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The Z facility, which combines the worlds largest pulsed A lﬁgg'}gﬁ'?].
power machine with a high power laser, enables MagLIF? P

Z can generate high magnetic pressures to drive
cyllndrlcal implosions

Metal (beryllium) Laser
Cylindrical Liner preheated
fuel

6 -4 X 0/2 4 6

field coils

Z-Beamlet provides fuel preheat




MagLIF combines three complementary design ;) i,
elements Laboratories

2D simulations indicate MagLIF
could produce 100 kJ on Z at full
Marx charge

» 30 Tesla initial magnetic field

« Laser heating of ~ 2 mg/cm? fuel
produces initial ~250 eV plasma

« Thick (AR=R,/AR=6) Be liner with
R,=2.7, h=10 mm, peak velocity
~100 km/s for a 27 MA peak
current drive

Magnetization Heating Compression

+ Key target design elements
— Magnetization
— Laser heating
— Liner compression

At stagnation:
 Efuel ~120 kJ
« Ti~8 keV
« densityis ~ 0.5 g/cm?
« Bz>100 MG

Similar predictions are obtained using multiple codes



We have obtained promising initial

experimental results? with MagLIF

Data were collected that show a <150
um diameter, ~3 keV, highly
magnetized plasma

We achieved DD yields up to 2x1012
in our first integrated tests

+ at less than maximum current (I < 20 MA)
* low preheat energy (< 1kJ)

We are continuing to build on these
results with a balanced combination
of focused and integrated experiments

In parallel we are working toward
improved understanding of MagLIF
performance scaling with increasing
drive parameters

4

Temp [keV]
N w

—

Sandia
National
Laboratories

I DD yicld
W DT yield

-| I lon Temp

Electron Temp

22465

1 72629 B i

22591 BL

0 1
10 12

14

16 18

Neutron Energy [MeV] 4



MagLIF could in principle provide high 7
yield and gain’ on future accelerators

Laboratories

L b
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Advanced machines could deliver large currents to MagLIF Sani

e.g. conceptual designs? Z300 and Z800 L=
PLroe = 315-870 TW Vg = 7.6-16 MV loag = 47-61 MA diameter = 35-55 m
ELTDS =47-130 MJ L = 16-25 nH Timplosion =133 ns

vacuum

magnetically
insulated
transmission
vacuum- lines (MITLS)
insulator stack

linear-transformer-driver

(LTD) modules (90 total) water-insulated radial-transmission-line

impedance transformers




Large preheat energies (~ 30 kJ) are needed for high (i oo
yield MagLIF targets

» Optimal initial fuel densities >= 6 mg/cc
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Simple analytic theory predicts the laser penetration can )
be controlled by the beam radius and laser wavelength

Laboratories

The laser energy needs to be deposited into the fuel in roughly z; =1 cm

Laser absorption coefficient dominated by inverse Bremsstrahlung
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Hydrodynamics, refraction and LPI make this process more complicated

A short wavelength laser (A ~ 0.25-0.33 n) could be used to penetrate the
initially high density DT without excessive LPI, thus forming a low
density channel

A second pulse of longer wavelength light (A = 0.5-1 u) could then
propagate down this channel and efficiently deposit its energy



Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc
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3 kJ of 0.25 um light




Simulation of a laser heating experiment depositing 30
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Simulation of a laser heating experiment depositing 30
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Simulation of a laser heating experiment depositing 30
kd in 1 cm of DT at 12 mg/cc

NMaterials/density kg/m3
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Simulation of a laser heating experiment depositing 30 = Santia
kJ in 1 cm of DT at 12 mg/cc Laboratores
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Simulation of a laser heating experiment depositing 30 = Santia
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Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc

NMaterials/density kg/m3
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Simulation of a laser heating experiment depositing 30 = Santia
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Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc

Materials/density kg/m3
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Simulation of a laser heating experiment depositing 30 = Santia
kJ in 1 cm of DT at 12 mg/cc Laboratores
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Simulation of a laser heating experiment depositing 30 = Santia
kJ in 1 cm of DT at 12 mg/cc laboatoies
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Simulation of a laser heating experiment depositing 30 = Santia
kJ in 1 cm of DT at 12 mg/cc Laboratores
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Simulation of a laser heating experiment depositing 30
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Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc
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Simulation of a laser heating experiment depositing 30
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Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc

Materials/density kg/m3
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Simulation of a laser heating experiment depositing 30
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Materials/density kg/m3

100

10

100

10
1

oO.1

%

%
%

Sandia
'I'l National

Laboratories

Energy deposition phase:
30 kJ of 1.0 um light




Simulation of a laser heating experiment depositing 30
kd in 1 cm of DT at 12 mg/cc

Materials/density kg/m3
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Simulation of a laser heating experiment depositing 30

kd in 1 cm of DT at 12 mg/cc
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Large laser preheat energies (~30 kJ)

are desirable for future MagLIF )

Laboratories

Lasnex and Hydra simulations indicate that high gain and yields may be
possible with MagLIF on a future accelerator, but substantial preheat
energies are required

Analytic theory and simulations indicate that 30 kJ of laser light can be
efficiently deposited within 1 cm of DT at densities appropriate for high
yield MagLIF

Refraction, filamentation and LPI could pose problems. Consequently:

 We are now studying laser preheating with both Z Beamlet and
Omega

- Before a future pulsed power machine is seriously considered, full
scale laser deposition experiments could be performed using one
quad of the NIF




