

High Aspect Ratio 'Infinitely' Long Gold Gratings

Edward Chakmakian, C. L. Arrington, A. L. Young, A. E. Hollowell
 Correspondence: aehollo@sandia.gov (505) 844-8301
 Sandia National Laboratories, Albuquerque, NM 87123, USA

SAND2014-19115D

Electrochemical Deposition (ECD) offers unique capabilities for new device creation where traditional CMOS is unable to compare. Due to the nature of precise additive processing, as opposed to blanket material deposition, ECD is not hindered by line of sight constraints and keyhole effects inherent in traditional CMOS processes. Additionally, utilizing mold construction methods such as UV lithography, x-ray lithography, and Deep Reactive Ion Etching (DRIE), metal gratings can be realized at high aspect ratios for unique and complex device realization. In this work we've combined ECD with unique templates to realize high aspect ratio (as high as 50:1) gold gratings that up to 4 inches in length Metalmicromachining.sandia.gov

Metal Micromachining Team (MMT) Lithography Lab

- Hot Plate
- Wet Bench
- Resist Spinner
- Alignment Tool
- Vacuum Oven
- Microscopy

MMT Plating Tank Array

MMT Class 100 Clean Room

Electroformed 3D Au Stylus Ion Trap

LIGA

- Ultra thick PR techniques
- Class 100 cleanroom in house
- Access to Sandia Micro Fab Facility & MESA

MMT Electroplating/Electroforming Lab

- Hard Gold
- Soft Gold
- Nickel Sulfate
- Copper Sulfate
- Electroless Nickel
- Custom Solutions

MMT Adaptable Plating Tanks

Custom PVDF Fitting Design

Reduction

Au²⁺

Electrodeposition

Viton seal

1" square TSV die

Die locator

Cu foil contact

Compliant Viton

Substrate

TX10 wheel (15-6 μ m slurry)

Sn/Sb Polishing wheel (0.1-1.0 μ m slurry)

Cu comp. wheel (6-3 μ m slurry)

Au Formed Spiral Coil

MMT Chemical Mechanical Planarization Lab

- Precision lapping, planarization and polishing capability
- Varying wheel composition to accommodate various material removal needs
- Controlled wafer, optics and device thinning
- Vacuum fixtures for 4 - 6 inch wafers
- Custom mounting fixtures to secure a multitude of devices

Fe comp. wheel (15-6 μ m slurry)

TX10 wheel (0.1-1.0 μ m slurry)

Sn/Sb Polishing wheel (0.5-1.0 μ m slurry)

Cu comp. wheel (6-3 μ m slurry)

Au Formed Spiral Coil

Enabling Technology for Phase Contrast Imaging

- **Source Grating**: Enables use of conventional x-ray source in the lab
- **Phase Grating**: Modulates the phase of the wavefront to form an interference pattern
- **Analyzer Grating**: Converts the interference pattern of the x-rays to an intensity signal that can be recorded with a detector

Image Courtesy of Erin Miller PNNL

Benefits of XPCI

- No need for a synchrotron
- Higher resolution imaging than absorption based imaging
- Simplified optical arrangement
- Wide Area Imaging

Greater than 25:1 Aspect Ratio Gratings Needed to Increase Absorption and Phase Contrast

LIGA Process

X-Rays

X-Ray Gold Patterned Mask

Silicon

CVD Tungsten with Parylene Coating

50:1 DRIE Si Gratings

50:1 DRIE Si Gratings

100,000:1 Length:Width Ratio!

6 in. diameter

Optimization of the Au Electroplating Process

DC

AC

3 μ m

26 μ m

Electroformed Gold

IB Cut SEM of Tailored Au Pulse Plating

Max (bulk) Ion Concentration

Severely depleted region

50:1 Multi-Point Contact Fixture for Scaling

Coupon Size -2cm² 50:1 Au Gratings

Full Wafer Gratings Plating

Realizing 16 in.² Grating Area

- Multiple electrical contacts
- Improved chemical flow
- Vibrating sample fixture
- Improved pulse plating regime

4 inch long 1 μ m wide Au gratings

100,000:1 Length:Width Ratio!

Au Source Gratings via UV Photoresist Trench Filling

KMPR Negative Photoresist

50XT Positive Photoresist

50 μ m Thick Au Cross Section

65 μ m Thick Au Cross Section

6 inch Wafer with Various Source Grating Sizes

Sandia National Laboratories