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=X 4 Microsystems
% Perceptron Based Neural Nets

* Perceptron is the simplest model of a neuron

* Feed forward network

» Single node can learn linearly separable logic functions

» Applications: Hidden
— Field programmable gate arrays Input
— Pattern recognition -
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Perceptron Network (Simplified)

— Epoch training loop '
— Dataset loop '

Apply pattern j
out of N
A
Evaluate nodes'
A

Adjust weights
n

@ patte
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Validate training
t epoch unless trained
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Memron

* Requires 3 Memrons to learn XOR:
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Mhy Do We Need an HW Accelerator?

Science, Technology & Components

* Use simulation results for similar algorithm as example
« Significant power savings using a memristor-based HW

accelerator :

* 16X reduction in power over SRAM ASIC

* 6x reduction in chip area over SRAM ASIC
— Equivalent to 6x improvement in performance/area

Example 1: 25.600 neurons

100,000 iterations/'s

Chip Power

# of area % Power eff. over

Configuration ' ) active Xeon
Memristor Analog (config 4) 1 5.9 38.6% 0.07 234,859
Memristor Digital (config 5) 1 18.2 89.6% 0.62 16,968
SRAM (contig 6) 1 20.1 89.6% 1.13 8.215
NVIDIA M2070 12 5290 99.2%  2700.00 6
Intel Xeon X5650 179 240.0 999% 17005.00 1

T. Taha, R. Hasan, C. Yakopic, M. McLean, in Proc. IEEE Intl. Joint Conf. on Neural Networks, 2013.
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Perceptron Network ms){ O=fWI) o
A=f'(WI)-E
= + T
« Compute output O based on input I, weight matrix W, D- W YV ?AI - E
and squashing function f(). D=W'A
» Delta-rule: Update W based on the outer product of | .
and the partial derivative A, scaled by learning rate a.
» Back-propagation: Allocate error on outputs (E) to error
on inputs (D) by passing partial derivatives back ®
through W.
« Training: Feed a bunch of (I,T) pairs, until convergence. e
l l f(x)=1/(1+exp(-x))
1 —> 0
W1 W1
< < T-0
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} ReRAM-Neural Hardware Simulation

* Purely in software

« Uses data table to emulate each memristor

Science, Technology & Components

 Replaces MLP block with a crossbar and some hypothetical

surrounding circuitry.

« Values passed between blocks in floating point.

- Converted internally to voltages via V. (at present simply 1).
* Weights mapped to numbers via R,;,.=4,000 and R, ,=40,000.

.« R=1/(W/R,,+1/R,...)

!

!

Vscale

| R b B v,
7 &

& | |& >

v

scale

7y

I*Rout/ Vscale

R

—%O

< T-0
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A Mictosystems
ﬂ'rformance of various network structures

* Train conventional perceptron.
« Convert weight matrix directly to memristor values.
 Test on MNIST handwriting dataset, with and without model noise.

MMNAKHIONANEER

Conventional (CPU) Fixed bias resistors ~ Bias memristor per element

EEE FOA B e & & ¢
W E e > A o o P >
s & |¢& > s ¥ ¥ ¥
. . O T T >
96% 88% with noise 69% with noise
96% noise-free 96% noise-free

Why? — Each memristor introduces more noise, so fixed- @ Sandia

. . National
bias network is more accurate. Lahoratories



' Microsystems
Science, Technglogy & Components

Empirical memristor model

* Represented by a lookup table

* Binned 10M-sample data (100 Q x 0.1 V bins)

» Table contains AQ values

» Standard deviation of each cell used to simulate noise.
* Chart on left is slice through 4KQ

* Flat between -1.6V and 1.6V

N
o

-
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Post Pulse Resistance (kOhms)
()

oo
¥

2
Random Pulse Height (Volts) 4 3 Pre Pulse Resistance (kOhms)



= A 4 Microsystems
} Empirical memristor model

* Backpropagation training
dW = aElI" where E is error vector and / is input

Update each row separately so column values can be set
appropriately for given error value.

