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Perceptron Based Neural Nets

• Perceptron is the simplest model of a neuron

• Feed forward network

• Single node can learn linearly separable logic functions

• Applications:

– Field programmable gate arrays

– Pattern recognition

10/12/2014

Wikipedia.org



Perceptron Network (Simplified)



Memron

• Requires 3 Memrons to learn XOR:

10/12/2014



Why Do We Need an HW Accelerator?

6

• Use simulation results for similar algorithm as example

• Significant power savings using a memristor-based HW 
accelerator :

• 16x reduction in power over SRAM ASIC

• 6x reduction in chip area over SRAM ASIC

– Equivalent to 6x improvement in performance/area

T. Taha, R. Hasan, C. Yakopic, M. McLean, in Proc. IEEE Intl. Joint Conf. on Neural Networks, 2013.



• Compute output O based on input I, weight matrix W, 
and squashing function f().

• Delta-rule: Update W based on the outer product of I
and the partial derivative Δ, scaled by learning rate α.

• Back-propagation: Allocate error on outputs (E) to error 
on inputs (D) by passing partial derivatives back 
through W.

• Training: Feed a bunch of (I,T) pairs, until convergence.

O=f(WI)
Δ=f'(WI)◦E
W=W+αΔIT

D=WTΔ

I O

D E

f(x)=1/(1+exp(-x))
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I O

T-O
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Perceptron Network
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ReRAM-Neural Hardware Simulation
• Purely in software

• Uses data table to emulate each memristor

• Replaces MLP block with a crossbar and some hypothetical 
surrounding circuitry.

• Values passed between blocks in floating point.

• Converted internally to voltages via Vscale (at present simply 1).

• Weights mapped to numbers via Rbias=4,000 and Rout=40,000.

• R=1/(W/Rout+1/Rbias)
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Conventional (CPU) Fixed bias resistors Bias memristor per element

96% 88% with noise
96% noise-free

69% with noise
96% noise-free

Why? – Each memristor introduces more noise, so fixed-
bias network is more accurate.

Performance of various network structures

• Train conventional perceptron.

• Convert weight matrix directly to memristor values.

• Test on MNIST handwriting dataset, with and without model noise.



Empirical memristor model

• Represented by a lookup table

• Binned 10M-sample data (100 Ω x 0.1 V bins)

• Table contains ΔΩ values

• Standard deviation of each cell used to simulate noise.

• Chart on left is slice through 4KΩ

• Flat between -1.6V and 1.6V



I

E

Empirical memristor model

• Backpropagation training

• dW = αEIT where E is error vector and I is input

• Update each row separately so column values can be set 
appropriately for given error value.

• Test on handwritten digit recognition (MNIST dataset).

• Accuracy = 91.8% (classic methods reach 99.9%)
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Example:
Rbias = 4kΩ
Rout = 40kΩ
Rb = Rbias

R’ = 100Ω
W’ = 0.244

W’
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Representing Weight As Resistance
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Sensitivity of Error to Resistance:

• Let WI be close to 0, so f’(WI)=0.25 (derivative of sigmoid 
function)

• Let I=1 (for simplicity)

• α=0.01

• W’=αΔI=0.01*0.25*E*1

• E=W’/0.0025=0.244/0.0025=97.6  (with R’=100Ω as on 
previous slide)

• That is, at typical values, the smallest error achievable is 2 
orders of magnitude larger than typical output range for an 
MLP neural network!
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Resistive Random Access Memory



Valence Change ReRAM
• “Hysteresis loop” is simple method to visualize operation

– (real operation through positive and negative pulses)

• Resistance Change Effect (polarities depend on device):

