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For this study, the interaction of the materials (carbon
fiber, glass fiber, and resin ‘glue’) for a composite flywheel Ceramic Nanofillers
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All flywheels have similar issues — the ‘need for speed’ - kills!

Graphene Nanofillers®’
e High surface area (~ 2600 m?/g)
e 200X stronger than steel

Filament wound carbon fiber composites , ,
Solution Growth of other metal oxides

An example of an EPON resin I TR 10000

o

e Nanofillers’ surface functionality can interact with the resin. o010 T
0 2

e Reactivity can be tailored by surfactant on the nanomaterial | » © roked aeTvs meca 0s% 10% 1% | ’ — — COBHAM oy ynrtz: Bayer r—
e wires and planes have biggest impact at lowest load level.

\ / K Carleton : KCP / \ J k j

m
o
® O
=2

A

m—

: ! . (a) TiO, resin dispersion results did not translate to comm. processed parts!
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