Test on handwritten digit recognition (MNIST dataset).
Accuracy = 91.8% (classic methods reach 99.9%)

— E
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R
R
R R

@ Sandia
National
Laboratories



A Microsystems
} Representing Weight As Resistance

Relationship of weight to resistance: W = R,; (% — - )
bias

Sensitivity of weight to resistance (with Ra=Rb+R’):

OW'=Wa—Wb=Rout(1 1)_R0ut(1 1)

Ra Rbias Rb RbiaS

_p 1 1
— Nout Rb_l_R/ R,

_R’
=R
out <Rb (Rp + R')>
2.5

2
Example: . /

Rbias = 4kQ ’

Roit  =40kQ Wi //
Ry = Rypias 0.5

R’ =100Q

W’ = 0.244 0 500 1000 = Sandia
. G_h National
R Laboratories
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Sensitivity of Error to Resistance:

* Let WI be close to 0, so f/(WI)=0.25 (derivative of sigmoid
function)

 Let I=1 (for simplicity)

* a=0.01

« W=aAl=0.01*0.25*E*1

- E=EW’/0.0025=0.244/0.0025=97.6 (with R’=100Q as on
previous slide)

* That is, at typical values, the smallest error achievable is 2
orders of magnitude larger than typical output range for an
MLP neural network!
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* Development of a CMOS/ReRAM Process

» Characterization of Device Behavior

* Modeling the Source of Intradevice Variation
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Resistive.Random Access Memory

Metallization Bridge Bipolar Filamentary
Ve V+rE
Agtt_)r Cu :Iea;:ti\;e Ani o? Ohmic Electrode
cations. ectrode nions J
\ SRl
Electrolyte 3 i
. ol i
ol Metal Oxide {
Vacancies —| .
Inert Electrode V. Active Electrode
L Vo) L
» Switching: Electrochemical formation « Switching: Valence change and
and dissolution of Ag or Cu filament migration of oxygen vacancies
« Cation motion (Ag or Cu) + Anion motion (O7)
« Chalcogenide or oxide insulating layer « HfO,, TaO, most common insulators
« Switching depends on E-field direction « Switching depends on E-field direction
« RMW current independent of device area « RIW current independent of device area
Metal Oxide: Metal Oxide:
Unipolar Filamentary Bipolar Non-Filamentary
Ve Ve
Reduced | |pert Electrode _ .| Inert Electrode
Metal _| Anions (07)~__
| lati MOC®.®®®.®®®®.®®.--.®
Metal Oxide < b nsulating
T Perovskite MO {_
) /
Vacancies |
Inert Electrode Inert Electrode
. L
+ Switching: Thermochemical change in « Switching: Oxygen exchange causes Schottky
oxide valence state barrier height change at interface
« Anion motion (0%) « Anion motion (0%) .
+ Symmetric structure ) « Perovskite and insulating metal oxide Sandia
* NiO, most common material ~ «Switching depends on E-field direction National .
» Switching independent of E-field direction . RAW currents depend on device area Laboratories

+« R/'W current independent of device area



# Valence Change ReRAM

- “Hysteresis loop” is simple method to visualize operation
— (real operation through positive and negative pulses)

» Resistance Change Effect (polarities depend on device):
— Positive voltage/electric field: low R — O-2 anions leave oxide
— Negative voltage/electric field: high R — O2anions return

« Common switching materials: TaO,, HfO,, TiO,, ZnO

V1 Current

T A
O? ani
Pt anions
/exchange
Ta (50-100 nm)< / o VReseT
switching —
o _~~channel C
ok )
TaO, (5-30 nm) 00%% ____(+) charged
vacancies
Pt -l
RESET

T Sandia
National
Laboratories
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A

Memristors + CMOS

» Sandia CMOS7 Process - ~ -
- 3.3V, 350 nm, , vop e, A

MOSFETs N VA LR W A WS
— SOl substrate

 Baseline for memri
integration

S W ™74

Gy v

wor

e
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Process Flow

1. Deposit Bottom Metal (Al) 3. Etch via holes in USG 6. Deposit bit stack
2. Deposit USG 4. Deposit W and TiN layers (layers enlarged for clarity)
5.CMP

0.35 - 0.5 ym bottom vias

# o] | #
2 { USG 3-5 { w w

1 Al Metal Al Metal Al Metal
SiO; . -+ SiO; =+ SiO;

7. Etch bits 8. Deposit top USG 10. Deposit top Al
9. Etch top via holes in USG

0.35 - 1.5 pym top vias

| e Al (700 nm)
0.75 - 1.5 pm bits 10
je—| |—] 8-9 { »
7 { — — £ = £ —
W w W W
Al Metal Al Metal Al Metal _
= Si0, = = Si0, = = Si0, —onda
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Final Structure