– Positive voltage/electric field: low R – O-2 anions leave oxide

– Negative voltage/electric field: high R – O-2 anions return

• Common switching materials: TaOx, HfOx, TiO2, ZnO



Memristors + CMOS

• Sandia CMOS7 Process

– 3.3V, 350 nm, 
MOSFETs

– SOI substrate

• Baseline for memristor 
integration



Process Flow

Si Substrate

1. Deposit Bottom Metal (Al)
2. Deposit USG 

1

2

3. Etch via holes in USG
4. Deposit W and TiN layers
5. CMP

7. Etch bits 

SiO2

Al Metal

USG

Si Substrate

3-5

SiO2

Al Metal

USG

0.35 – 0.5 µm bottom vias

W W

Si Substrate
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W W

Si Substrate

SiO2

Al Metal

USG
W

TiN (20 nm)

TiN (20 nm)

6 Ta (15 nm)
TaOx (10 nm)

6. Deposit bit stack 
(layers enlarged for clarity)
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Si Substrate

SiO2

Al Metal

USG
W
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Si Substrate

SiO2

Al Metal

USG
W

10

Al (700 nm)

10. Deposit top Al

0.35 – 1.5 µm top vias

0.75 – 1.5 µm bits

8. Deposit top USG
9. Etch top via holes in USG

W W



Final Structure

Via

Top Aluminum

Important to have extremely flat 
surface under bit

Polished TiN Surface

Bit

USG
USG



Beyond Stoichiometry
• Goal: Assess properties that 

make a “good” memristor

• Stoichiometry doesn’t tell the 
entire story 

• Deconvolving XPS spectra 
provides Ta valence makeup

Brumbach et al, JVST 2014



XPS: Properties of a Switching TMO

21

Brumbach et al, JVST 2014



Forming Process

• Roughly depends on film thickness (still varies)

• Macroscopic (wafer scale) and nanoscopic variations in 
thickness

10/12/2014
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Vtip=2.4 V

Vtip=2.6 V

Vtip=2.8 V

Vtip=3.0 V

Vtip=2.0 V

“Hot Spot” Formation



Hot Spot Evolution

10/12/2014

C-AFM Current Map Movie (2D) C-AFM Current Map Movie (3D) 



Topography versus Conductivity

• Prominent hot spot appears to depend on geometry

• Other hot spots do not necessarily correlate with geometric 
defect

10/12/2014

Topo Current Merged (And)



Hot Spot Density vs Thickness

Thickness: 80 A

200nm
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Memristor Crossbar Die

Memristor Die



Basic Device Performance

• Typical devices form at very low currents

• Appear “forming free” in current sweep mode

• Do not need a high voltage transistor!!

– Unlike flash/SONOS

• Can be tailored by stoichiometry
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Variability

• Between different devices

– Manufac

• Cycle to cycle

– Fundamental physical attribute

10/12/2014
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Set and Reset Transition

• Repeated pulsing can gradually 
change resistance

– SET transition more abrupt



Transitions to Varying Resistance Levels

• Resistance level can begin to 
saturate for different voltage 
levels

– Repeated pulsing may 
change resistance very 
gradually

– Transitions occur from 
multiple starting 
resistance values

• Resistance usually falls into 
a typical band within the first 
three pulses

Vpulse = -
1 V

Vpulse = -
1.5 V



Closed Loop Cycling

• Continues pulsing until a 
threshold resistance 
value is passed

– Allows for tighter 
resistance values

– Helps with initial 
characterization of 
parts to determine 
ideal pulse heights



Open Loop Cycling (Set)

• Based off the closed loops 
tests, a value of 1 V is used 
for an open loop test of the 
Set function

• The CPD for the LRS state 
has a larger spread of 
resistance values



Open Loops Cycling (Reset)

