

Exceptional service in the national interest

Resilient Iterative Linear Solvers via Skeptical Programming

James Elliott^{1,2}, Mark Hoemmen¹, Frank Mueller²

¹Sandia National Laboratories

²North Carolina State University

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-1285C

Overview

- Questions?
- A Problem
- Myth of a Reliable Machine
- Reliability For Algorithms
 - Is the root cause of a fault important or is its manifestation?
- Skeptical Programming
 - All iterative ABFT schemes assume some form of detection... how?
- Questions?

Questions

- Quantitative comparisons of ABFT schemes
 - Solve the same problem?
- Fault Models?
 - How critical are they? Granularity? (node, process, operation)
 - Fault rates? (we know so little)
- Reliable Programming
 - Data is often replicated (devices and hosts)
- Correct solution (research) vs performance
 - Bridging the gap... theory/math and systems

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

+

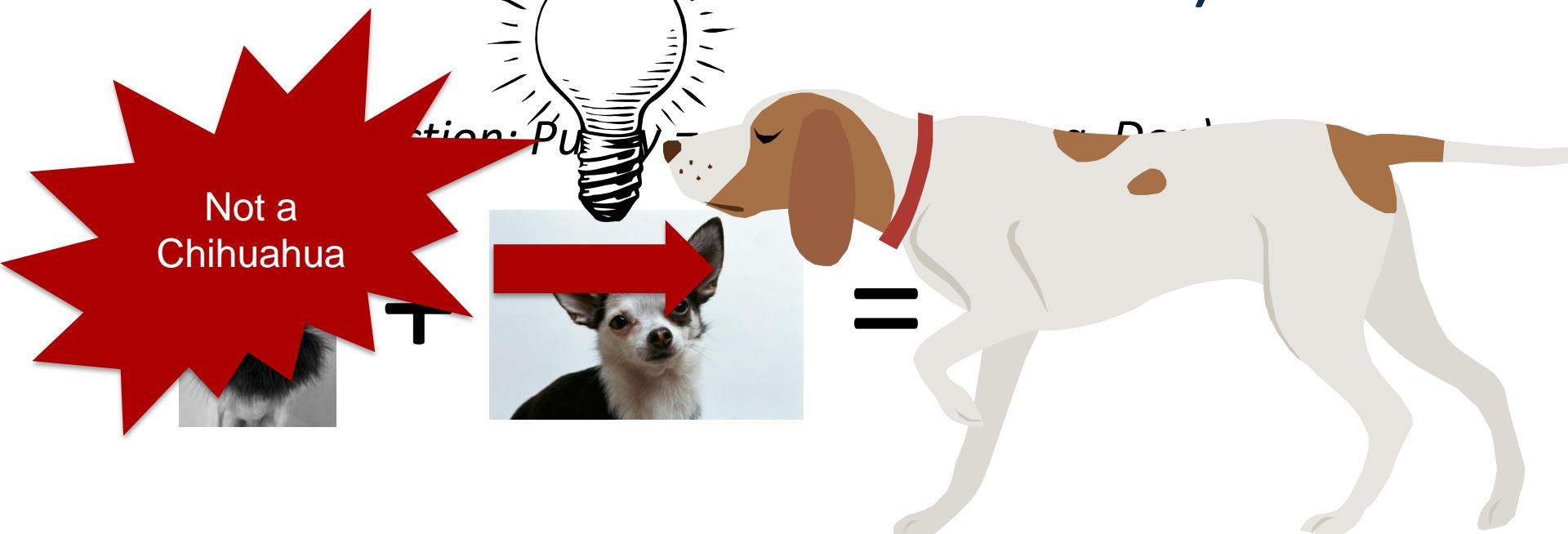
The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

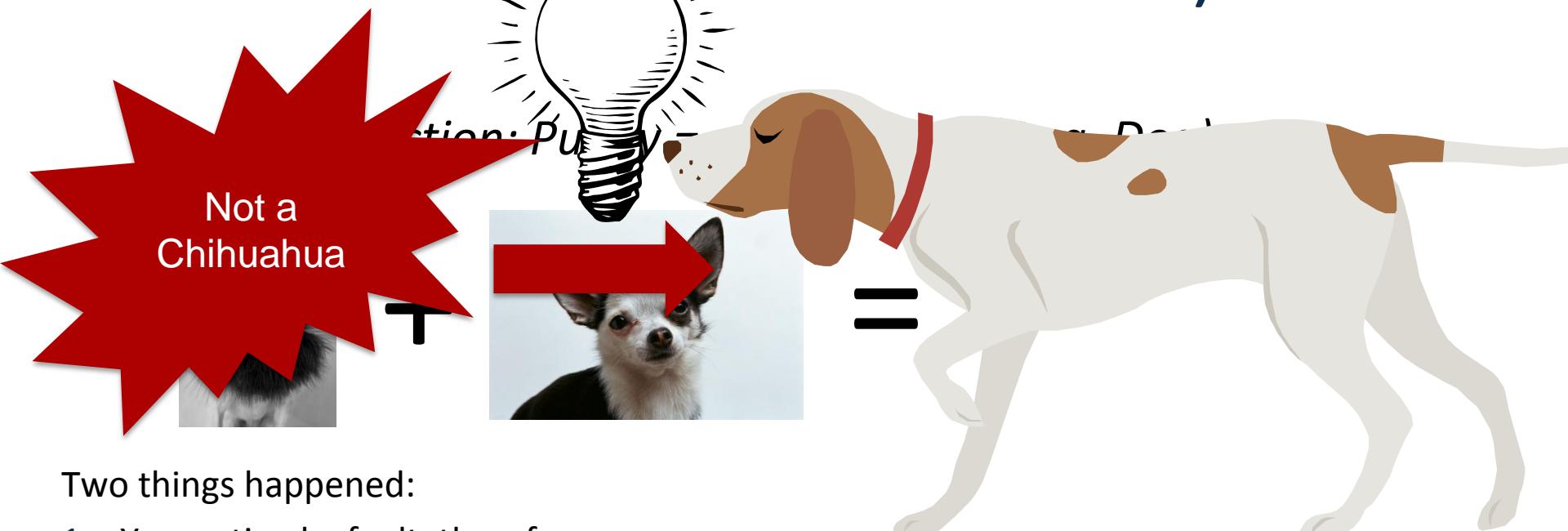
+

=

The Problem (Well one of them)



The Problem (well one of them)



Two things happened:

1. You noticed a fault, therefore ...
2. You can respond (correct the fault)

Detection and Correction

The Problem (well one of them)

How to detect that a silent transient fault occurred?

- Enforce fine-grained correctness (systems approach)
 - ✓ Do calculations multiple times and vote
 - ✗ Ignores numerical properties of algorithms

The Problem (well one of them)

How to detect?

- Enforce fine-grained correctness (systems approach)
 - ✓ Do calculations multiple times and vote
 - ✗ Ignores numerical properties of algorithms
- Convergence (numerical error dampening)
 - ✓ Iterative methods have proven properties to converge to a correct solution given preconditions/assumptions about the inputs
 - ✗ Convergence promise invalidated if assumptions/preconditions are invalidated at any point.

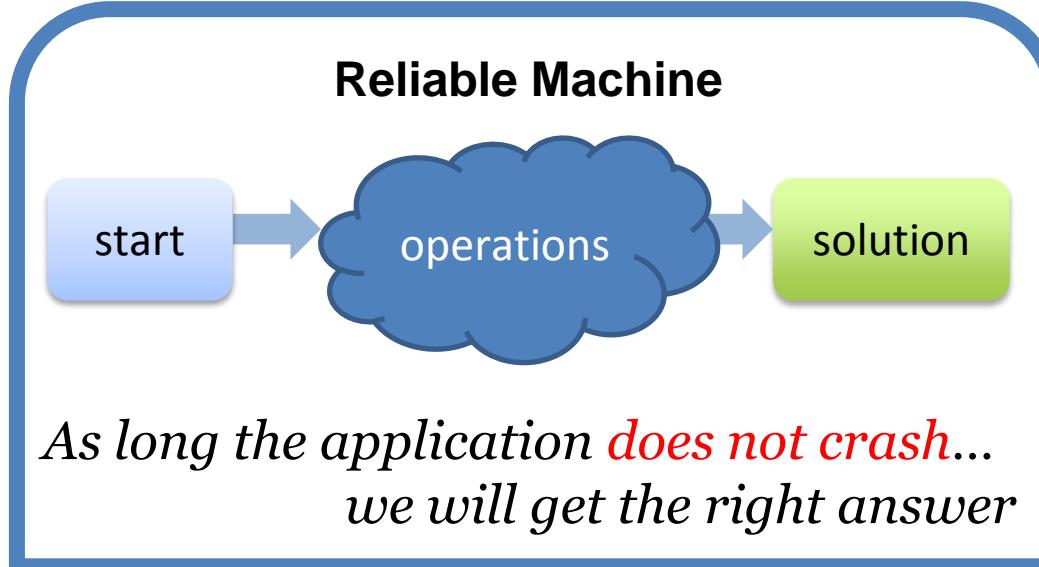
The Problem (well one of them)

How to detect?