Important to have extremely flat
surface under bit

Polished TiN Surface

s R R

A e ~

. i .
obstybetiesiol Ll Sl S R ot b =200 kY Mag=23329K X StageatT= 0.0° WD= 20
det | curr WD mag O | HFW HV — 500 nm ——

TLD |86 pA| 4.0 mm |99 986 x|2.56 um |52 ° | 5.00 kV @ Sandia

National
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2.8 -
Beyond Stoichior ... -
* Goal: Assess properties that _p
make a “good” memristor B, 4
i
- Stoichiometry doesn’t tell the & 4
entire story L I :
* Deconvolving XPS spectra -
provides Ta valence makeup o -
0 1 2 3 4 5 6 7
Wafer Number
F__-m 100 1.4
;335 50 s | === (24) [ [{0}+[1+]]
b 80 -=-(34) / [(0)}+(14]]
§3u- - E‘}' 1 |~ (4+) / [(O}+(1+]]
a® 60  T,s
% 20 1‘; e % .
§ 15 —~Tadt| | 0  §
E'm {’ /;\ mcmicid s ?—'m
S 1‘ N 20
5 f‘j = e W 0w
" o E’ — £ . 0 0 4
0 1 Fi 3 4 5 [ 7 1] 1 2 3 4 5 1 7
Wafer Number Wafer Mumber B

Brumbach et al, JVST 2014 @ Sk
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XPS: Properties of a Switching TMO

e

|

#1

|

#2

H #3

|||||||||||||||||||

. (@)
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Forming Process

* Roughly depends on film thickness (still varies)
* Macroscopic (wafer scale) and nanoscopic variations in

12.0p |
10.0p
<L 5.0
wd
c
2 6.0
5
¢ 4.0y
2.0p
0.0
10/12/2014

thickness
Forming
—v— 8 nm
[—+— 10 nm (a) ' ' ' ]
| —<4— 10 nm (b)
—— 12 nm

Voltage (V)

Current (A)

o o A N
© © o o
3 3 3 3

Switching

o
(=)
—

—=— 8 nm
—v— 10 nm
—a— 12 nm

1
N

Voltage (V) @ ﬁgrtuigil?al
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“Hot Spot” Formation

200nm
oo

- 3

L00nm o = .

T o
" e,




# Hot Spot Evolution

C-AFM Current Map Movie (2D) C-AFM Current Map Movie (3D)

Vtip = 1500 mV

Sandia
National
10/12/2014 Laboratories



} Topography versus Conductivity

* Prominent hot spot appears to depend on geometry

* Other hot spots do not necessarily correlate with geometric
defect

Cu rrent

_Jn_;" - :
R : -

Sandia
National
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Hot Spot Density vs Thickness

Thlckness 80A Thickness: 100 A Thickness: 120 A

Current Maps

200nm

Flood Analysis
Area <-0.5nA

200nm ' 200nm 200nm
[ Tl T L

Sample Voltage: -3.5V
Same tip used for all imaging
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A 4

Basic Device Performance

» Typical devices form at very low currents
« Appear “forming free” in current sweep mode
* Do not need a high voltage transistor!!
— Unlike flash/SONOS
« Can be tailored by stoichiometry

Current (mA)

6 T T T T T T T T

4 | ——Virgin
—— First Loop

On switching;

20 -15 -1.0 05 00

Voltage (V)

0.5

1.0

Sandia
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Outline

 Neuromorphic Computing with ReRAM

* Development of a CMOS/ReRAM Process

» Characterization of Device Behavior

* Modeling the Source of Intradevice Variation
e Conclusion and Future Work
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Variability

» Between different devices
— Manufac
» Cycle to cycle
— Fundamental physical attribute

—&— \/irgin Film

| e First RESET Requires forming

—=— Post Forming (SET) 100 —
100 |
- B /...I,," 80
80 L = /
— » ! —_
4 s ) i
< 6ot f S 60
Qo i ! =)
O 40+ Forming free ; 3 i
20} % : 20}
0 - e T D .......li/\.':,i':......l pbpl i el i gl sl
0 1 1 1 1 1 1 1 1
100 1k 10k 100k 1M 10M 100M 16 600.00 900.00 1200.00 1500.00 1800.00

Sandia
National
Laboratories

Resistance (Q) Off State Resistance (R,,) @
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=K Microsystems
} Set and Reset Transition

