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Abstract — Arc faults are a significant reliability and safety
concern for photovoltaic (PV) systems and can cause intermittent
operation, system failure, electrical shock hazard, and even fire.
Further, arc faults in deployed systems are seemingly random
and challenging to faithfully create experimentally in the
laboratory, which makes the study of arc fault signature
detection difficult. While it may seem trivial to simply record
arcing signatures from real-world system, an obstacle in
capturing these arc signals is that arc faults in the PV systems do
not happen predictably, and depending on the location of the
sensors relative to the arc location, may contribute a negligible
portion to the magnitude of the sensed current or voltage
waveform. The high-frequency content of the arc requires fast
sampling, long memory, and fast processing to acquire, store, and
analyze the waveforms; this adds substantial balance-of-system
cost when considering widespread deployment of arc fault
detectors in PV applications.

In this paper, we study the performance of the fast Fourier
transform arc detection method compared to the wavelet
decomposition method by using synthetic waveforms. These
waveforms are created by combining measured waveforms of
normal background noise from inverters in DC PV arrays along
with waveforms of arcing events. Using this technique allows the
ratio of amplitudes are varied. Combining these separate
waveforms in various amplitude proportions enables creation of
test signals for the study of detection algorithm efficacy. It will be
shown that the wavelet transformation technique produce more
easily recognized detection results and can perform this detection
using a much lower sampling rate than what is required for the
fast Fourier transform

Index Terms — arc fault detection, inverter noise, Fourier
transform, wavelet transform, filter banks.

I. INTRODUCTION

Arc faults have become a major concern for photovoltaic
(PV) systems since a large number of electrical connectors
and exposed long cables are need in the system. The
combination of high voltage DC and deteriorated insulation
can lead to arcing over time. Electrical insulation can degrade
due to aging effect; chaffing against the mounting hardware,
trees and other building materials after installation; abrasion
from the conduit during installation, or other circumstances
such as rodent bites. Arc faults can result in electrical shock
hazard and system failure. While the arc creates high
temperature plasma that can ignite surrounding materials, such
as in the example shown in Fig. 1 [1], the impedance of the
arc may not draw sufficiently high current to activate over-
current protection devices. Thus the arc can be sustained
undetected for hours or longer. Arc faults in PV systems not

only threaten property loss but can also pose significant
threats to human safety [2-5].

Thus arc fault detection is extremely important for reliable
and safe system operation and is a prerequisite for widespread
adoption of PV generation systems [6-8]. Electrical arcs in PV
systems can arise from series or parallel faults, as illustrated in
Fig. 2 [9]. Series faults can occur due to loose electrical
connections such as a crimp-connection not adequately
fastened or terminal strips not properly torqued both of which
can cause the electrical wires to pull apart. Parallel faults can
be caused by abrasion of wire insulation allowing a shunt-path
for current such as to earth ground or pole-to-pole in the DC
wiring.

While reports of prior research into arc fault detection
algorithms exist in the literature [10-16], there has been little
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Fig. 2: Example of locations where arcing may occur in a PV array.




discussion of experimental acquisition of the data, which is
non-trivial, for evaluation of the detection algorithm
validation. Designing an experiment to create scientifically
repeatable results is difficult because of the unpredictability,
and lack of control over the arc characteristics including
ignition, duration, and stability. Sustained arc faults possess
chaotic electrical characteristics, which makes it impossible to
scientifically repeat the experiment with consistent test data.

In this paper, a test signal is synthesized using time-domain
inverter noise signal data measured from a PV array and time-
domain arc signals obtained from an arc generator. We define
a metric called the arc-signal-to-noise ratio (ASNR) which
determines the proportion of power from each source in the
composite signal. Adjusting this user-specified parameter in
the synthesizing process enables the synthesis of a family of
test signals for validation, sensitivity, and efficacy studies of
the detection algorithm based upon real-world signals and
scenarios.