- Enforce fine-grained correctness (systems approach)
 - ✓ Do calculations multiple times and vote
 - ✗ Ignores numerical properties of algorithms
- Convergence (numerical error dampening)
 - ✓ Iterative methods have proven properties to converge to a correct solution given preconditions/assumptions about the inputs
 - ✗ Convergence promise invalidated if assumptions/preconditions are invalidated at any point.
- Can we do algorithm-based fault tolerance while still exploiting the numerical properties?

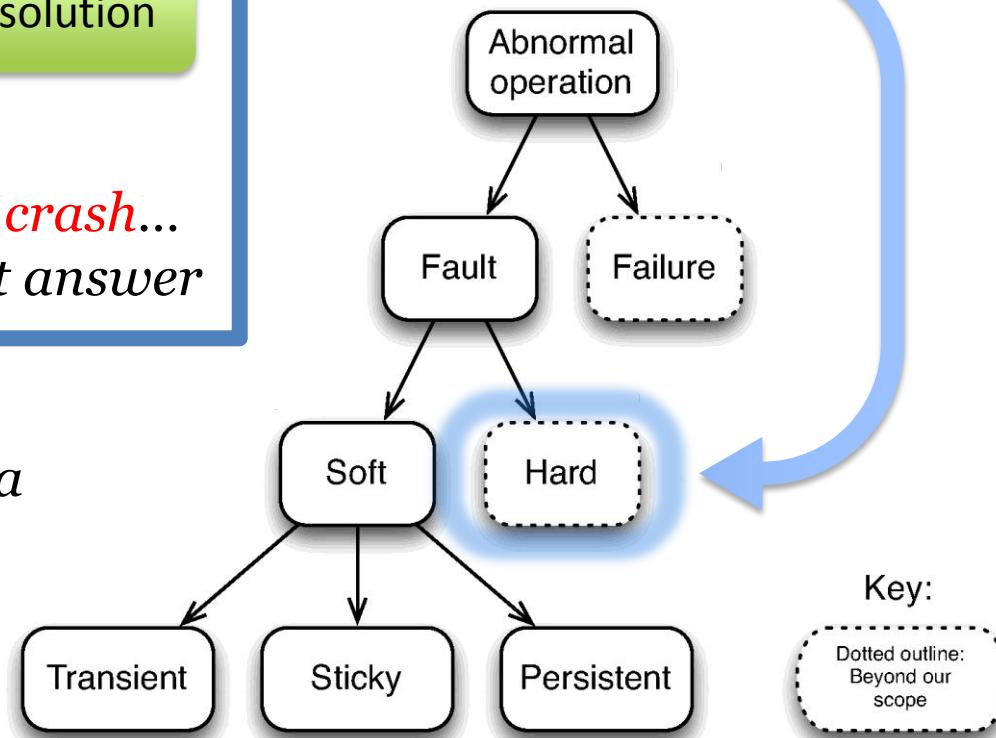
Myth of a Reliable Machine

Current algorithms assume ***numerical reliability***



*Machine reliability addressed via
checkpoint/restart, replication,
algorithm based approaches*

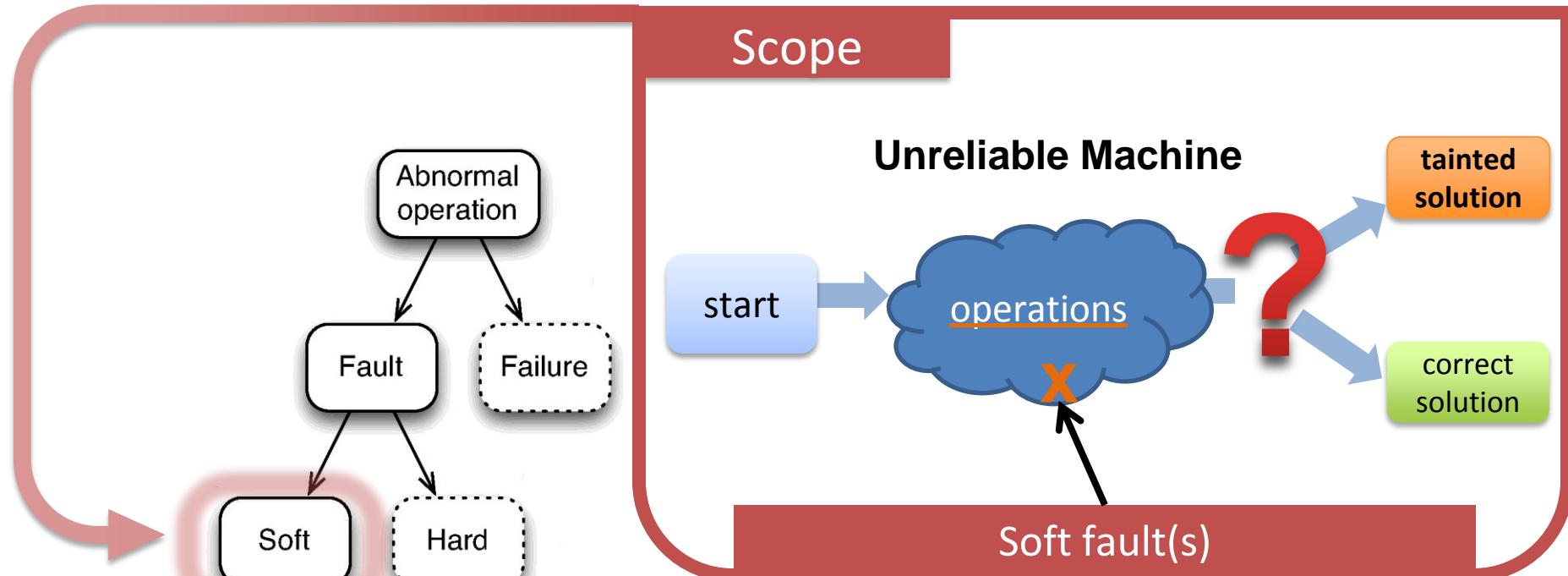
Hard Faults: Not in scope of this work



Myth of a Reliable Machine

Numerical reliability:

numerical operations may be unreliable



Key:

Dotted outline:
Beyond our
scope

Reliability for Algorithms

Numerical Method = Theory + Data

(algorithm) (with assumptions)

- **Two Categories:**
 - **Data:** data required theoretically by the algorithm
(Preconditions/Assumptions)
E.g., for GMRES: A , x_0 , orthonormal subspace of A , right-hand side
 - **Meta-data:** “stuff” required to implement the algorithm
E.g., loop counters, sparse data structures (indices), code
- Regardless of who implements GMRES or in what language, the data can always be assumed (otherwise we would not be considering GMRES!)
Language and Implementation details may result in vastly different meta-data.
- Most extensible research: **focus on faults in data.**

Reliability for Algorithms

- Result of silent fault in **data**:
 - **Silent Data Corruption (SDC)**
- Result of silent transient fault in **meta-data**
 - Faults in code:
 - Weird behavior
 - Perform wrong operation (e.g., add instead of divide) = **SDC** (output is “tainted”)
 - Faults in loop counters, indices (if no segfault/crash)
 - Operate on incorrect data = **SDC** (output is “tainted”)
 - Iterate too much or too little = **SDC** (output is “tainted”)
- Perhaps more

Key: corrupted data model *many* types of faults!

Big Idea: Bounded Error

- Focus on ensuring **bounded error**, *rather than detecting and correcting all errors.*

Big Idea: Bounded Error

- Focus on ensuring **bounded error**, *rather than detecting and correcting all errors*.
- Use preconditions/assumptions on inputs with algorithms' theoretical basis to derive invariants.

Big Idea: Bounded Error

- Focus on ensuring **bounded error**, *rather than detecting and correcting all errors*.
- Use preconditions/assumptions on inputs with algorithms' theoretical basis to derive invariants.
- Invariant checks are silly in a reliable environment
 - If unreliable – **invariants serve as cheap detectors** that the algorithm is in a **theoretically impossible state**.