. .0k
* Repeated pulsing can gradually | 1
. —a— Rese
change resistance _ —o—Set

— SET transition more abrupt S
8 |
c
S y
7 —.— N ~g—"
@ 1.0k -X{ / >
12

500. 0 O—o—o-o—0—0—0—.—0—0—0—0—0
0.0 " | " 1 : 1 "
0 5 10 15 20

Pulse Number

@ Sandia
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#.ransitions to Varying Resistance Levels

100k

* Resistance level can begin to
saturate for different voltage
levels

— Repeated pulsing may
change resistance very
gradually

— Transitions occur from
multiple starting
resistance values

* Resistance usually falls into
a typical band within the first
three pulses

Science, Technology & Components

<)

. 10k5-4

(8) [

: L

o [ ]
) | J
i)

0 1k — 5
& Vpulse ]
100 1 N 1 N | N

0 5 10 15 20
Pulse Number

100k
<)
Y 10k
o
c
o -
e
8]
0 1k
@
(14

100

0 5 10 15 20 sandia

\lational

Pulse Number e



\

« Continues pulsing until a

threshold resistance
value is passed

— Allows for tighter
resistance values

— Helps with initial
characterization of
parts to determine
ideal pulse heights

—=—LRS

20 }
o 1

100 1k 10k 100k

Resistance (Q)

20.0k

Resistance (Q)
S o
o (=]
P k)

o
=)
=4

0.0

Voltage (V)

Closed Loop Cycling

Science, Technology & Components

200 300 400 500
Pulse Number

T 1y T T T T T
~.~'/.'Q.. o 0 .'C.Q|

—e— Set -
—u— Reset

o TN

a—n
—8

40 60 80 100 ﬁgrtllgll?al

Pulse Number Laboratories



A
} Open Loop Cycling (Set)

» Based off the closed loops
tests, a value of 1 V is used
for an open loop test of the
Set function

e The CPD for the LRS state
has a larger spread of
resistance values

Science, Technology & Components

25.0k —————r——————r———7——1———7—+—1——7—
I —u— Reset
—~20.0k | [—o— Set
g n L} 1 [ ] n
@ 15.0k I -/\ "
(X} . n .l\ }\ | ]
& [ .K\/'\-f'\' m e
€  [endenerin R e
D 10.0k [=ak T w Tt WA, T
0
8 I ]
x 5.0k J
[ ]
0 T it ]
0 10 20 30 40 50 60 70 80 90 100
Pulse Number
100F ks
r —a— | RS
80}
’\o\ L
< 60t
a I
a
QO 40
20 |
0 N N e .
100 1k 10k 100kndia
tional

Resistance (Q)
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* For the reset open loop, a
value of -2 V was used

— More spread and lower
resistances than the
closed loop

* Feedback from closed loop
tests can continue to
improve open loop results

15.0k

10.0k

5.0k

Resistance (Q2)

0.0

100 |- —e— HRS ]
—a— RS
80 -
3 I
< 60t i
()] I
(2
QO 40+ -
20 + -
100 1k 10k 100k

Science, Technology & Components

Open Loops Cycling (Reset)

—T T T T "7 — T T T T

n
g R R S AP sk, L O

—m— Reset
o— Set

o ome e L0000

| | | —— | | 1

0 10 20 30 40 50 60 70 80 90 100

Pulse Number

Resistance (QQ) ies
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# Megasample collection method

Use HP test board
« Capable of reading or pulsing a given row-column pair
« Voltage pulse time set to constant 2us
* Read voltage level = 0.25V
10 samples averaged per read

Interleave voltage pulses and resistance readings: RVRYV
RV..

No attempt to force a particular starting resistance

Careful control of voltage pulses to keep R within operating
range

10M reads in working dataset

. C?rfstruc_tlon of table-bas-ed model R m RVRVRVRV
Sliding window over readings

Table has two axes: R, and V Ry V |R1
Cell size: 100Q x 0.1V

Sandia
i i i " PD=R,- National
Cell contains change in resistance: D=R;-R, @ S
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Array Test Board

« Random pulse technique

N
(8]
o N

1
N
Color Code: Pulse Magnitude (Volts)

Post Pulse Resistance (kOhms)
Post Pulse Resistance (kOhms)
o

10; -4
5¢ S 1 -6
AR T e
0 L I L I L ]
0 5 10 15 20 25 30
Random Pulse Height (Volts) 4 3 Pre Pulse Resistance (kOhms) Pre Pulse Resistance (kOhms)

