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Seal Analysis

Source: Schlumberger (2010)

’ »» : . Pipe-type
Trap” — a geologic container bypass
 Sealing behavior s

» Concept of caprock depends on time scales

* “Seal bypass systems” (see Cartwright et al.,
2007)




Trapping Mechanisms

Cap Rock




Trapping Mechanisms

- IPCC, 2005
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Theoretical aspects of cap-rock and fault seal: N. L. Watts

CAP - ROCK

MEMBRANE

CONTROLLED BY
ENTRY PRESSURE
OF LARGEST
INTERCONNECTED
PORE THROAT.
SEAL THICKNESS
LARGELY IRRELEVANT
ONCE CAPILLARY
SLUG PINCH- OFF
LENGTH IS
EXCEEDED

HYDRAULIC

CAPILLARY ENTRY
PRESSURE ESSENTIALLY
INFINITE SUCH THAT
SEAL FAILURE OCCURS
BY DEVELOPMENT OF
NATURAL HYDRAULIC
FRACTURES,

SEAL CAPACITY
RELATED TO

a)CAP-ROCK THICKNESS

b) MINIMUM EFFECTIVE
STRESS IN CAP-ROCK

¢) DEGREE OF
OVERPRESSURE iN
THE SYSTEM

FAULT - RELATED

CONTROLLED BY ENTRY
PRESSURE OF LARGEST
INTERCONNECTED PORE
THROAT ACROSS THE
FAULT PLANE

SEALING FAULTS

sensu stricto

JUXTAPOSITION
FAULTS

FAULT ZONE
ITSELF SEALS.
SEAL MECHANISMS:

RESERVOIR SANDS
FAULTED AGAINST
LOW PERMEABILITY
UNIT WIiTH A

HIGH ENTRY
PRESSURE

a) CLAY SMEAR
b) CATACLASIS

c) DIAGENETIC
HEALING

HYDRODYNAMIC

CONTROLLED BY

EXCESS HYDRODYNAMIC
HEAD ABOVE ACCUMULATION,
HYDRCCARBON COLUMN
REACHES EQUILIBRIUM
WHEN HYDROCARBON
BUOYANCY PRESSURE
BALANCED BY

DOWNWARD HYDRODYNAMIC
FLOW FORCES.

(Watts, 1987)



Potential CO, Escape Routes

Injected CO, migrates up dip
maximizing dissolution &
residual CO, trapping
(IPPC, 2005)
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Traditional Caprock Analysis

Capillary properties

 Mechanical seal failure

Fault seal analysis

Identification of seal bypass systems
(Cartwright et al, 2007)

XRD

Kaolinite + Chlorite
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Interfacial Energy and Contact Angles
(Israelachvili, 2011)

g, ~ 90°

e - (Berg, 1975)
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Fracture Networks and Pathways

O Faulttipline

/ Leaky bed within seal

E Leaky bed offset by fault

Leak path

Trap

(Ingram and Urai, 1999)
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Quaternary alluvium ﬁ
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spring, geyser,
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Crystal Geyser erupts from
abandoned well. Modern
travertine develops on top of

fossil travertine (8'3C of ~ +5.1%o). —

13004
Groundwater recharged in

the San Rafael Monocline 1200
travels southeast to the
fault zone and is infiltrated

by the external CO5. 1100
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Chinle
Formation

. Incised fossil
Nev_v active travertine mound
spring has (ancient spring)
poorly
developed
travertine.
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COs-rich groundwaters

Separate phase CO> (8'*C = ~ -6.6%o ) moves
upward in fault-damage-zone fractures
through low-permeability formations.
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Summing Up Research Questions

What geologic conditions and pore network
characteristics contribute to the formation of high
quality sealing caprock for CO, storage?

What governs transport at specific sites: pore
networks or “seal bypass systems”? And how is this
effectively determined?



Multiscale Investigation of Sealing

Behavior
Tracers: Natural Helium
Well logs
Hand
N
S Sample/Core
_8 Optical
s Microscopy
=
BSE/EDS
TEM/FIB/SEM
Porosimetry Length (meters)

I I
10-% 10 10° 104 10 1 102 104

Nanoscale: Microscale: Mesoscale: Macroscale:
pore networks large pores and core, outcrop, Formation/
& surfaces microfractures  well logs, fractures reservoir



Microscopy: Pore Network Examination

Dual beam focused 1on beam/scanning electron

miCroscopy
Q Electron source
< V
%Q\* — — Accelerator
X ==/ == Scan coils
Lens
Sample

(Kotula, 2009)
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| ——— A ym—/—"— |
ETD|0.17 nA | 3.9 mm 35.1 52 7| 5.00 kV| FEI Helios NanoLab 600