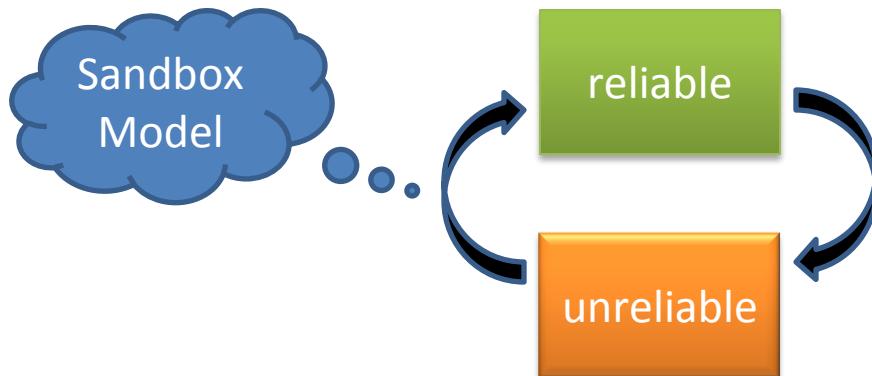
Big Idea: Bounded Error

- Focus on ensuring **bounded error**, *rather than detecting and correcting all errors*.
- Use preconditions/assumptions on inputs with algorithms' theoretical basis to derive invariants.
- Invariant checks are silly in a reliable environment
 - If unreliable – **invariants serve as cheap detectors** that the algorithm is in a **theoretically impossible state**.
- No promise to detect/correct all errors
 - One piece of the resilient algorithm pie
- We call this **Skeptical Programming**.
 - **Be skeptical of computations performed on an unreliable machine**

Reliability

Looking from the Reliable Set:

- **Sandbox Model**



Operate unreliably, but do not trust the results.

Universe of operations inherently *unreliable*

Unreliable ops:

Preconditioner call (and all its operations)

Reliable ops:

Flexible GMRES, (currently all collectives)

Selective Reliability

Algorithm 1 Flexible GMRES (FGMRES)

Input: Linear system $Ax = b$ and initial guess x_0

Output: Approximate solution x_m for some $m \geq 0$

```

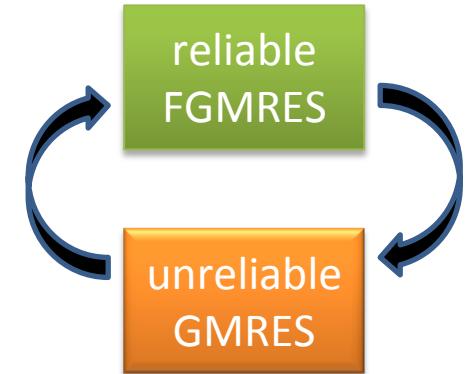
1:  $r_0 := b - Ax_0$                                  $\triangleright$  Unpreconditioned initial residual
2:  $\beta := \|r_0\|_2$ ,  $q_1 := r_0/\beta$ 
3: for  $j = 1, 2, \dots$  until convergence do
4:   Solve  $q_j = M_j z_j$                           $\leftarrow$   $\triangleright$  Apply current preconditioner
5:    $v_{j+1} := Az_j$                              $\triangleright$  Apply the matrix  $A$ 
6:   for  $i = 1, 2, \dots, k$  do                   $\triangleright$  Orthogonalize
7:      $h_{i,j} := q_i \cdot v_{j+1}$ 
8:      $v_{j+1} := v_{j+1} - h_{i,j} q_i$ 
9:   end for
10:   $h_{j+1,j} := \|v_{j+1}\|_2$ 
11:  Update rank-revealing decomposition of  $\mathbf{H}(1:j, 1:j)$ 
12:  if  $\mathbf{H}(j+1, j)$  is less than some tolerance then
13:    if  $\mathbf{H}(1:j, 1:j)$  not full rank then
14:      Did not converge; report error
15:    else
16:      Solution is  $x_{j-1}$                           $\triangleright$  Happy breakdown
17:    end if
18:  else
19:     $q_{j+1} := v_{j+1}/h_{j+1,j}$ 
20:  end if
21:   $y_j := \arg \min_y \|\mathbf{H}(1:j+1, 1:j)y - \beta e_1\|_2$ 
22:   $x_j := x_0 + [z_1, z_2, \dots, z_j]y_j$            $\triangleright$  Compute solution update
23: end for

```

M_j are the preconditioners:

$$z_j = \text{gmres}(\mathbf{A}, q_j)$$

M_j represents using GMRES as a preconditioner...
inside FGMRES.



Skeptical Programming

Algorithm 1:

GMRES

```

for  $l = 1$  to  $do$ 
   $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(j-1)}$ 
   $\mathbf{q}_1 := \mathbf{r} / \|\mathbf{r}\|_2$ 
  for  $j = 1$  to  $restart$  do
     $\mathbf{w}_0 := \mathbf{A}\mathbf{q}_j$ 
    for  $i = 1$  to  $j$  do
       $h_{i,j} := \mathbf{q}_i \cdot \mathbf{w}_{i-1}$ 
       $\mathbf{w}_i := \mathbf{w}_{i-1} - h_{i,j}\mathbf{q}_i$ 
    end
     $h_{j+1,j} := \|\mathbf{w}\|_2$ 
     $\mathbf{q}_{j+1} := \mathbf{w} / h_{j+1,j}$ 
    Find  $\mathbf{y} = \min \|\mathbf{H}_j \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1\|_2$ 
    Evaluate convergence criteria
    Optionally, compute  $\mathbf{x}_j = \mathbf{Q}_j \mathbf{y}$ 
  end
end

```

Skeptical Programming

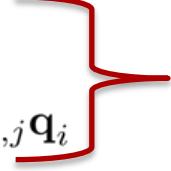
Algorithm 1:

GMRES

```

for  $l = 1$  to  $do$ 
   $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(j-1)}$ 
   $\mathbf{q}_1 := \mathbf{r} / \|\mathbf{r}\|_2$ 
  for  $j = 1$  to restart do
     $\mathbf{w}_0 := \mathbf{A}\mathbf{q}_j$ 
    for  $i = 1$  to  $j$  do
       $h_{i,j} := \mathbf{q}_i \cdot \mathbf{w}_{i-1}$ 
       $\mathbf{w}_i := \mathbf{w}_{i-1} - h_{i,j}\mathbf{q}_i$ 
    end
     $h_{j+1,j} := \|\mathbf{w}\|_2$ 
     $\mathbf{q}_{j+1} := \mathbf{w} / h_{j+1,j}$ 
    Find  $\mathbf{y} = \min \|\mathbf{H}_j \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1\|_2$ 
    Evaluate convergence criteria
    Optionally, compute  $\mathbf{x}_j = \mathbf{Q}_j \mathbf{y}$ 
  end
end

```


Orthogonalization
 Builds upper Hessenburg
 matrix (\mathbf{H})

Skeptical Programming

Algorithm 1:

```

for  $l = 1$  to  $l_{max}$  do
   $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(j-1)}$ 
   $\mathbf{q}_1 := \mathbf{r} / \|\mathbf{r}\|_2$ 
  for  $j = 1$  to  $restart$  do
     $\mathbf{w}_0 := \mathbf{A}\mathbf{q}_j$ 
    for  $i = 1$  to  $j$  do
       $h_{i,j} := \mathbf{q}_i \cdot \mathbf{w}_{i-1}$ 
       $\mathbf{w}_i := \mathbf{w}_{i-1} - h_{i,j}\mathbf{q}_i$ 
    end
     $h_{j+1,j} := \|\mathbf{w}_j\|_2$ 
     $\mathbf{q}_{j+1} := \mathbf{w}_j / h_{j+1,j}$ 
    Find  $\mathbf{y} = \min \|\mathbf{H}_j \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1\|_2$ 
    Evaluate convergence criteria
    Optionally, compute  $\mathbf{x}_j = \mathbf{Q}_j \mathbf{y}$ 
  end
end

```

GMRES

Theoretical Bounds on the Arnoldi Process

$$\begin{aligned}\|\mathbf{w}_0\| &= \|\mathbf{A}\mathbf{q}_j\| \leq \|\mathbf{A}\|_2 \|\mathbf{q}_j\|_2 \\ \|\mathbf{w}_0\| &\leq \|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F\end{aligned}$$

From isometry of orthogonal projections,

$$|h_{i,j}| \leq \|\mathbf{A}\|_F$$

- $h_{i,j}$ form Hessenberg Matrix
- Bound only computed once, valid for entire solve

Skeptical Programming

Algorithm 1:

```

for  $l = 1$  to  $\text{do}$ 
   $\mathbf{r} := \mathbf{b} - \mathbf{A}\mathbf{x}^{(j-1)}$ 
   $\mathbf{q}_1 := \mathbf{r} / \|\mathbf{r}\|_2$ 
  for  $j = 1$  to  $\text{restart}$  do
     $\mathbf{w}_0 := \mathbf{A}\mathbf{q}_j$ 
    for  $i = 1$  to  $j$  do
       $h_{i,j} := \mathbf{q}_i \cdot \mathbf{w}_{i-1}$ 
       $\mathbf{w}_i := \mathbf{w}_{i-1} - h_{i,j}\mathbf{q}_i$ 
    end
     $h_{j+1,j} := \|\mathbf{w}_j\|_2$ 
     $\mathbf{q}_{j+1} := \mathbf{w}_j / h_{j+1,j}$ 
    Find  $\mathbf{y} = \min \|\mathbf{H}_j \mathbf{y} - \|\mathbf{b}\| \mathbf{e}_1\|_2$ 
    Evaluate convergence criteria
    Optionally, compute  $\mathbf{x}_j = \mathbf{Q}_j \mathbf{y}$ 
  end
end

