
The image part with relationship ID rId9 was not found in  
the file.

Slide 1 of 31

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed 
Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. 

Photos placed in horizontal position 
with even amount of white space

between photos and header

RCIC Operation in Fukushima Accidents as 
Modeled by MELCOR and Proposed Testing

R.O. Gauntt - Sandia National Laboratories
Presented at the BWR Owners Group General Meeting

Key West, Florida
October 7-8, 2014

SAND2014-18746C



The image part with relationship ID rId9 was not found in  
the file.

Slide 2 of 31

Topics for discussion
 Background

 Key observations from Forensics Analyses of 
Fukushima Accidents

 Modeling RCIC water ingestion and 
equipment functioning in real-world accidents

 Proposed path forward
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 Sandia commissioned by 
DOE to conduct forensics 
analyses of Fukushima 
accidents using MELCOR 
severe accident analysis 
code

 Comparison to pre-
Fukushima analyses of 
SBO in Peach Bottom 
strikingly similar

 However, important 
differences observed in 
key areas
 RCIC in particular
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MELCOR Analysis of Fukushima Unit 1

 Prior to tsunami and loss of AC/DC

 Isolation condensers cooling 
reactor

 First two IC’s then one

 Exceeding cooldown rate of 
100F/hr – too conservative?

 SBO at ~1 hour due to tsunami

 Loss of control of functioning 
IC’s

 IC return valve closed

 Loss of decay heat removal

 Core damage at ~4 hours

 MSL rupture at ~ 6.5 hours

 Or SRV gasket failure

 Core slumping by ~8 hours

 Lower head failure ~12.5 hours 
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Fukushima Lessons Learned: Unit 1

 Isolation condenser was functioning and cooling reactor
 Operators were cycling IC on and off to avoid cooldown rate 

exceeding 100 F/hr

 IC “caught “ in off-position when tsunami flooding disabled DC power

 Tech Spec cooldown of 100F/hr may be over-conservative – should be 
re-evaluated

 Unit 1 accident could perhaps have been avoided had IC been 
operating
 Operators would have to refill IC secondary HX shell

 Potential Industry Response
 Relax cooldown limits to preserve essential cooling capability (keep IC 

operating) – needs evaluation

 Make IC easier to actuate with loss of power
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MELCOR Analysis of Unit 3
 Unit 3 maintained DC power

 Active control of RCIC

 RCIC starts level control – runs 21 hours

 Beyond most current SBO coping 
times

 RCIC shuts down automatically on high 
turbine exhaust pressure

 Automatic system protection 

 Otherwise functioning injection 
system cannot be restarted

 HPCI is started

 System run continuously using test 
line to recirculate water and avoid  
cycling HPCI on/off

 Deep depressurization of RPV results

 After 28 hours HPCI injection is 
ineffective

 HPCI stops after ~35 hours

 Core damage underway prior to system 
depressurization

 Unit 3 probably worst damaged of units
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Fukushima Lessons Learned: Unit 3
 RCIC and HPCI were both operational due to DC availability

 RCIC ran for 21 hours before shutting down on high turbine exhaust 
signal

 RCIC and HPCI have numerous automated shutdown criteria to protect 
turbine and pump

 HPCI started up but created such extreme RPV depressurization that 
HPCI pump was not injecting water

 Core uncovering and early damage occurring as HPCI manually stopped

 Core damage could perhaps have been prevented had RCIC not 
automatically shut itself down

 Possible Industry Response
 Disable some auto shutdown features in extended ELAP to keep critical 

equipment operating

 Better understand operational capabilities of RCIC/HPCI under deyond
design basis circumstances
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MELCOR Analysis of Unit 2 RCIC
 First 45 minutes RCIC operates normally

 Arrival of tsunami results in loss of AC/DC 
power
 RCIC runs uncontrolled (full open)

 RPV pressure drops until water level reached 
main steam line (MSL) 

 Water carryover into RCIC turbine degrades 
performance and RPV heats up

 RCIC operates in self-regulating cyclic 
mode thereafter
 RPV water level maintained near MSL with cyclic 

water ingestion and subsequent clearing

 MELCOR model was developed to account 
for water ingestion

 Long term pressure trends captured

 RCIC runs for nearly three days

 Eventual shutdown thought due to turbine 
over-speed
 Pump cavitation?

