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Kokkos: A Layered Collection of Libraries

 C++1998 standard (everyone supports except IBM’s xlC)

 C++2011 offers concise & convenient lambda syntax
 Vendors catching up to C++11 language compliance

 Concern: Can applications move to C++2011 ?
 Can just those applications moving to MPI + X also move to C++2011?

 C++2017 working on Kokkos Core -like thread parallel capability

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core
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Kokkos: Spaces and Execution Policies

 Execution Space : where functions execute
 Encapsulates hardware resources; e.g., cores, hyperthreads, vector units, ...

 Memory Space : where data resides
AND what execution space can access that data

 Also differentiated by access performance; e.g., latency & bandwidth

 Execution Policy : how (and where) a function is executed
 Identifies an execution space

 E.g., data parallel range : concurrently call function(i) for i = 0 .. N-1

 E.g., task parallel : concurrently call { tasks }

 Compose parallel pattern, execution policy, and functions
 Patterns: parallel_for, parallel_reduce, parallel_scan, task_parallel, ...

 User’s function is a C++ functor or C++11 lambda

parallel_for( Policy<Space>(...), Functor(...) );
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Examples of Execution and Memory Spaces

Compute Node

Multicore 
Socket

DDR

Attached Accelerator

GPU

GDDR

GPU::capacity
(via pinned)

primary

primary

GPU::perform
(via UVM)

Compute Node

Multicore 
Socket

DDR
primary

shared

deep_copy

Attached Accelerator

GPU

GDDR
primary
performshared
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Kokkos: Execution Spaces

 Execution Space Instance
 Encapsulate (preferably allocable) hardware execution resources

 Functions may execute concurrently on those resources

 Degree of potential concurrency (cores, hyperthreads) determined at runtime

 Number of execution space instances determined at runtime

 Execution Space Type (e.g., CPU, Xeon Phi, GPU)
 Functions compiled to execute on a type of execution space

 These types determined at configure/compile time

 Host’s Serial Space
 The main process and its functions execute in the host’s Serial Space

 One type, one instance, and is serial (potential concurrency == 1)

 Execution Space Default : one instance of one type
 Configure/build with one type – it is the default

 Initialize with one instance – it is the default

 E.g., Kokkos::Threads, Kokkos::OpenMP, Kokkos::Cuda
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Kokkos: Memory Spaces

 Memory Space Types (GDDR, DDR, NVRAM, Scratchpad)
 The type of memory is defined with respect to an execution space type

 Primary: (default) space with allocable memory (e.g., can malloc/free)

 Performant : best performing space (e.g., GPU’s GDDR)

 Capacity : largest capacity space (e.g., DDR)

 Contemporary system: Primary == Performant == Capacity

 Scratch : non-allocable and maximum performance

 Persistent : usage can persist between process executions (e.g., NVRAM)

 Memory Space Instance
 Accessibility and performance relationship with execution space

 Directly addressable by functions in that execution space

 Contiguous range of addresses

 Memory Space Default
 Default execution spaces’ primary memory space
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Execution / Memory Space Relationship

 ( Execution Space , Memory Space , Memory Access Traits )
 Accessibility : functions can/cannot access memory space

 Readable / Writeable / Allocable

 E.g., GPU performant memory using texture cache is read-only

 Expectations for performance

 Expectations for capacity

 Memory Access Traits (extension point)
 examples: read-only, volatile/atomic, random, streaming, ...

 Automatically convert between Kokkos::Views with same space but 
different memory access traits

 Default is simple readable/writeable – no special traits
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Kokkos::View, Spaces, and Defaults

 typedef View< ArrayType , Layout , Space , Traits >  view_type ;
 Space is either memory space or execution space

 Execution space has a default memory space

 Memory space has a default execution space

 Omit Traits : no special compile-time defined access traits

 Omit Space : use default execution space

 Omit Layout : use space’s default layout

 default everything:  View< ArrayType >

 View< double**[3][8] > : ArrayType == double**[3][8]
 Four dimensional array of value type ‘double’ 

 Dimensions are [N][M][3][8]

 N and M are runtime defined dimensions
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Kokkos::View Construction and Data Access

 View<double**[3][8], Space>  a(spec,N,M);
 “Spec” for allocating memory or wrapping user-managed memory

 Allocating memory, spec is 

 ViewAllocate( label = “” ), std::string(“label”), or “label”

 ViewAllocateWithoutInitializing( label = “” )

 Dimensions may have hidden padded for memory alignment

 Label is only used for error and warning messages, need not be unique

 Allocation, by default, initializes data via ‘parallel_for’

 Wrapping user-managed, spec is a pointer (no label)

