-M over most graphs
PULP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective

Across all Lab for Web Algorithmics graphs

Partioner || PULP-M |-~ PULP-MM = METIS-M

- Foltood n indochina W |

Edge Cut Ratio

et |t

Cioumal 2005) 2008 webbase |

/
1632 64128 2 4 B 16 32 64 128 2 4 8 16 32 64128
Number of Partitions

37/34

Results

Performance - Edge Cut and Edge Cut Max

PULP-M produces better edge cut than METIS-M over most graphs
PULP-MM produces better max edge cut than METIS-M over most graphs
Taken together, these demonstrate the tradeoff for multi objective

Across all Lab for Web Algorithmics graphs

Parifioner || PULP-M - PULP-MM 5| METIS-M

‘Amazon ‘Arabic

00075

0.0050

00025
~a

eu

0125

0.100

0075

0.050
d

Max Per-Part Ratio

N

) 0.025
o

00100

0007515 N
003 / W\ 0010

0.02 /] \
%//\ 0005
001 .
=

Do 000
B 16 32 64128 2 4 B 16 32 64128
Number of Partitions

—
0.0050

0.0025.

2 4 8 16 32 64128

37/34