```

GMRES

Theoretical Bounds on the Arnoldi Process

$$\begin{aligned}\|\mathbf{w}_0\| &= \|\mathbf{A}\mathbf{q}_j\| \leq \|\mathbf{A}\|_2 \|\mathbf{q}_j\|_2 \\ \|\mathbf{w}_0\| &\leq \|\mathbf{A}\|_2 \leq \|\mathbf{A}\|_F\end{aligned}$$

From isometry of orthogonal projections,

$$|h_{i,j}| \leq \|\mathbf{A}\|_F$$

- $h_{i,j}$ form Hessenberg Matrix
- Bound only computed once, valid for entire solve
- **Identifies that something isn't right**

Preconditioners

$$\tilde{\mathbf{z}}_i = \mathbf{M}^{-1} \mathbf{q}_i$$

Preconditioners

$$\tilde{\mathbf{z}}_i = \mathbf{M}^{-1} \mathbf{q}_i$$

Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

Preconditioners

$$\tilde{\mathbf{z}}_i = \mathbf{M}^{-1} \mathbf{q}_i$$

Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz
(with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Preconditioners

$$\tilde{\mathbf{z}}_i = \mathbf{M}^{-1} \mathbf{q}_i$$

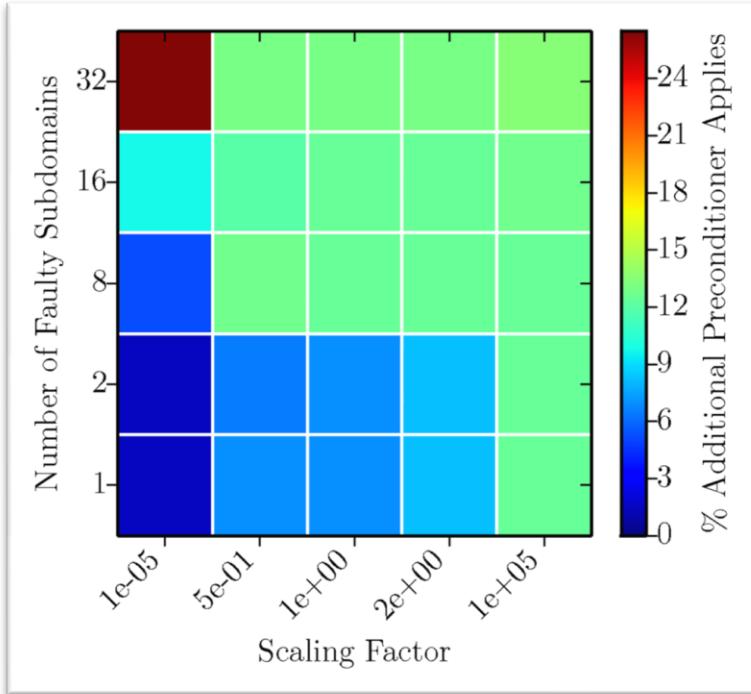
Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

120 *inner* preconditioner applies using **Flexible Gmres** + **Gmres + Additive Schwarz** (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

No communication with other subdomains

Mean percent additional preconditioner applies

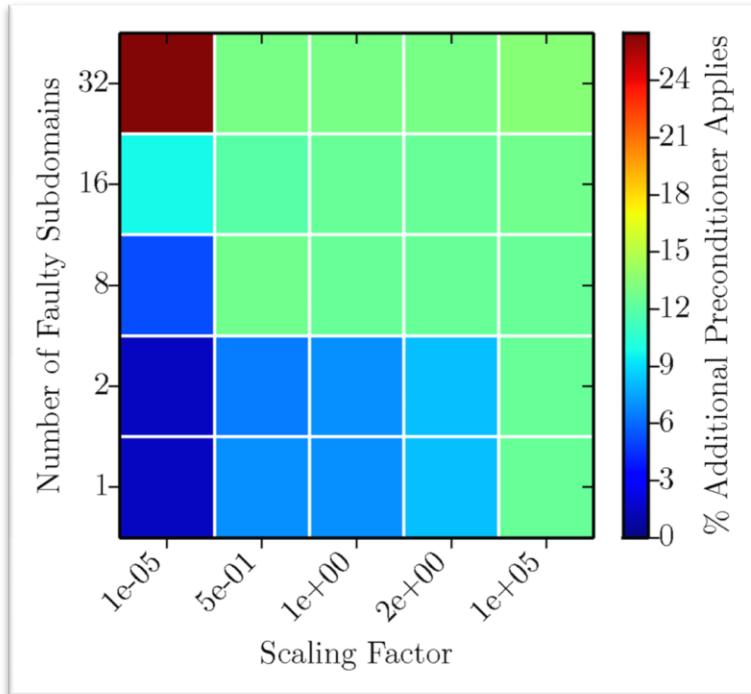


Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Mean percent additional preconditioner applies



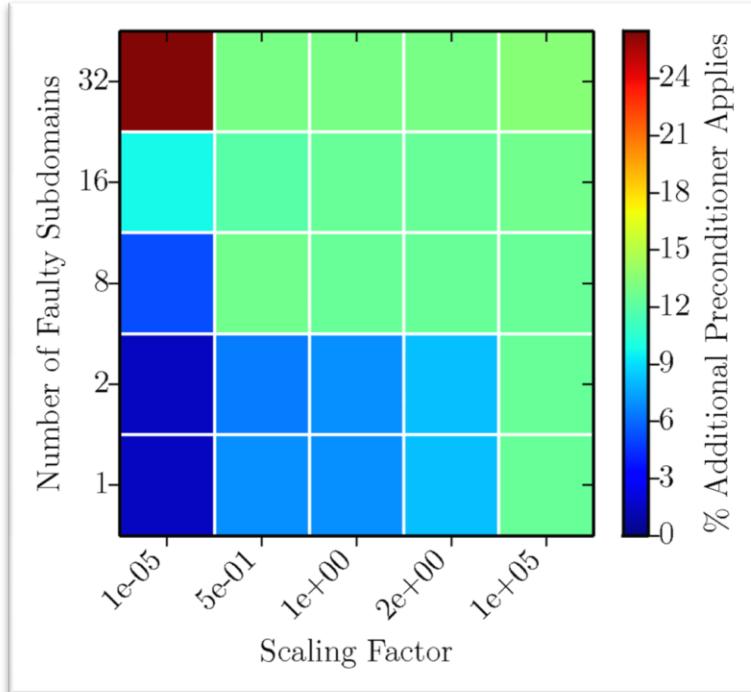
Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional preconditioner applies



all subdomains
faulty

1 faulty subdomain

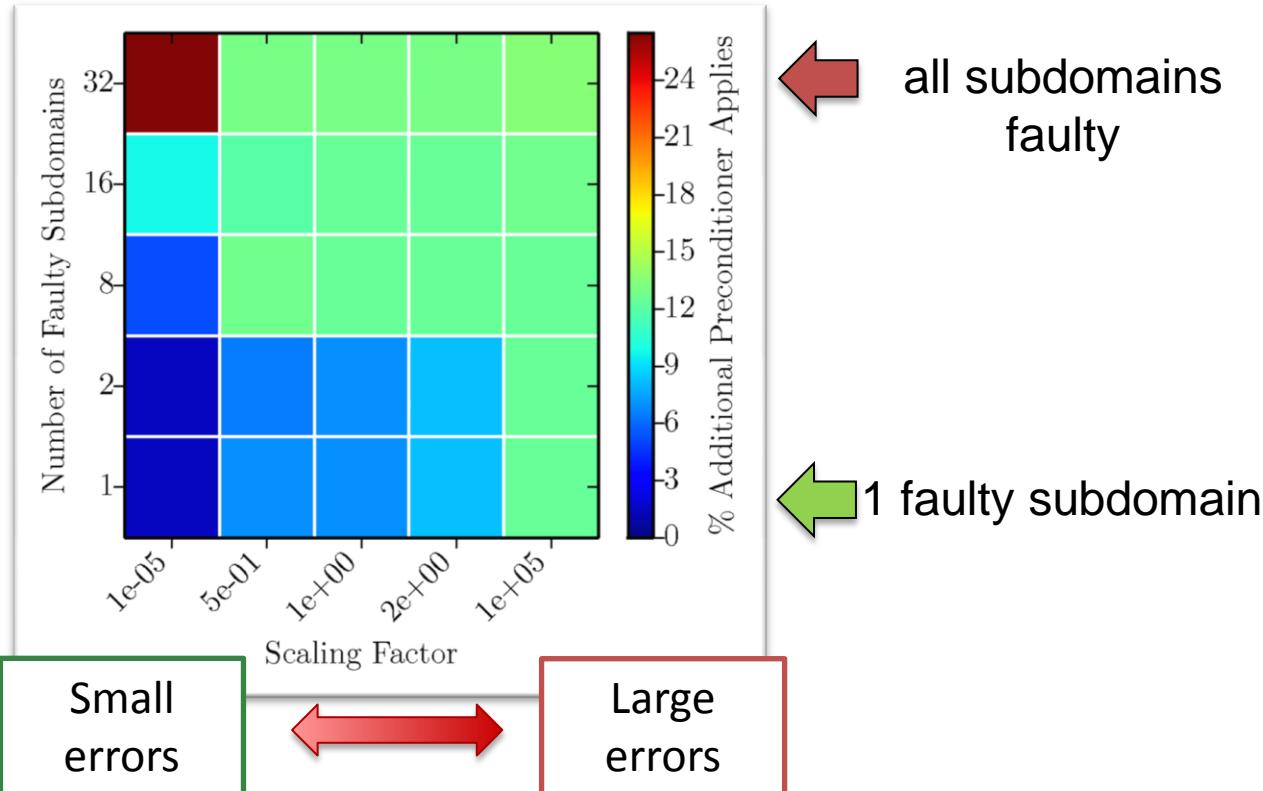
Fault:
subdomain permutes
preconditioner's
output
(preserves length)