Once these synthetic signals are created with specified
ASNR levels, discrete Fourier transform and discrete wavelet
transform are comparatively studied. The influence of
sampling frequency on the two analysis approaches is
examined. The wavelet transform analysis with distinct types
of wavelet are also evaluated and compared.

II. WAVELET FILTERS
A. Discrete wavelet transform

Wavelet transform (WT) is a linear transformation like the
Fourier transform. Unlike FFT, it allows precise time
localization of different frequency components of a given
signal [17]. Due to the wide variety of signals and problems
encountered in power engineering, there are various
applications of wavelet transform, such as fault detection, load
forecasting, and power system measurement. In addition,
information about power disturbance signals is often a
combination of features that are well localized temporally or
spatially such as power system transients. This requires use of
versatile analysis methods in order to handle signals in terms
of their time-frequency localization, which is an excellent area
to apply the special property of wavelets [18].

The wavelet analysis procedure is based on a pair of
wavelet prototype functions, called the wavelet function
(mother wavelet) and scaling function (father wavelet) —
together they provide a localized signal processing method to
decompose the differential signal into a series of wavelet
components, each of which is a time-domain signal that covers
a specific frequency band [19, 20]. Wavelets are particularly
effective in approximating functions with discontinuous or
sharp changes like power system fault signals [21]. With
proper choice of the mother wavelet, wavelet transformation is
an effective tool for fault detection and feature distraction.

There are many types of wavelets. One can choose among
them depending on the particular application. While wavelet
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Fig. 3: Wavelet decomposition tree.

transform is a continuous-time function, it has a discrete-time
counterpart, the discrete wavelet transform (DWT), similar to
the discrete Fourier transform (DFT) implementation of the
continuous-signal Fourier transform. The DWT is defined as
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where C(j,K) is the corresponding wavelet coefficient, n is the
sample number, s(n) is the signal to be analyzed and g;(n) is
the discrete scaling function, which for dyadic-orthonormal
wavelet transform is defined by

gjkMm=2"1"2g@In-k) @
The auxiliary function to this is the wavelet function.

With this initial setting, there exists an elegant algorithm,
the multi-resolution signal decomposition (MSD) technique,
which can decompose a signal into levels with different time
and frequency resolution. At each level j, approximation
signal A; (represented by linear combinations of father
wavelets at jth level) and detail signal D; (represented by
linear combinations of mother wavelets at jth level) can be
created. The words "approximation™ and "detail" are due to
the fact that A, is an approximation of A; taking into account
the “low frequency" of A;, whereas the detail Dj.; corresponds
to the "high frequency" correction.

As shown in Fig. 3, for a reference level J, there are two
categories of details: 1) those details associated with indices
j=J correspond to the scales 272 < 22 which are the fine
details; and 2) the other details correspond to j < J and are the
coarse details, which define an approximation of the signals

s=A, + > D, 3)
i>J

which signify that s is the sum of its approximation A,
improved by the fine details [22].

B. Wavelet and filter banks

Multi-resolution signal analysis using discrete wavelet
transform (DWT) can be implemented by filter bank theory,
where a wavelet and a scaling function is associated with a
highpass and a lowpass filter respectively. As shown in Fig. 4,
on each level of decomposition, the input signal is split into a
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Fig. 4: Dyadic tree wavelet analysis bank.

low-frequency component and a high-frequency component.
With dyadic wavelet filters (wavelet transform), only the low-
frequency part is further decomposed. In comparison, binary-
tree wavelet filters (wavelet packets), which splits both low-
and high-frequency component on each level, leads to
decomposed signals with an equal bandwidth [23]. In this
paper, only dyadic wavelet filter implementation is discussed.

C. Selection of mother wavelet

The criteria for selecting the mother wavelet adopted in this
paper is summarized in [24, 25]:

1) The wavelet function should have a sufficient number of
vanishing moments to represent the salient features of the
disturbances.