Sandia
National
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 Neuromorphic Computing with ReRAM

* Development of a CMOS/ReRAM Process

» Characterization of Device Behavior

* Modeling the Source of Intradevice Variation
e Conclusion and Future Work
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Thermal Model
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Isothermal signatures identified in [V
data, which encouraged a thermal
modeﬁl

T
loop direct o

ON Switching

Current (mA)

02 04 08

Voltage (V)

0.0

T(r) =Tgr +

Approximation
of heat equation
for cylindrical
filament gives
temperature
profile within the
filament:

€2 P —5n —> 4>

aV?dg
ZkEdO[
Temperature can be transformed

into electrical parameters of power

and resistance:
AT/R
P = 5
Zkgdo B8LwrTcrit dcz)

=

Quantitative agreement w/data

Power (mW)

3

N kprf — 212
K, 4dgd

ol M -
i Curreni { s | |
%

—
T

L=

0

500 1000 1500

Resistance ()
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Thermal Model

Sandia
@ National
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A 4
} Two State Variables

Independent control of
o and r means
degenerate resistances

can be set.

d
R= 2

2
O

However, degenerate resistance
states will activate at distinct
applied powers

AT /R

P = >
dgo T

2kEdO B 8LWFTCT'itd5

This additional parameter gives
another “dimension” in which to
encode analog or digital
information

a

Current (mA)

Applied Power (mW)

6.0

Science, Technglegy & Components

_ .;The'rmall o
4.0+ activation -
2.0+ OFF switching r‘/ :

' controls o ¥ M4
0.0 e

-2.0 |

| ON switching |
-4.0 + controls r,
1 O¥
6.0 R, =R,
-1.0 -0.5 0.0 0.5
Voltage (V)
20— "
. [
P 0o o l'h. *—g L N
1.5+ 2 A i """""""""" >
:1 ahh ah A AA “
p oyt L >
1.0 1A 5
: t (0,r1)
0.5 L (o, r)
— I r
s Config1 = Config2
D.U’ — i 1 " -

500

750
Resistance ()

1000
la
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0, | amorphous Tas0s crystalline

structure X 0% Vg% charge structure X 0% V% charge

'
#apx Atomistic Structure Set

aTalé0 000 00 n'a 0 ¢ Tal60 0.00 0.0 n'a 0
aTal6001 001 06 =na 0 ¢Talé0O1 001 06 naa 0
aTal6002 003 12 na 0 cTalé002 003 12 na 0
aTal6003 0.04 18 nfa 0 Goxx . &-T2305

cTa480119 496 713 08 0
a-Ta16002 aTal5208 011 50 naa 0 cTa480119 496 713 08 1+
aTaldd016 022 100 na 0 cTad80119 496 713 08 2+
aTal28032 050 200 na 0 cTa480120 500 714 00 0
aTall2048 086 300 n/a 0 Gow » ¢-T2205
RERCED & R Wn W cTa480119 496 713 08 0
cTad80119 496 713 08 1+
aTa48084 350 636 300 0 cTa480119 496 3 08 2+
aTad809 400 667 200 0 cTa480120 500 714 00 0 010]
aTa480108 450 692 100 0O o Tk
cTa480119 496 713 08 0
aTa480114 475 704 50 0 cTa480119 496 713 08 1+
aTa480117 488 709 25 0 cTa480119 496 3 08 2+
aTa480117 488 709 25 2+ cTad80120 500 714 00 0
aTa480118 492 711 17 0
a-1a480120  «Tassons 492 711 17 2+
aTa480119 496 713 08 0
aTa480119 496 713 08 1+
aTa480119 496 713 08 2+
aTa480120 500 714 00 0 c-Ta480120 (Ta205%)

» Ta,O, structure library generated for conductivity calculations
» Parameter space samples composition, phase, temperature, and charge state