X-axis:
subdomain also
scales permuted
output

120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

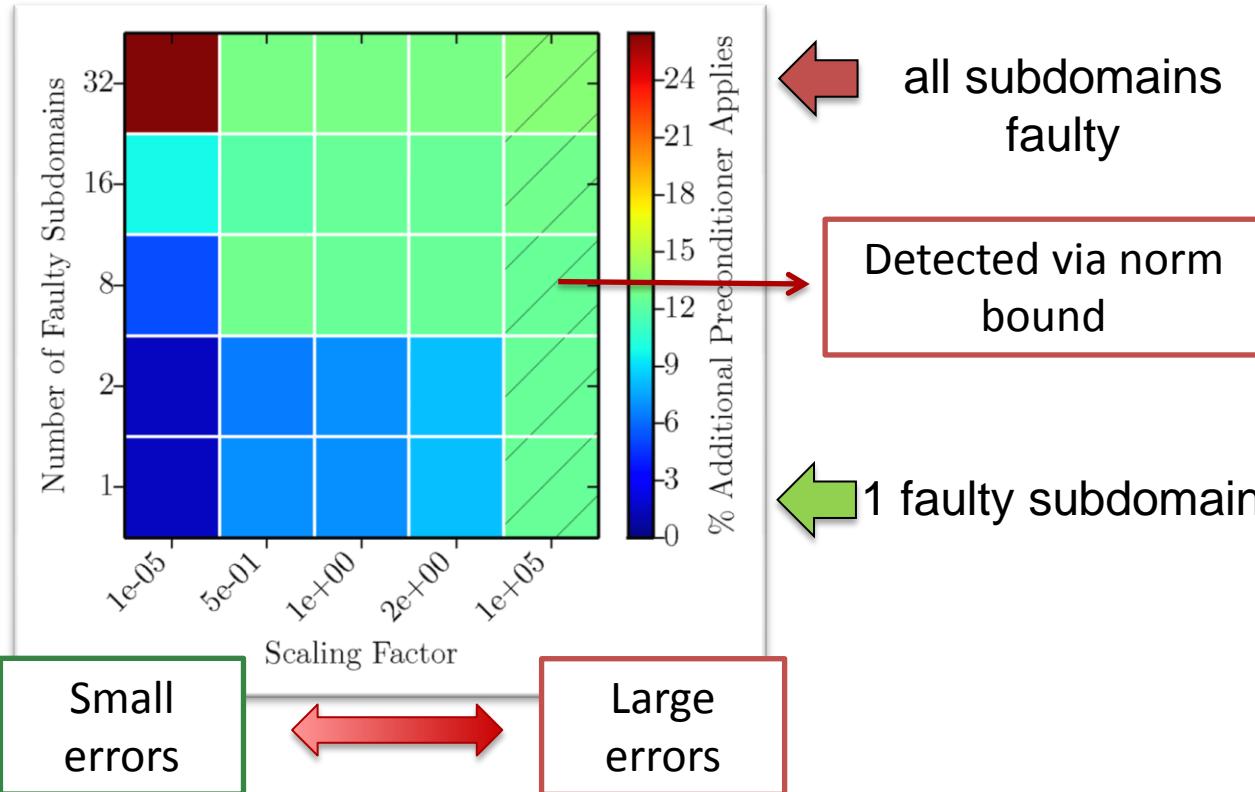
Mean percent additional preconditioner applies



120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional preconditioner applies



120 *inner* preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Multiple Faults and Reactive FT

- What to do when a fault is detected – options based on FT strategy

Solver Type	Restart	Abort Solve
GMRES		
Restarted GMRES	X	
Nested Solvers	X	X

Restarting:

theoretically bad for GMRES (you lose valuable state)

Aborting: inner solve exits abnormally

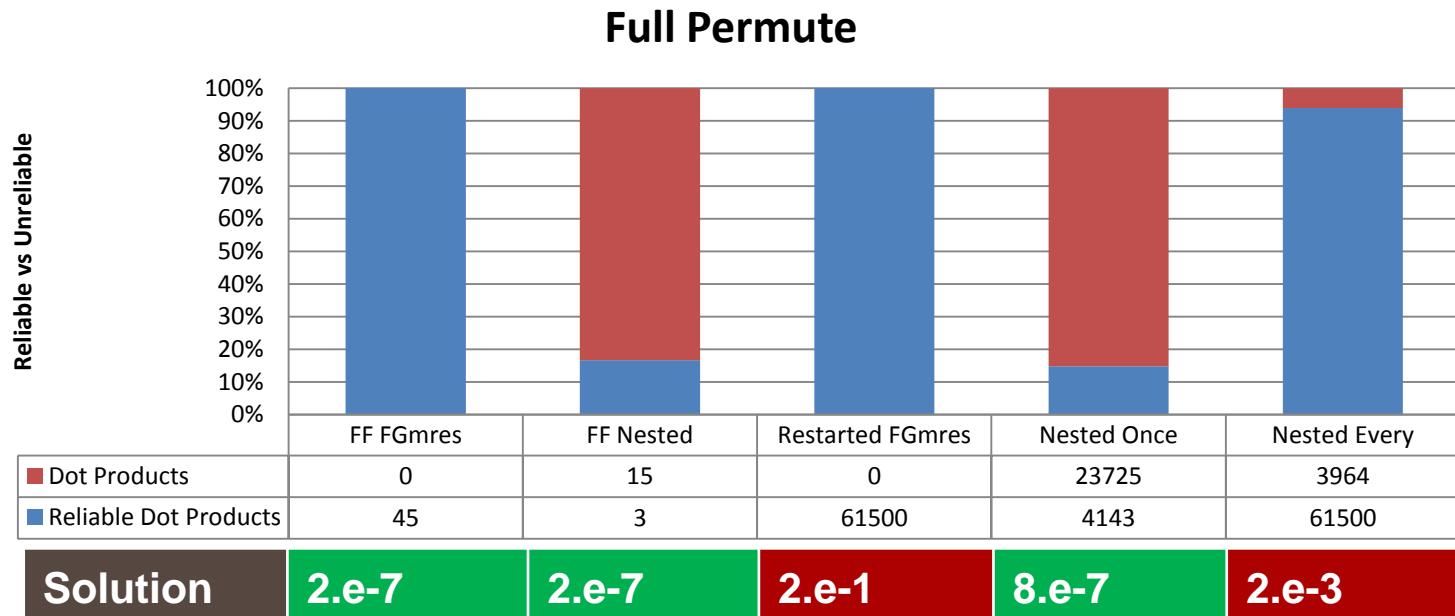
Both cases: (for right preconditioned solver) – must apply preconditioner to get solution. (This can be expensive!)