2) The wavelet should provide sharp cutoff frequencies to
reduce the amount of leakage energy into the adjacent
resolution levels.

3) The wavelet basis should be orthonormal.

4) For applications where the information lasts for a very
short instant, wavelets with less number of coefficients
are better choices; on the other hand, for signal signature
spread over a longer period of time, wavelets with a larger
number of coefficients tend to show smoother results.

There are several well-known families of orthogonal
wavelets. An incomplete list includes Harr, Meyer family,
Daubechies family, Coiflet family, and Symmlet family [26].
Daubechies wavelets are chosen in this paper due to their
outstanding  performance  in  detecting  waveform
discontinuities [24, 27].

Frequency response of filter banks of Daubechies 3 (db3),
Daubechies 9 (db9), and Daubechies 19 (db19) are shown in
Fig. 5. It can been seen that, the frequency response of db9
filters have a significantly sharper cutoff frequency in
comparison with that of db3 filters. But db19 does not provide
equally significant improvement over db9. Considering the
extra computation load brought by wavelets with more
coefficient, db9 is a good compromise.
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Fig. 5: Frequency response of filter banks using db3, db9, and
db19.

I1I. COMPARISON OF THE TWO ANALYSIS APPROACHES

Although it is widely used, the conventional Fourier
transform has a significant limitation in that it works best for
periodic signals. However, the nature of arc faults in power
systems is not periodic [6]. Further, the conventional Fourier
transform gives only frequency information [28]; it does not
provide time-domain information to determine exactly when
an event occurs. Such temporal localization could help
correlate the arc signature with other events (internal or
external to the PV system) such as lighting or electrically fast
transients that couple from other system components.



The short-time Fourier transform (STFT) is a
time/frequency analysis technique which retains the time
index of the frequency spectrum and seems to overcome the
temporal localization problem. However, it still has a
fundamental drawback in that the length of the window used
in the STFT is the same for all frequencies. In order to obtain
good frequency resolution, a large number of data points is
required which in turn causes any short time variation within
the window to be obscured on the resulting spectrum and
minimizes the ability to temporally localize high frequency
signals. If one wishes to have different resolutions in different
parts of the frequency spectrum, the discrete STFT will have
to be repeated for a number of window sizes. Thus, the
problem is really that of time and frequency resolution
tradeoff. As a result, good frequency resolution prevents
accurate time localization of the high frequency signals. But in
order to provide time localization for the finite duration
events, if the window length is made sufficiently small, it will
not be able to concurrently provide the required frequency
resolution for low frequency content [23, 29].

It is worth pointing out that, to prevent the spectral leakage,
window size usually has to be chosen carefully to meet the
coherent sampling requirement. However, the arc fault
signature can be distributed in a wide frequency band [30, 31].
Thus it is impossible to choose a perfect window to extract all
relevant accurate information using Fourier transform based
approaches.

In conclusion, Discrete STFT might be more suitable than
wavelet transform for time-frequency domain analysis of
harmonic related disturbances, but not for discovering short
abrupt changes like arc faults. In comparison, owing to the
distinguishing capability of signal discontinuity detection,
wavelet transform excels in extracting sharp changes
throughout the entirety of the signal.

IV. RESULTS OF SIGNAL ANALYSIS
A. Composite signal with high-rate data (F;=1MHz)

A composite signal with a duration of one second is
synthesized by combining inverter noise and arc fault signals
at a sampling rate of 1IMHz to achieve an ASNR of 0.1. FFT
analysis, shown in Fig. 6, is first performed on the entire one-
second sample (second from top), the non-arcing portion
(third from top) and then the arcing portion (bottom) of the
waveform. The strong presence of the inverter switching
frequency and harmonics appears to overshadow the arc noise,
making detection difficult.