 Dimensions are taken as-is, are never padded for memory alignment

 Trusting that the user’s memory spans the dimensions

 Data access: a(i,j,k,l)
 Array layout deduced from ’Space’ or ‘Layout’ template argument

 Optional array bounds checking for debugging
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Kokkos::View Internal Reference Counting

 View semantics with internal reference counting 
 View<double**[3][8],Space> b = a ; // SHALLOW copy

 Both ‘b’ and ‘a’ reference the same allocated memory

 Memory deallocated when last referencing view is destroyed

 Wrapped user-managed memory is never reference counted

 View< ... , Traits = MemoryUnmanaged >
 Do not reference count Views with this trait

 Cannot allocate non-reference counted views

 Use cases: temp subview of an allocated view, wrapping user’s memory

 Trusting that temporary subview does not outlive the allocated view

 ‘Const-ness’ of views and viewed data
 View<const double **[3][8],Space> c = a ; // OK, view to const array

 const View<double**[3][8],Space> d = c ; // ERROR, non-const view of const
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Deep Copy and “Mirror” Semantics

 deep_copy( destination_view , source_view );
 Copy array data of ‘source_view’ to array data of ‘destination_view’

 Kokkos policy: never hide an expensive deep copy operation

 Only deep copy when explicitly instructed by the user

 Avoid expensive permutation of data due to different layouts

 Mirror the dimensions and layout in Host’s memory space
typedef class View<...,Space> MyViewType ;
MyViewType a(“a”,...); 
MyViewType::HostMirror a_h = create_mirror( a );
deep_copy( a , a_h ); deep_copy( a_h , a ); 

 Avoid unnecessary deep-copy
MyViewType::HostMirror a_h = create_mirror_view( a );

 If Space (might be an execution space) uses Host memory space

then ‘a_h’ is simply a view of ‘a’ and deep_copy is a no-op
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Subview : View of a sub-array

SrcViewType src_view( ... );

DstViewType dst_view = subview<DstViewType>(src_view, ...args )
 ...args : list of indices or ranges of indices

 Challenging capability due to polymorphic array Layout
 View’s are strongly typed: View<ArrayType,Layout,Traits>

 Compatibility constraints among DstViewType, SrcViewType, ...args

 ‘const-ness’ and other memory access traits

 number of dimensions (rank of array)

 runtime and compile-time dimensions

 destination layout can accommodate when stride != dimension

 Performance of deep_copy between subviews

 Using C++11 ‘auto’ type would help address this challenge
 auto dst_view = subview( src_view , ...args );

 Let implementation choose a compatible view type

 Caution: user will not have a priori knowledge of this type
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Execution Policy : how functions are executed
pattern( Policy , Function );

 Execution policies (an extension point)
 RangePolicy<Space,ArgTag,IntegerType>( begin , end )

 TeamPolicy<Space,ArgTag>( #teams , #thread/team )

 TaskPolicy<...> : experimental for Kokkos/Qthreads LDRD

 TeamVectorPolicy<...> : experimental for hybrid thread-vector parallel

 Policies have defaults for all template arguments

 Function interface depends upon policy and pattern
 void operator()( ArgTag , Policy::member_type , ...args ) const ;

 void operator()( Policy::member_type , ...args ) const ; // ArgTag == void

 RangePolicy::member_type == IntegerType iteration space

 TeamPolicy::member_type has league-of-teams iteration space

 ...args depends upon pattern 
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Execution Policy : how functions are executed
pattern( Policy , Function );

 Example with defaults and C++11 lambda (near-future capability)
parallel_for( N , KOKKOS_LAMBDA( int i ) { /* function body */ } );

 Integral N “policy” → RangePolicy<DefaultExecutionSpace,void,int>(0,N)

 Call function in parallel with i = 0 .. N-1

 Example: parallel_for( TeamPolicy< Space > , Functor );
 void operator()( TeamPolicy<Space>::member_type member ) const ;

 league-of-teams-of-threads
 member.league_size() == number of teams

 member.league_rank() == which team is this within the league

 member.team_size() == number of threads within a team

 member.team_rank() == which thread is this within this team

 Threads within a team are guaranteed concurrent, may not be synchronous

 Intra-team collective operations: member.team_barrier(), 
member.team_reduce(...), member.team_scan(...)