Final serial section analyzed by transmission electron
microscopy with analysis of charaeteristic X-rays



Mercury Intrusion Porosimetry

Sample 1n bulb
1s intruded
directionally
by mercury

':-Ep Components |

T — = : | AN

4y ‘cos 9‘ (Sigal 2009)
d =
£,
. (y groundwater | air COS 6 groundwater / air )
groundwater [ air ~—  air | mercury ( )
yair | méfeury COS Gair / mercury



Incremental Hg saturation (%)

Depth Ranges of Samples
2837.94 - 2919.68 - Eau Claire Formation

2925.92 - 3003.71 - Mt. Simon Sandstone

Intrusion Pressure (psia)
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40 | | | | | | | | | | |
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Caprocks Examined for Pore Network
Properties and Sealing Characteristics
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Results: Mercury Intrusion Porosimetry
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'
# Breakthrough Pressure and Sequence

Stratigraphy

upper Kirtland Fm Verban

Facies RM so,-,k)gf/%d e
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Results

Gothic
shale
example of
FIB/SEM
serial and
3D
analysis
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Results

Marine
Tuscaloosa
Group
example of
FIB/SEM
serial and
3D analysis

0.47% porosity

National
Laboratories




Results

Marine
Tuscaloosa
Group
example of
FIB/SEM
serial and
3D analysis

@ Sandia
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0.575% porosity

organic phase vol. fraction 85.01%




Results: Examination of Pore-lining Phases




Major Findings and Conclusions

* Primary depositional environmental and current
depth of burial strongly control pore network
sealing quality, which generally increases from
proximal to distal.

* Pore-lining phases are not directly indicated by
XRD, and more measurements on wettability for
caprock solid phases are needed.

* Deeper seals may have poorer capillary sealing if
muscovite-like wetting dominates.



Main Questions, Research Objectives

1. What geologic conditions and pore network
characteristics contribute to the formation of
high quality sealing caprock for CO, storage?

2. What governs transport at specific sites:
pore networks or “seal bypass systems”?
And how is this effectively determined?



Albuquerque
I Extension fractures L

' Basin margin impingement
-

Lateral escape (Chambedin and
0 20 mi Anderson, 1989)
27



Coarsening upward
sequence i
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Potential Seal Bypass Features

Depth (ft) Lith. Formation Core Fractures FMI Fractures
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® [} 4ol i)
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Upper Kirtland
Depth 626.760-627.111 m
(2056.30-2057.45 ft)
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Depth (m)

Results: Noble Gas Data
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—A— “"Nepyn2/"Nerun1 Bounds for ASW —s— Closed system partitioning
(ccSTP/PV)

SHe/*He ratios normalized by *He/*He of
atmosphere (R/Ra) range ffrom 0.12 to 0.16



Major Findings and Conclusions

 Abundant seal bypass features exist within the
Kirtland Formation; but helium data does not
support a seal bypass system.



Research Needs

* Relative role of CO2 and/or brine through natural versus man-
made seal bypass

 Rates of CO2 leakage through (sub-seismic) fractures and
fracture networks

 Leakage metrics for local and global situations — extensive versus
Intensive metrics

* Dynamic controls on fracture-related transport of CO2 and/or
brine

*Surface and intermolecular-related forces
. . (from Heath et al., 2013,
need to be included in caprock COMPRES meeting)
assessment "
*Dry-out processes — CO, will be
injected as an anhydrous phase
*Wettability data for typical caprock
phases
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Discussion:

Dealing with Uncertinaty

*Large-scale injection tests
*Risk and performance assessment



Methods

1. Geostatistics:

Coregionalization and SGSIM
(Rautman and McKenna, 1997;
Deutsch and Journel 1992)

r2= 0.25 or 0.75

Log ] 0[k (md)], Realization No. 1

10000
15000

X Coordinate

10000
5000

Z Coordinate

(from Heath et al., 2012, NETL presentation)

2. Multiphase Flow:
TOUGH2-ECO2N

15000 5
4
10000
2
0
5000
-2
-4
%

Iog10 [Permeability (md)]

0 005 01 015 02
Porosity

[(pw) Aujigeawsad]®*3o
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Methods: Base Cases rime-3sdas

Injection and Extraction Press. (Mpa) Injection only

2.83e7

1.44e7

16 km 16 km

* Permeability = 29.7 md; porosity = 11.1 % (Finley, 2005)
* CO, injection with or without brine extraction

* Maximize flow rates: constant pressure at wells

* Closed reservoir

* Homogenous and heterogeneous cases



Heterogeneous Example

Time = 6 years Press. (MPa)
2.83e7
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CO2 injection rate, kg/s
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Extreme variation in injection
rate for a set of simulations

Heterogeneous cases display a
range of behaviors

30 geostatistical
realizations
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