• For the reset open loop, a 
value of -2 V was used

– More spread and lower 
resistances than the 
closed loop

• Feedback from closed loop 
tests can continue to 
improve open loop results



R V R V R V R V R V R V …

R0 V R1

Megasample collection method
• Use HP test board

• Capable of reading or pulsing a given row-column pair

• Voltage pulse time set to constant 2us

• Read voltage level = 0.25V

• 10 samples averaged per read

• Interleave voltage pulses and resistance readings: R V R V 
R V …

• No attempt to force a particular starting resistance

• Careful control of voltage pulses to keep R within operating 
range

• 10M reads in working dataset

• Construction of table-based model

• Sliding window over readings

• Table has two axes: R0 and V

• Cell size: 100Ω x 0.1V

• Cell contains change in resistance: D=R1-R0

• Bilinear distribution of each D to four nearest cells



Array Test Board

• Random pulse technique

10/12/2014
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Approximation 
of heat equation 
for cylindrical 
filament gives 
temperature 
profile within the 
filament:

Isothermal signatures identified in IV 
data, which encouraged a thermal 
model

Temperature can be transformed 
into electrical parameters of power 
and resistance:

Quantitative agreement w/data

Thermal Model



Thermal Model

Mickel et al, Adv Mat (2014)



Two State Variables
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However, degenerate resistance 
states will activate at distinct 
applied powers

Independent control of 
σ and r means 
degenerate resistances 
can be set.

This additional parameter gives 
another “dimension” in which to 
encode analog or digital 
information



Ta2Ox Atomistic Structure Set 

Robert Bondi, Dept. 1344 4210/12/2014

c-Ta160 (Ta)

a-Ta160O2

a-Ta48O120

c-Ta48O120 (Ta2O5)

c-Ta48O119 (VO
2+)

[100]

[010]
[001]

[100]
[001]

[010]

►Ta2Ox structure library generated for conductivity calculations
►Parameter space samples composition, phase, temperature, and charge state

amorphous crystalline



DFT vs. Experiment: a-Ta2Ox σ

DFT - Robert Bondi

•DATA:  T=300K; DFT conductivities sampled at 0.5 ps intervals on minimum12-14 (6) configuration 
snapshots for PBE (HSE06) functionals; MESA thin film resistivities measured with 4-pt probes;  Ta2O5

pellets used to assess true bulk resistivity
•Sampling additional independently-quenched amorphous structures at each composition improves DFT 
trends (outlier at x=4.75 used as test case)
•DFT overestimation of o is evident at x=5 (finite cell sizes are in part responsible)

DFT outlier at x=4.75 joins 
trend with increased 

sampling (log10 o decreases 
from 3.5 to -2.6)



Conductivity: Oxidation State

•DATA:  300K, HSE06 functionals
•Rough Ta2O5 trend established for increasing o as VO

0 conc. increases (dopant-like behavior)
•Influence of VO

n (n=0,1+,2+) oxidation state is significant; () responses for all n = 2+ cases 
essentially indistinguishable from stoichiometric oxides
•Possible that oxidation/reduction reactions are involved in memristor switching that effectively act 
as dopant deactivation/activation mechanisms for VO

0.

Robert Bondi, Dept. 1344 4410/12/2014

aTa2O5 aTiO2



VO
0

Ta2Ox Conductivity: T and Vacancies

•DATA:  168-atom basis supercells, HSE06 
functionals, 6 QMD configs. sampled at each of 
10 to 11 temps., noisy gray curves are low T 
reference (10K)
•T dependence for stoich. oxide and VO

2+ case 
are very similar, while VO

0 case is much different
•VO

0 case exhibits stronger T-dependence of 
than other cases

Robert Bondi, Dept. 1344 4510/12/2014

VO
0 shows transition from zero o to finite o between 300 

and 400 K.  This is suggestive of “freeze-out” dopant 
behavior.

aTa2O5 VO
2+



Statistical Contributions to Nanoscale 

10/12/2014 46

•DATA:  167-atom amorphous supercells 
containing 1 VO

0, HSE06 functionals, T=500K
• Spatial variation: 1-2 orders of magnitude in o

• Temporal variation:  9-10 orders of magnitude in 
o

• Structural variation: 16 orders of magnitude in o

• Anisotropy in o relatively small effect at 
nanoscale

spatial, temporal structure

comprehensive
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Conclusions

• Neuromorphic computing is superior to 
traditional computing for certain applications, 
especially those involving pattern recognition