Sandia
National
10/12/2014 Robert Bondi, Dept. 1344 42 Laboratories



Microsystems
DFT vs. Experiment: ¢-Ta,0, g™

A A Ao [ ] m
= Or A A 1
A ] -
g s «e———1_ DFT outlier at x=4.75 joins
| . .
“ 4t trend with increased
o 1‘. ] sampling (log,, o, decreases
= g E , : from 3.5 to -2.6)
51,1 - B DFT. PBE .
- A DFT. HSEO6 X
> thin film
-12 F x air-sintered Ta, O, pellet
O -sintered Ta, O, pellet
L 16 3 3 [l 1 3 L 1 3 L L 1 L 3 I L 3 i 5 1 5 3 i
(0 1 2 3 4 5 0

x i Ta,O,

*DATA: T=300K; DFT conductivities sampled at 0.5 ps intervals on minimum12-14 (6) configuration

snapshots for PBE (HSE06) functionals; MESA thin film resistivities measured with 4-pt probes; Ta,0O;
pellets used to assess true bulk resistivity

«Sampling additional independently-quenched amorphous structures at each composition improves DFT
trends (outlier at x=4.75 used as test case)

*DFT overestimation of o, is evident at x=5 (finite cell sizes are in part responsible)

Sandia
National
DFT - Robert Bondi Laboratories



log,y o(®) (Q-m)™

Sandia
National
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' Conductivity: Oxidation StatSmssiens

*Fala,0, — ~  © T T y -
[ e m =] _
4 e i P s, 7] 4 e <= " aTi720144 0 V' |
" : N/ — TS0 . 0
3 e i aTa480120, 0V, 1 = alin201431 Vo
! ! y 1o ' g aTi7201431Vy'" oo -
< o
0F | J 1Y S = g 0 aTiT201431 V> ————- -
[ : r 1V —mm - | — aTin201422v," — —-— 1
! i . 8 aTiT201422 V¥ -~~~ - ]
4 3 I 2 V02+ ...... - bo -4 aTi7201413 V)" -
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*DATA: 300K, HSEO06 functionals

‘Rough Ta,0; trend established for increasing o, as V,° conc. increases (dopant-like behavior)
‘Influence of V5" (n=0,1*,2%) oxidation state is significant; o(®w) responses for all n = 2* cases
essentially indistinguishable from stoichiometric oxides

*Possible that oxidation/reduction reactions are involved in memristor switching that effectively act
as dopant deactivation/activation mechanisms for V°.
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Energy = ho (eV)

V? shows transition from zero o, to finite , between 300
and 400 K. This is suggestive of “freeze-out” dopant
behavior.
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tatistical Contributions to Nanoscale o
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Outline

 Neuromorphic Computing with ReRAM

* Development of a CMOS/ReRAM Process

» Characterization of Device Behavior

* Modeling the Source of Intradevice Variation
e Conclusion and Future Work

Sandia
National
Laboratories
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A

 Neuromorphic computing is superior to
traditional computing for certain applications,
especially those involving pattern recognition

« Execution of certain neuromoprhic algorithms
can be significantly improved using a custom
analog-mode CMOS/ReRAM accelerator

* Metal Oxide ReRAM cells have relatively high
cycle to cycle variability, which may significantly
limit the resolution of an analog accelerator

* Possible physical origins have been studied
using analytical and DFT models and two reasons
hypothesized:

— Degenerate resistance states
— Different same-stoichiometry makeup @ Sanda

National
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# Neural Hardware Simulation

» Greatest challenge is to generate row and column pulses
that train memristors correctly.

* Both write noise and bin size are 6 orders of magnitude
larger than weight update.

* Training curve of memristor contains highly sensitive “cliff”
in one direction.
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* Neural Hardware Simulation

 Methods:

* Direct conversion — Compute all weights using float. Simply
write resistance values into simulated crossbar without
“burning” them. Works.

* Direct set — Store weights as resistances, but do all math in
float. Works.

* Isolated pulse — Apply a voltage pulse to each memristor in
isolation to set it. Works

* Binary — Pulse all rows and columns at once. Voltage is
minimal fixed increment. Only applied if given row had error
or given column had input. Diverges.

* Binary Row - Similar to binary, but only pulse row with
largest error. Diverges.

Sandia
National
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* Neural Hardware Simulation

* Methods (continued):

* Linear Row - Pulse only the row with largest error, but use
a scaling factor to convert error to voltage. Works.

* Linear Rows — Pulse each row separately, using same
method as Linear Row. Works.

 Linear — Pulse all rows and columns at once, using scaling
factor to convert input or error to voltage. Diverges.

* Polynomial — Similar to Linear, but use polynomial fit of
memristor data with one real exponent. Diverges.