8

switch from 
CST to torus
switch from 
CST to torus

RCIC stopsRCIC stops
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Fukushima Lessons Learned: Unit 2
 RCIC operating at time of loss of power and continued to operate

 Turbine governor opens fully

 Electrical shutdown interlocks non-functional due to loss of DC: especially high 
RPV water level shutdown

 Water level rose to top of steam lines by 1.5 hours producing liquid water 
ingestion by RCIC turbine

 RCIC ran for 72 hours running in uncontrolled mode

 Water carryover did not shut down turbine

 That’s because the Terry Turbine design is really robust

 RCIC termination likely by cavitation-induced over-speed trip

 Suppression pool saturation may have eventually led to pump cavitation and 
turbine over-speed trip (Mizokami 2013 TEPCO)

 System protection interlocks were defeated by loss of DC allowing 
RCIC to remain in service
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Observations
 RCIC system ubiquitous at BWR installations world-wide

 And widely used in PWR Aux Feed systems

 RCIC system more robust than previously credited
 PRA and safety studies assume RCIC failure with loss of batteries after 

4 to 8 hours – coping times short

 Post-Fukushima NRC Rulemaking will require extension of 
coping time considerably

 Existing RCIC system seems capable of extended operation 
even with loss of DC control

 Demonstrating extended RCIC operation under ELAP 
conditions can bridge gap between current coping times and 
FLEX implementation by 24 hours

 Propose full scale testing to demonstrate technical basis for 
extended RCIC operation
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Power Requirements for Full Scale 
Testing

 Normal RCIC energy 
requirements in MW range

 500 hp typical pump power

 Energy draw with water 
ingestion is considerably 
larger

 Larger specific enthalpy of 
water carryover

 Steam/water system required 
to demonstrate operation 
under water ingestion is 
roughly decay heat levels

 20 to 30 MW

switch from 
CST to torus
switch from 

CST to torus
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Conceptual Design for General Test 
Facility – 30MW Boiler

 Considers wide range 
of testing capability

 Turbine

 Pump

 WW

 SRV

 Simpler design can be 
made for RCIC only

 MELCOR model to be 
developed

 30 MW facility under 
consideration
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Objectives of RCIC Testing
(and other critical systems and components)

 Confirm self-regulating operational mode of RCIC
 Early testing of RCIC response to “water slug” suggests RCIC not 

damaged

 Operational characteristics need to be demonstrated

 Effect of liquid water fraction in steam flow

 Long-term RCIC operation needs to be demonstrated

 Potential scope of investigations
 Operating pressure and water carry-over fraction

 Pump head versus water carryover

 Turbine speed and pump effectiveness (flow and head)

 Potential response of interlocks in self-regulating mode

 Response to turbine exhaust pressure and other environmental 
conditions
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Potential Participants

 Department of Energy

 Industry and Owners Groups 

 EPRI

 International – Japan Institute of Applied Energy/TEPCO

 SNL performing scoping studies on RCIC model development, 
Costs and Requirements
 Facilities – existing or new ?, will assess situation.

 FY-15  initial DOE funds ($250K) for model/design development and 
test protocol

 FY-16 to 19 TBD



The image part with relationship ID rId9 was not found in  
the file.

Slide 15 of 31

Summary
 Fukushima analyses have revealed deep insights into real-

world operation of critical systems
 Currently too conservative assumptions of operational capabilities

 Capable cooling systems disabled by:
 loss of DC (IC control in Unit 1)

 Shutdown interlocks (availability of DC caused shutdown of Unit 3 
RCIC)

 Long term operability of RCIC under water ingestion conditions 
suggested by Unit 2 due to loss of DC

 RCIC system can potentially bridge gap between current 
coping times and FLEX implementation
 Full scale testing can confirm technical basis

 Analogous benefit likely for turbine-driven Aux feed in PWR’s