Residual checks ($Ax-b$), require preconditioner application

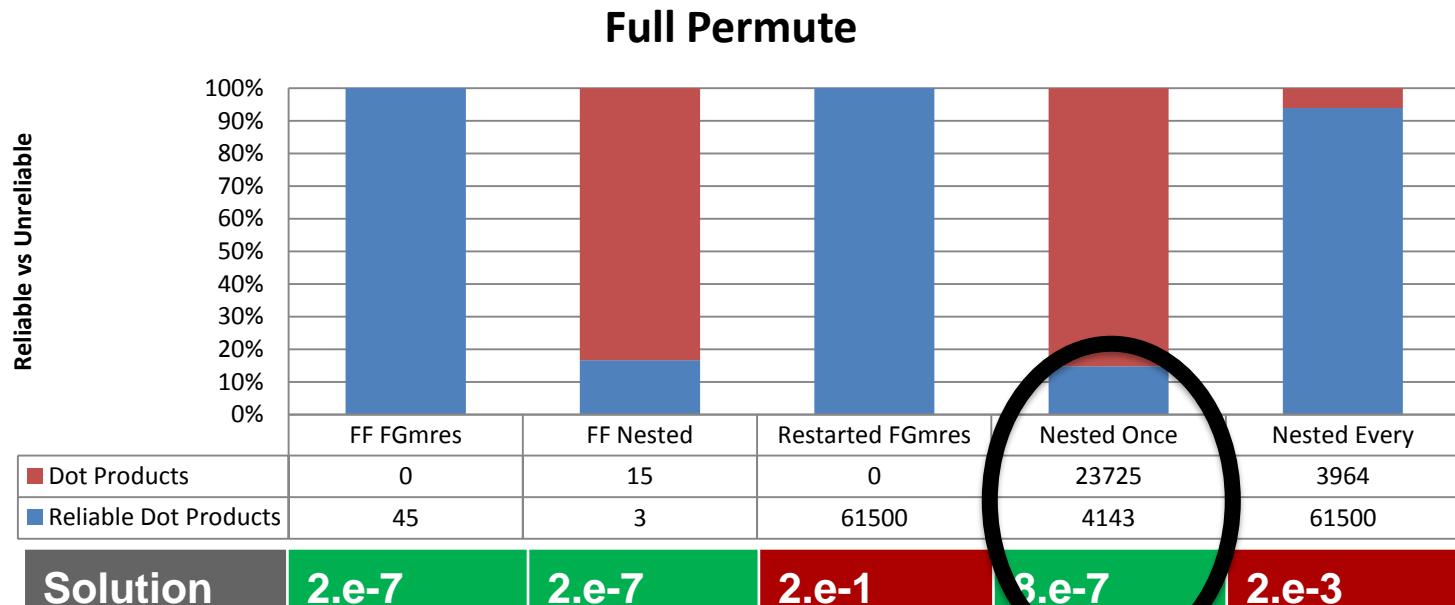
Multiple Faults and Reactive FT

- Experiment, 10 MPI processes
 - at every preconditioner apply, single MPI rank is faulty
 - Fault: MPI process permutes (shuffles) all values in the output from its preconditioner or swamps the min and max values in its output
 - Requirement: residual ($||Ax-b||$) less than $1x10^{-6}$
 - Solver:
 - Reliable Restarted FGmres: Flexible GMRES, with reliable (triple modular redundancy) dot products and Sparse Mat-Vec (SpMV) – 3x cost in flops
 - Reliable Restarted FGmres + Gmres: Nested solver, e.g., FT-GMRES
 - Preconditioner :
 - 10 layer Multigrid – one of (if not) the best Poisson solvers
 - Solver + Preconditioner are widely used because of robustness and speed
 - Compares against a “good” solver

Multiple Faults and Reactive FT

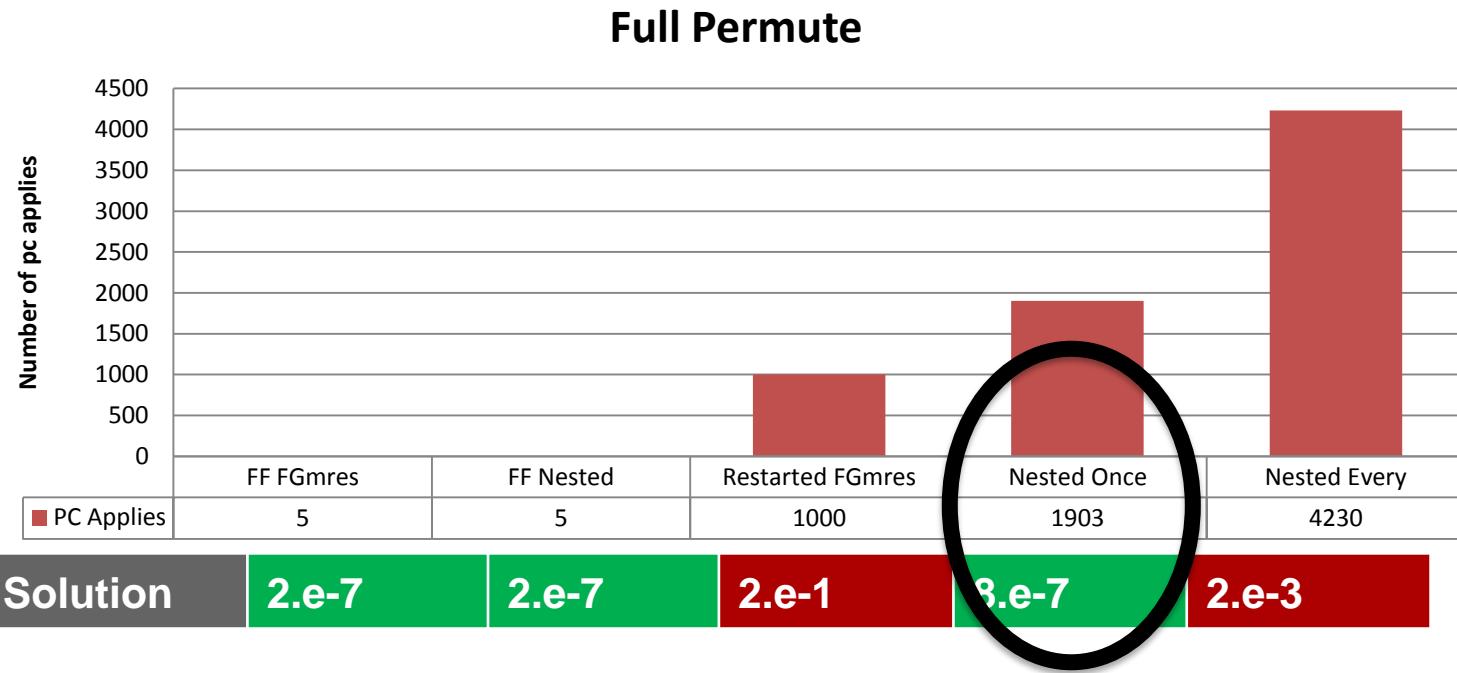


Multiple Faults and Reactive FT



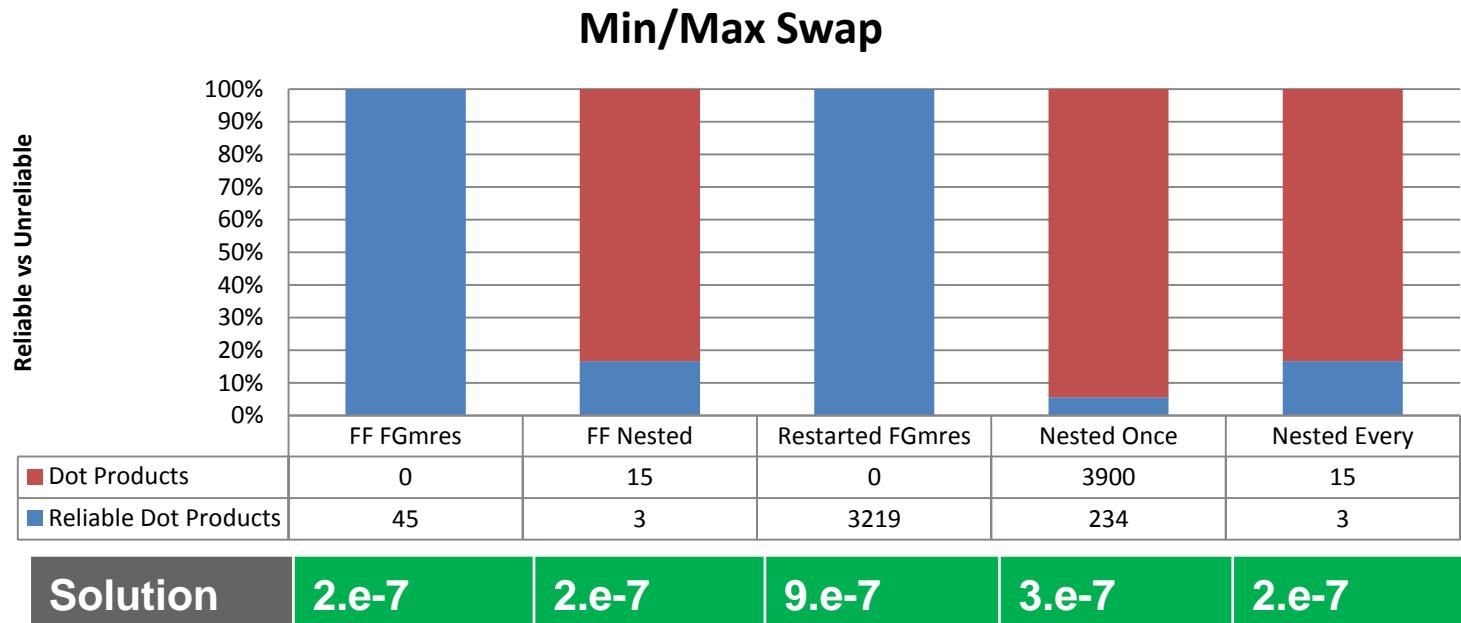
Checks residual once, all work is “bad”, single checks ensures
you do not go backwards
Total work equal to work done in failure free

