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B Directly support the following UFDC objectives

e Develop a fundamental understanding of disposal system
performance in a range of environments for potential wastes that
could arise from future nuclear fuel cycle alternatives through
theory, simulation, testing, and experimentation.

e Develop a computational modeling capability for the performance
of storage and disposal options for a range of fuel cycle
alternatives, evolving from generic models to more robust models
of performance assessment.

B Focus on two key components of deep geologic
repository in crystalline rocks

e Better characterization and understanding of fractured media and
fluid flow and transport in such media

e Designing effective engineered barrier systems for waste isolation
® Fully leverage international collaborations

e Korean Atomic Energy Research Institute

e Asp6 Hard Rock Laboratory (Sweden)

e Bedrichov Tunnel Tests (Czech)

e Colloid Formation & Migration Project (Switzerland)

e Others
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Experimental program for used fuel
disposition in crystalline rocks
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Thermal limit tests of buffer materials
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B Key issues to be addressed:
e Can the existing thermal limit (100 °C) of bentonite : .

materials be relaxed or even eliminated?

e How will the thermal perturbation affect material’s
mechanical and chemical performance? (beneficially or
detrimentally?)

B Relevant conditions: UOX fuel (40 GW-d/MT), 32-PWRs (Hardin & Voegele, 2013)
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e Dry heating or heating with limited moisture
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Thermal limit tests of buffer materials:
Preliminary results

B Materials tested:

e Smectite, illite, -mixed-layer illite-smectite

B Testing conditions:

e 100 - 800 °C; dry heating (open), heating with limited

moisture (closed); 1 — 8 hours

B Material characterization:

CEC (meq/100g clay)
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e BET, CEC, TGA, XRD, Zeta sizing and settling
measurements
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Potential enhancement of cation
exchange capacity (CEC)?

Enhanced instability of colloid suspension?

FY15: More systematic testing;
swelling testing
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Pu sorption on montomorillonite

B Key issues to be addressed:

e Stability of intrinsic Pu colloids

e Formation of Pu pseudo-colloids
B Experimental setup

e Dialysis bag

e Control temperature

e Presence or absence of
montomorillonite

/ Limiting step

k.
Pu0,(s) | inside ———= Pu(aq) | inside

Pu(aq) |outside
K. kak_z
Pu(aq) + clay | outside ——— Pu — clay | outside

Pu(aq) |inside

Pu(V,ag)~— pu(v,aq)
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b PuO2(col)
0]

clay /

The kinetic constants for dissolution are one to two
orders of magnitude lower than that of diffusion of
aqueous Pu species.

Zhao et al. (2014)
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Pu sorption on montomorillonite:
Temperature effect & oxidation state

change
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B Presence of clay stabilize dissolved Pu species

Pu (aq), mol/L

and drives the formation of more stable Pu

pseudo-colloids.

1E-6

B Affinity of Pu for clay increases with temperature.
B Elevated temperatures may lead to more reducing

solution conditions?
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lodide interaction with clays
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lodide interaction with clays (cont.)

7 clays under consideration: Al
clays obtained from the clay bank repository

(Purdue Univ.)

 Kaolinite
* Ripidolite
o llite

* lllite/Smectite

E y
Ny

Montmorillonite
Palygorskite
Sepiolite

Sorption experiments:

N, BET
Methylene Blue (MB)
* Na-exchanged clays
+ Variable amounts of MB were added until clay
surface was saturated
BaCl, Exchange
» Excess of barium displaces native cations
* Measure native cation release
lodide
+ Solid:Liquid ratio: 100g/L
» No specific pH control; ‘natural’ pH of clay
» Seven day reaction time
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Nuclear Energy interactions with negatively charged interlayer sites
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EﬁPEmREEFY Data is consistent with ion pair formation
4 caused by reduced dielectric constant of
Nuclear Energy confined water
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B Key issues to be addressed:
e Traditional Kd approach over-
predicts radionuclide migration.
e How to interrogate the kinetics of
multiple site radionuclide
sorption and desorption?

e How to upscale radionuclide
sorption and desorption?

Grimsel granodiorite
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Multi-site reactive transport model

Grimsel fracture filling material
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Development of site characterization
techniques

® Focus

e |n-situ measurements

in boreholes

e Multiple signal
integration
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Forsmark site data Modeling of tracer transport in Bedrichov Tunnel
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Perspectives

FY15 work

M Better characterization and
understanding of fractured media and
fluid flow and transport in such media;

B Designing effective engineered barrier
systems (EBS) for waste isolation.
Specific attention will be given to the
development of scientifically sound
thermal limits for various buffer
materials.

B Model demonstration using site
characterization data obtained through
international collaboration;

B Close coordination with deep borehole
disposal activities.

Used Fuel Disposal in
Crystalline Rocks: Status and

FY14 Progress

Fuel Cycle Research & Development

APPENDIX A

RESEARCH & DEVELOPMENT (R&D) PLAN FOR USED FUEL
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