By contrast, the 7™ decomposed signal (covers the
frequency band of 3.9kHz — 7.8kHz) from the wavelet
transform is selected. Different decomposition results using
db3, db9, and dbl9 are shown in Fig. 7. The temporal
waveforms for the selected frequency band clearly indicate the
causality and timing synchronization of the initiation and
extinction of the arc.

B. Composite signal with downsampled data (F;=100kHz)

The composite signal from part 4 is downsampled by a
factor of 10 to produce a composite signal with a sampling
rate of 100kHz and a total of 100k sample points for the one-
second signal. The FFT and wavelet analysis results are shown
in Fig. 8 and Fig. 9 respectively. The decomposed signals
cover the band of 3.125kHz — 6.25kHz are selected.

C. Comparison of the results

From the FFT analysis results shown in Fig. 6 and Fig. 8, it
is difficult to find any significant detectible arc fault features
by comparing the FFT result of the non-arcing part and the

Fig. 6: Composite signal (Fs = 1MHz); FFT analysis of the
entire composite signal (red); FFT of the non-arcing part of the
signal (red); FFT of the arcing part of the signal (green).
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Fig. 7: Wavelet analysis (db3 — magenta, db9 — red, db19 - grey) of
the composite signal (Fs = IMHz).



arcing part of the signal, especially when the sampling rate is
decreased (Fig. 8). Slight differences do exist between the two
spectral analysis graphs, but the fault detection threshold can
be very difficult to select, particularly if a detection technique
using limit-lines is used. Detection threshold setting involves
consideration of the signal-to-noise ratio, which may change
from application-to-application. Selecting a threshold without
delicate calculation and thorough understanding of the system
behavior would lead to not triggering or false triggering of the
protection mechanism.

However, from the wavelet analysis plots, not only arc
features can be easily distinguished from the non-arcing signal,

Fs = 100kHz, Co
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Fig. 8: Composite signal (Fs = 100kHz); FFT analysis of the
entire composite signal (magenta); FFT of the non-arcing part
of the signal (red); FFT of the arcing part of the signal (green).
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Fig. 9: Wavelet analysis (db3 — magenta, db9 — red, db19 - grey) of
the composite signal (Fs = 100kHz).

but the exact moments when the arc fault ignites and
extinguishes can also be observed. This facilitates selection of
a detection threshold for an embedded microcontroller for
real-time arc fault detection. It also enables characterization of
the arc event.

By comparing the analysis result using 3 different
Daubechies wavelets, we can conclude that decomposition
results using db9 and db19 are significantly better than using
db3. But db19 doesn’t provide much improvement to the
result of db9. This is consistent with our frequency response
analysis of the filter banks. By taking the DSP computational
load into consideration, db9 is a good compromise between
calculation speed and decomposition quality.

As shown in part A and part B, the sampling frequency has
significant impact on both Fourier and wavelet detection
approaches. With the signal sampled at 100kHz, it is almost
impossible for the Fourier transform to capture any arc fault
features. While the sustained presence of the arc is not as
obvious as when the sampling frequency is 1MHz for wavelet
decomposition, we should still be able to draw enough
information to detect the arc fault. Thus, detection approaches
based on wavelet can use a lower sampling rate than Fourier
transform to accomplish accurate arc fault detection if indeed
Fourier methods can accomplish it at all.

V. CONCLUSION

This paper proposes a method of studying arc fault detection
algorithms by using waveforms synthesized from real-world
PV system voltages and current representing arcing and
inverter electrical noise with a user-specified arc-signal-to-
noise ratio (ASNR). Wavelet analysis using various mother
wavelet is studied by analyzing frequency responses of the
respective filter banks. The proposed method is then used to
compare the results of Fourier and wavelet analysis of the
signal. From the test results, wavelet analysis performs much
better than the traditional Fourier transform approach. The
mother wavelet selection is studied as well by using various
orders of Daubechies wavelet. The simulated results using the
synthesized test signals coincides with theoretical analysis
derived from wavelet filter banks.
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