 Intra-team shared scratch memory
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Parallel Patterns Function Interface

 parallel_for( Policy , F )
 void F::operator()( Policy::member_type ) const ; // no ...args

 parallel_reduce( Policy , F )
 void F::operator()( Policy::member_type , value_type & update ) const ;

 function contributes to reduction through ‘update’ argument

 parallel_scan( Policy , F )
void F::operator()( Policy::member_type, value_type & update, bool final ) const ;

 Parallel scan is a multi-pass operation

 Each pass must contribute the exactly the same to ‘update’

 if ( final ) then ‘update’ is the parallel prefix sum value

 Inter-thread reduction functions (have defaults) 
 functor::init( value_type & update ) const ; // new( & update ) value_type();

 functor::join( volatile value_type & update , 
volatile const value_type & in ) const ; // update += in ; 
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Why ArgTag in Policy< Space , ArgTag >

 Allow one functor to have multiple parallel work functions
 parallel_for( RangePolicy<Space,TagA>(0,N) , my_functor );

 calls: my_functor::operator()( const TagA & , int i );

 parallel_for( RangePolicy<Space,TagB>(0,N) , my_functor );

 calls: my_functor::operator()( const TagB & , int i );

 “ArgTag” because named member function cannot be used

 Motivations
 Algorithm (class) with multiple parallel passes using the same data 

 Work functions can share member data and member functions

 Common need in LAMMPS

 allow LAMMPS to remove clunky “wrapper functor” pattern
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TeamVectorPolicy ← highly experimental !

 Three level hierarchy of parallelism: league, team, vector

 Thread of vector lanes (experimental)
 Instructions applied lock-step in each lane

 Vector collective operations: reduce, single

 Team of threads (current capability)
 Each thread independently executes instructions in a shared function

 Team collective operations: barrier, reduce, scan

 Threads within a team share low-level resources

 hyperthreads, L1 cache, transient scratch memory, ...

 League of teams of threads (current capability)
 NO synchronization across teams

 Mapping onto GPU
 Vector lane = GPU thread

 Thread = GPU warp

 Team = GPU block
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TeamVectorPolicy ← highly experimental !

 Example using C++11 lambdas

typedef TeamVectorPolicy<Space>::member_type member_type ;

void operator()( const member_type & member ) const

{

// team collaboratively performs a parallel_for

member.team_par_for( N , [&]( const int j ) { // j = 0..N-1

double sum ;

// each “thread” performs a reduction in a vector loop

member.vector_par_reduce( M , [&]( const int k , double & val ){

val += /* contribute from each lane */ ;

}, sum );

// One vector lane of the thread performs an operation

member.vector_single([&]() { atomic_fetch_add(&global(),sum); } 

});

}
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Kokkos/Qthread LDRD: Task Parallelism

 TaskPolicy< Space > and Future< type , Space >
 Task policy object for a group of potentially concurrent tasks

TaskPolicy<> manager( ... ); // default Space

Future<type> fa = manager.spawn( functor_a ); // single-thread task

Future<type> fb = manager.spawn( functor_b ); // may be concurrent

 Tasks may be data parallel via data parallel pattern and policy

Future<>         fc = manager.foreach(RangePolicy(0,N)).spawn( functor_c ); 

Future<type> fd = manager.reduce(TeamPolicy(N,M)).spawn( functor_d );

wait( tm ); // Host can wait for all tasks to complete

 Destruction of task manager object waits for concurrent tasks to complete

 Task Manager : TaskPolicy< Space = Qthread >
 Defines a scope for a collection of potentially concurrent tasks

 Have configuration options for task management and scheduling

 Manage resources for scheduling queue
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Kokkos/Qthread LDRD: Task Parallelism

 Tasks may have execution dependences
 Start a task only after other tasks have completed

Future<> array_of_dep[ M ] = { /* futures for other tasks */ };

 Single threaded task:

Future<> fx = manager.spawn( functor_x , array_of_dep , M );

 Tasks and their dependences define a directed acyclic graph (dag)

 Challenge: A GPU task cannot ‘wait’ on dependences
 An executing GPU task cannot be suspended – waiting blocks a processor

 Other future light-weight core architecture may not be able to block as well

 A task may spawn nested tasks and need to wait for their completion

 Solution: ‘respawn’ the task with new dependences

manager.respawn( this , array_of_dep , M );

return ; // ‘this’ returns to be called after new dependences complete
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Conclusion : Kokkos Strategy

 Evolves from “pure research” to “production growth”
 Core abstractions and API stabilizes, as per today’s presentation

 Move core of Kokkos from Trilinos to github.com

 Tutorial Examples and Mini-Applications using Kokkos
 How to use Kokkos via examples

 How to design and implement thread-scalable algorithms via mini-apps

 SON Website: software.sandia.gov/drupal/kokkos

 Tpetra and LAMMPS are migrating

 Long Term Strategy: C++17 or C++21 instead of Kokkos
 ISO C++ Committee working to incorporate thread parallelism into standard

 I am a voting member on this committee (several week-long mtgs/year)

 Steer Kokkos and influence C++ standard → convergence


