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Objectives of Crystalline Disposal R&D Work 
Packages

 Directly support the following UFDC objectives

 Develop a fundamental understanding of disposal system 
performance in a range of environments for potential wastes that 
could arise from future nuclear fuel cycle alternatives through 
theory, simulation, testing, and experimentation.

 Develop a computational modeling capability for the performance 
of storage and disposal options for a range of fuel cycle 
alternatives, evolving from generic models to more robust models 
of performance assessment.

 Focus on two key components of deep geologic 
repository in crystalline rocks

 Better characterization and understanding of fractured media and 
fluid flow and transport in such media

 Designing effective engineered barrier systems for waste isolation

 Fully leverage international collaborations

 Korean Atomic Energy Research Institute 

 Äspö Hard Rock Laboratory (Sweden)

 Bedrichov Tunnel Tests (Czech) 

 Colloid Formation & Migration Project (Switzerland)

 Others  
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Experimental program for used fuel 
disposition in crystalline rocks
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Thermal limit tests of buffer materials

 Key issues to be addressed:
 Can the existing thermal limit (100 oC) of bentonite 

materials be relaxed or even eliminated?

 How will the thermal perturbation affect material’s 
mechanical and chemical performance? (beneficially or 
detrimentally?)

 Relevant conditions:

 Dry heating or heating with limited moisture

UOX fuel (40 GW-d/MT), 32-PWRs (Hardin & Voegele, 2013)

100 101 102 103 104 105 106 year

Temperature

Thermal pulse

Full saturation of buffer materials

Failure of copper-shelled waste package

WF degradation; RN release & transport

Manufacturing defects of Waste package WF degradation; RN release & transport
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WF degradation; RN release & transport
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Thermal limit tests of buffer materials: 
Preliminary results

 Materials tested: 

 Smectite, illite, -mixed-layer illite-smectite

 Testing conditions: 

 100 – 800 oC; dry heating (open), heating with limited 
moisture (closed); 1 – 8 hours

 Material characterization: 

 BET, CEC, TGA, XRD, Zeta sizing and settling 
measurements 

340

350

360

370

380

390

400

410

420

430

100 200 300 400 500

CE
C

(m
eq

/1
00

g
cl

ay
)

Temperature (°C)

Illite

0

50

100

150

200

250

100 200 300 400 500

CE
C

(m
eq

/1
00

g
cl

ay
)

Temperature (°C)

Illite/Smec te

0

200

400

600

800

1000

1200

100 200 300 400 500

CE
C

(m
eq

/1
00

g
cl

ay
)

Temperature (°C)

Smec te

Potential enhancement of cation 
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Enhanced instability of colloid suspension?

FY15: More systematic testing; 
swelling testing
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Pu sorption on montomorillonite

 Key issues to be addressed:

 Stability of intrinsic Pu colloids

 Formation of Pu pseudo-colloids

 Experimental setup

 Dialysis bag

 Control temperature

 Presence or absence of 
montomorillonite

Limiting step

The kinetic constants for dissolution are one to two 
orders of magnitude lower than that of diffusion of 
aqueous Pu species. 

Zhao et al. (2014)
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Pu sorption on montomorillonite: 
Temperature effect & oxidation state 
change

 Presence of clay stabilize dissolved Pu species 
and drives the formation of more stable Pu 
pseudo-colloids.

 Affinity of Pu for clay increases with temperature.

 Elevated temperatures may lead to more reducing 
solution conditions?

Zhao et al. (2014)
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Iodide interaction with clays 

Altmann, 2008

I-

X

 I-129 a top contributor to total dose release. 
The questions are:

 Are the measured small Kd values real?

 What is the mechanism for iodide interactions with 
clays?
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• N2 BET
• Methylene Blue (MB)

• Na-exchanged clays
• Variable amounts of MB were added until clay 

surface was saturated
• BaCl2 Exchange

• Excess of barium displaces native cations
• Measure native cation release

• Iodide
• Solid:Liquid ratio: 100g/L 
• No specific pH control; ‘natural’ pH of clay
• Seven day reaction time

7 clays under consideration: All 

clays obtained from the clay bank repository 
(Purdue Univ.)

• Kaolinite
• Ripidolite
• Illite
• Illite/Smectite

• Montmorillonite
• Palygorskite
• Sepiolite

Sorption experiments:

Concentration (M) NaCl NaBr KCl

1.0 X

0.1 X X X

0.01 X

Iodide interaction with clays (cont.) 



11

KD values trend with total surface area, suggesting 
interactions with negatively charged interlayer sites.
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Data is consistent with ion pair formation 
caused by reduced dielectric constant of 
confined water
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U interaction with granite: Column 
experiments 

 Key issues to be addressed:

 Traditional Kd approach over-
predicts radionuclide migration.

 How to interrogate the kinetics of 
multiple site radionuclide 
sorption and desorption?

 How to upscale radionuclide 
sorption and desorption?  

Grimsel granodiorite 

Grimsel fracture filling material 

Multi-site reactive transport model
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U interaction with granite: Column 
experiments (cont.)

BatchColumn

Model simulation for a large scale system

 It seems that column and batch 
experiments are transferable under 
relatively high solid/solution ratios.

 Different models may result in a 
significant difference in the prediction 
of long-term radionuclide retardation. 
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Development of site characterization 
techniques

Focus

 In-situ measurements 
in boreholes

 Multiple signal 
integration

KAERI (2014)
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Model development & demonstration using 
site characterization & tracer testing data
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Perspectives

FY15 work

 Better characterization and 
understanding of fractured media and 
fluid flow and transport in such media;

 Designing effective engineered barrier 
systems (EBS) for waste isolation. 
Specific attention will be given to the 
development of scientifically sound 
thermal limits for various buffer 
materials.

 Model demonstration using site 
characterization data obtained through 
international collaboration;

 Close coordination with deep borehole 
disposal activities. 