Sandia
National
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ReRAM Neural Circuit

Row
vector
voltage

) ——

4 !
R=1/G % R,=1/G, %
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I’j=ajG

Ly = a6y,
r=aG 2]. aj_’ Virtual 2>
ground k£ -
Virtual - —
ground’ 0
R Rf
Vrpf
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# Emerging Memory

* This is a great era for emerging memory
* NAND Scaling is visibly slowing

— Memory manufacturers refusing to name nodes by
physical dimensions (now we have 2x and 1x nodes)

— 16 nm retention and endurance degraded
— 3D will quench density issues temporarily
- DRAM scaling is also becoming a problem

— struggling to maintain reasonable equivalent oxide
thickness

— Dielectric for cells 30nm to 20 nm still TBD
* Opportunity: Storage Class Memory
— Magnetic to DRAM latency gap

* New memory technologies on the horizon are rapidly
maturing which can replace NAND and DRAM @ Sandia

National
Laboratories
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} Categorization of ReRAM

» Electrochemical Metallization Bridge (CBRAM)
— Bipolar
— Cation motion
— Ag or Cu filament
» Metal Oxide: Bipolar Filamentary
— Current independent of area
— Anion (oxygen vacancy) motion
— Valence change dominates
» Metal Oxide: Unipolar Filamentary
— Current independent of area
— Thermochemical mechanism dominates
» Metal Oxide: Bipolar Non-filamentary
— Current depends on area
— Anion motion near interface

Sandia
National
10/12/2014 Matthew Marinella Laboratories
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Switching Film Development:

Overcoming the “Forbidden Region”

* Forbidden oxygen flow- _ _
pressure region occurs Ta>Ta,0; deposited 52;95 L a0 A
due to target poisoning ’ ‘ >

i Transition

* This is the region we need 3 _Region
= . : Total O, Flow
to I?e In to get ideal ReRAM = | . " = 0.
stoichiometry z N . 0, flow to
p— pump qump

) LT:‘ :
Y “Forbidden Region” 9 C O, consumption
2 ﬁ on surfaces Q,
4 e /
a | ﬁ(// _____________ =)
©© o
£ - ° 3
& S O, Partial Pressure (a.u.)
f—
N [ = T S bt
>x
@) / / 3

Oxygen Flow @ Tl

A.J. Lohn et al APL 103, 063502 (2013) Laboratories
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High Resistance Behavior

« Significant performance improvement can be achieved by
careful electrical forming and control

* Power limited switching
* Very high resistance and Ryg/Rpy possible (~100 mV read)

] " | " 1 v ] ¥ | ¥ | 60-0” v T . ) . |
10.0p - S !

—_ 10 yA compliance {
< - o 1 300uF  ~600 kQR,,, .
- 8.0pf y 0.0 |
§ [ d Q | . Current Mode Sweep|
= 6.0u 5 j - = 300ul ~150 KQR,,, ]
O i £ 300k \
o 40pf g g . — l High nonlinearity .

) d ' -60.0p | 4
£ Ea 137 .
L. 0.0 i T 120.0p - Vo[t_age mlode sweep . . X 1

00 02 04 06 08 1.0 1.0 05 0.0 0.5 1.0
Forming Voltage (V) Voltage (V) @Sandia
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Analog Computing

- Vector matrix operations often comprise >> 90% ol marnest
of operations in pattern matching algorithms ingle GMOSMemristor et
- . . . Multiply Accumulate Cel s (optiona
- A monolithically integrated memristor accelerator o \ PACs (optonad
can greatly improve power and throughput for e e R
these operations :x i S '
. . I .
* This could comprise a node of a future HPC Ndimoncion oacel b, i
system oo C AR
|X2 Ao &
On Chip Universal Memory: | w ' "
+ Stacked ReRAM Memrist ! i ] iy
e Petabit cm?Densities emristor : Kl K Iy
on Chio Memristor Accelorat « Replaces DRAM & flash memory | \/ | \/ \/
n 1P Niemristor Accelerator. e <1 pdJ per write/read I |
. :‘ljector or mattrjix operations [ — — — B ——— J/On Chip Photonics L _+_ — T +
'_ ipir?eia En_ o T S EEEEEEEE R ¢ Chip to chip communication ADCs

e <1 pJ per bit transfer

To next

P} S N ) N ) S ) N ) ) [ 1T C J_ 1 T T T 7 - node I
siiepn ===t A= —

High Performance Logic:
¢ 5 nm FinFETs
¢ [lII-V on silicon

Sandia
National
Laboratories