• Execution of certain neuromoprhic algorithms 
can be significantly improved using a custom 
analog-mode CMOS/ReRAM accelerator

• Metal Oxide ReRAM cells have relatively high 
cycle to cycle variability, which may significantly 
limit the resolution of an analog accelerator

• Possible physical origins have been studied 
using analytical and DFT models and two reasons 
hypothesized:

– Degenerate resistance states

– Different same-stoichiometry makeup
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Neural Hardware Simulation

• Greatest challenge is to generate row and column pulses 
that train memristors correctly.

• Both write noise and bin size are 6 orders of magnitude 
larger than weight update.

• Training curve of memristor contains highly sensitive “cliff” 
in one direction.



Neural Hardware Simulation

• Methods:

• Direct conversion – Compute all weights using float. Simply 
write resistance values into simulated crossbar without 
“burning” them. Works.

• Direct set – Store weights as resistances, but do all math in 
float. Works.

• Isolated pulse – Apply a voltage pulse to each memristor in 
isolation to set it. Works

• Binary – Pulse all rows and columns at once. Voltage is 
minimal fixed increment. Only applied if given row had error 
or given column had input. Diverges.

• Binary Row – Similar to binary, but only pulse row with 
largest error. Diverges.



Neural Hardware Simulation

• Methods (continued):

• Linear Row – Pulse only the row with largest error, but use 
a scaling factor to convert error to voltage. Works.

• Linear Rows – Pulse each row separately, using same 
method as Linear Row. Works.

• Linear – Pulse all rows and columns at once, using scaling 
factor to convert input or error to voltage. Diverges.

• Polynomial – Similar to Linear, but use polynomial fit of 
memristor data with one real exponent. Diverges.



ReRAM Neural Circuit

Matt Marinella10/12/2014
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Emerging Memory

• This is a great era for emerging memory

• NAND Scaling is visibly slowing

– Memory manufacturers refusing to name nodes by 
physical dimensions (now we have 2x and 1x nodes)

– 16 nm retention and endurance degraded

– 3D will quench density issues temporarily

• DRAM scaling is also becoming a problem

– struggling to maintain reasonable equivalent oxide 
thickness

– Dielectric for cells 30nm to 20 nm still TBD

• Opportunity: Storage Class Memory

– Magnetic to DRAM latency gap

• New memory technologies on the horizon are rapidly 
maturing which can replace NAND and DRAM



Categorization of ReRAM

• Electrochemical Metallization Bridge (CBRAM)

– Bipolar

– Cation motion

– Ag or Cu filament

• Metal Oxide: Bipolar Filamentary

– Current independent of area

– Anion (oxygen vacancy) motion

– Valence change dominates

• Metal Oxide: Unipolar Filamentary

– Current independent of area

– Thermochemical mechanism dominates

• Metal Oxide: Bipolar Non-filamentary

– Current depends on area

– Anion motion near interface

Matthew Marinella10/12/2014



Switching Film Development: 
Overcoming the “Forbidden Region”

• Forbidden oxygen flow-
pressure region occurs 
due to target poisoning

• This is the region we need 
to be in to get ideal ReRAM 
stoichiometry 

J.E. Stevens et al, accepted for publication 
by J. Vac Sci. Tech., 2013. 

A.J. Lohn et al APL 103, 063502 (2013)



Endurance and Retention

• Basic characteristics
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High Resistance Behavior

• Significant performance improvement can be achieved by 
careful electrical forming and control

• Power limited switching

• Very high resistance and ROFF/RON possible (~100 mV read)



Analog Computing

• Vector matrix operations often comprise >> 90% 
of operations in pattern matching algorithms

• A monolithically integrated memristor accelerator 
can greatly improve power and throughput for 
these operations

• This could comprise a node of a future HPC 
system

Memristor
memory