Multiple Faults and Reactive FT

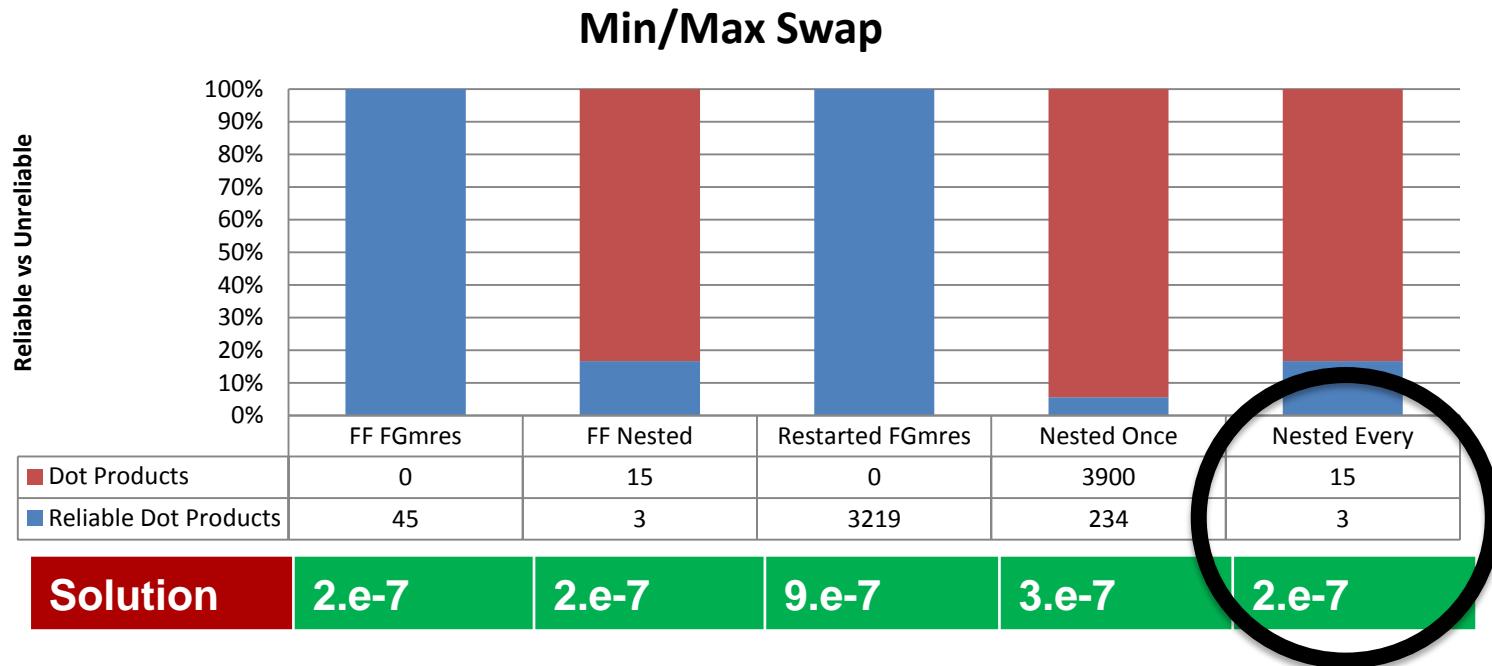


Checks residual once, all work is “bad”, single checks ensures
you do not go backwards
Total work equal to work done in failure free

Multiple Faults and Reactive FT

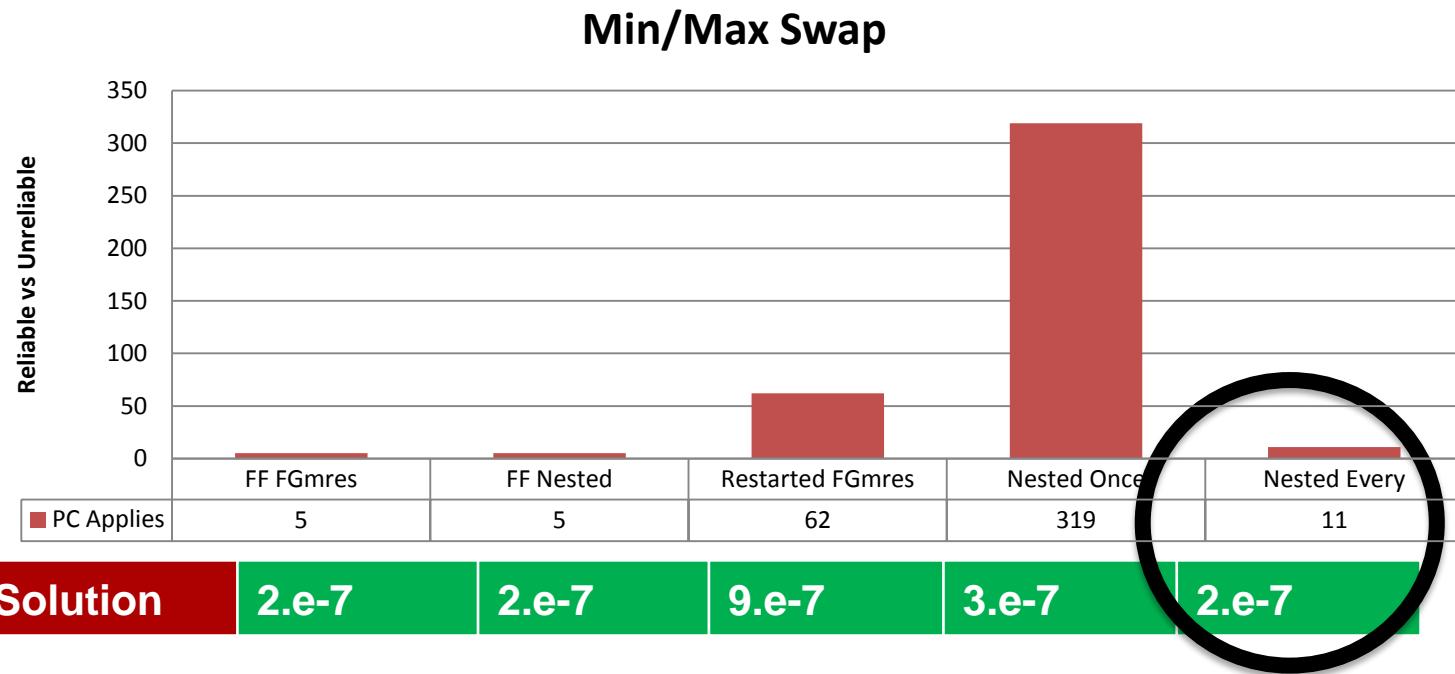


Multiple Faults and Reactive FT



Checks residual every time, catches “bad” errors early
 Total work equal to work done in failure free

Multiple Faults and Reactive FT



Checks residual every time, catches “bad” errors early
 Total work equal to work done in failure free

James Elliott

Computer Science, North Carolina State Univ.

- Example: Dot products:

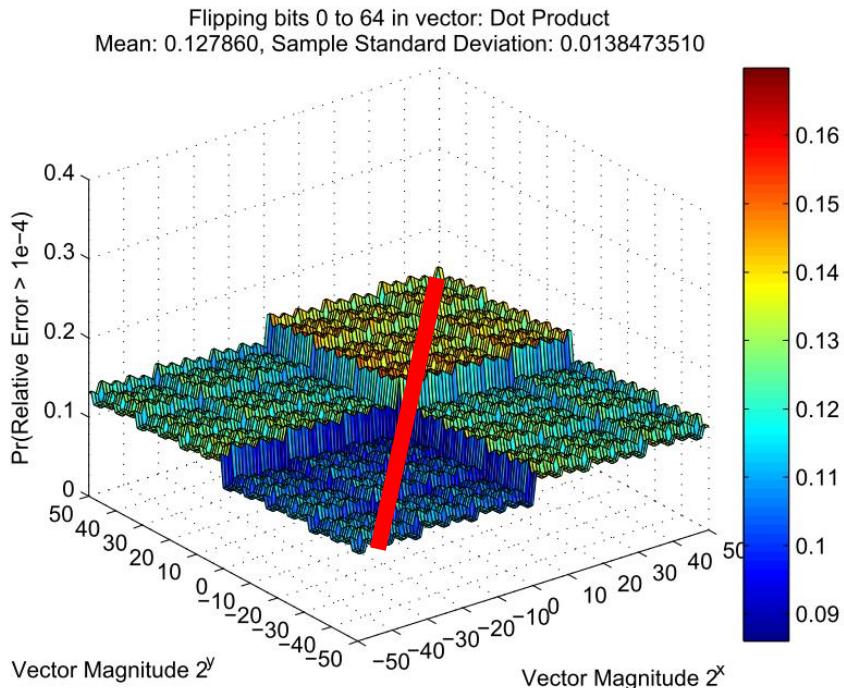
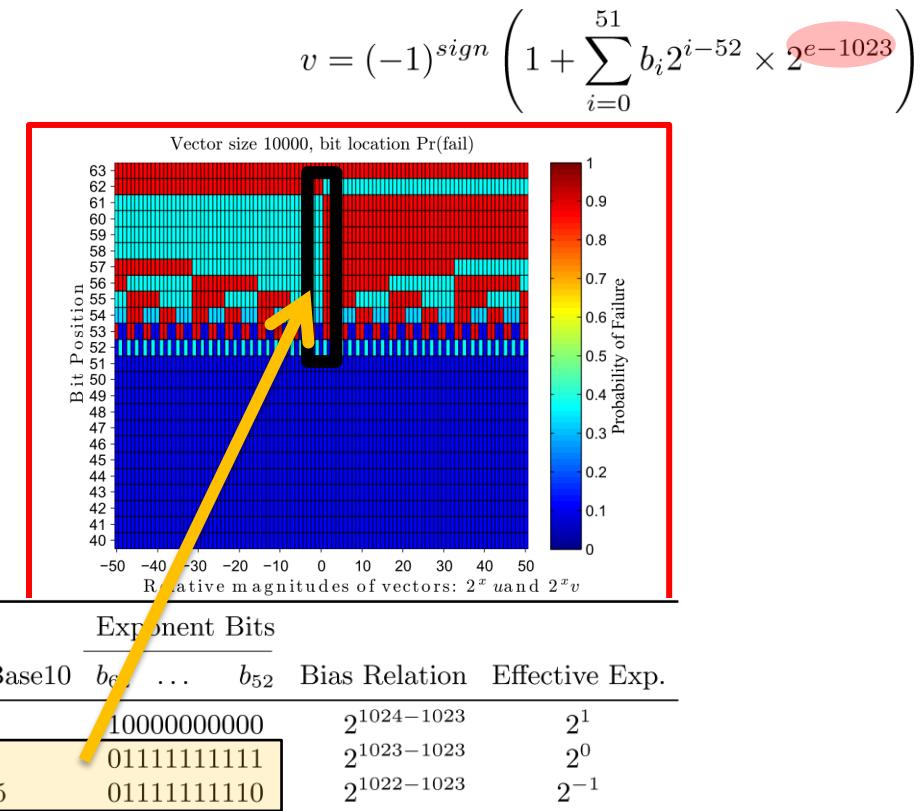
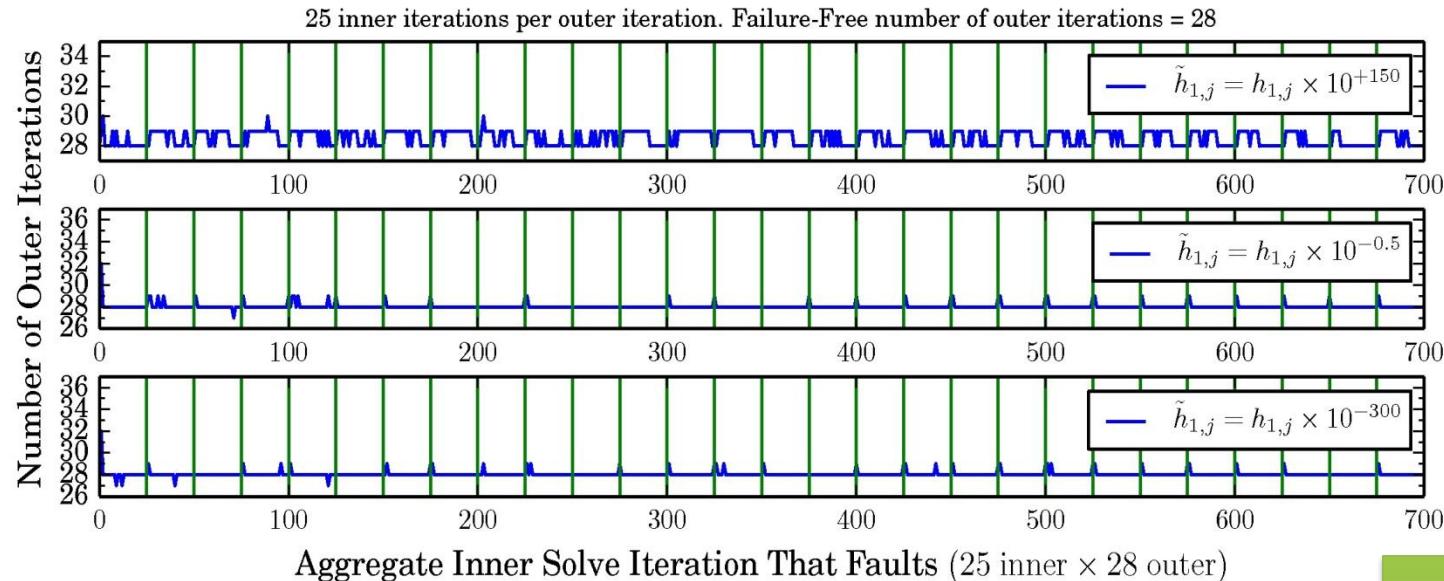
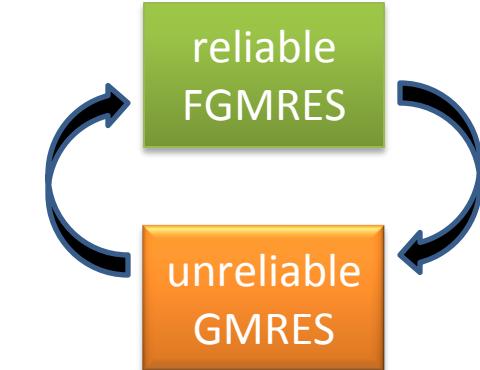


Figure shows probability of experiencing large error.
Due to floating point implementation, not all bit flips create large error - can model the probability of experiencing specific magnitudes of error.

Experiments

Number of Outer Iterations to Convergence (mult_dcop_03)



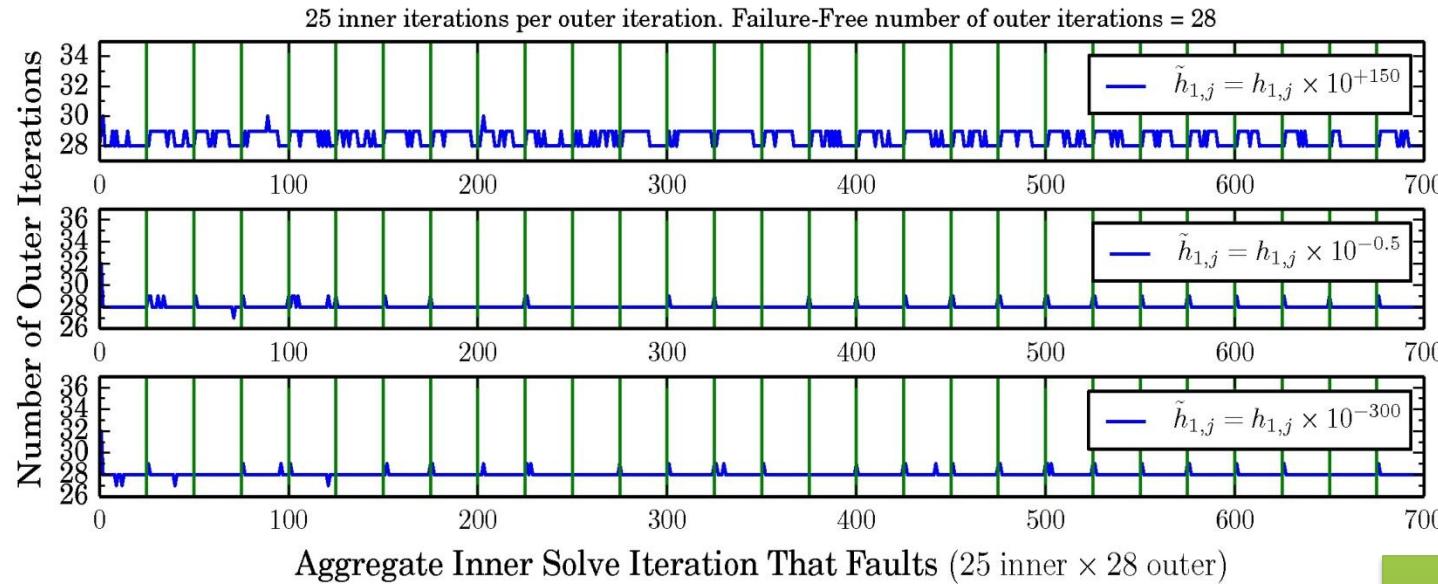
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Experiments

Number of Outer Iterations to Convergence (mult_dcop_03)



Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

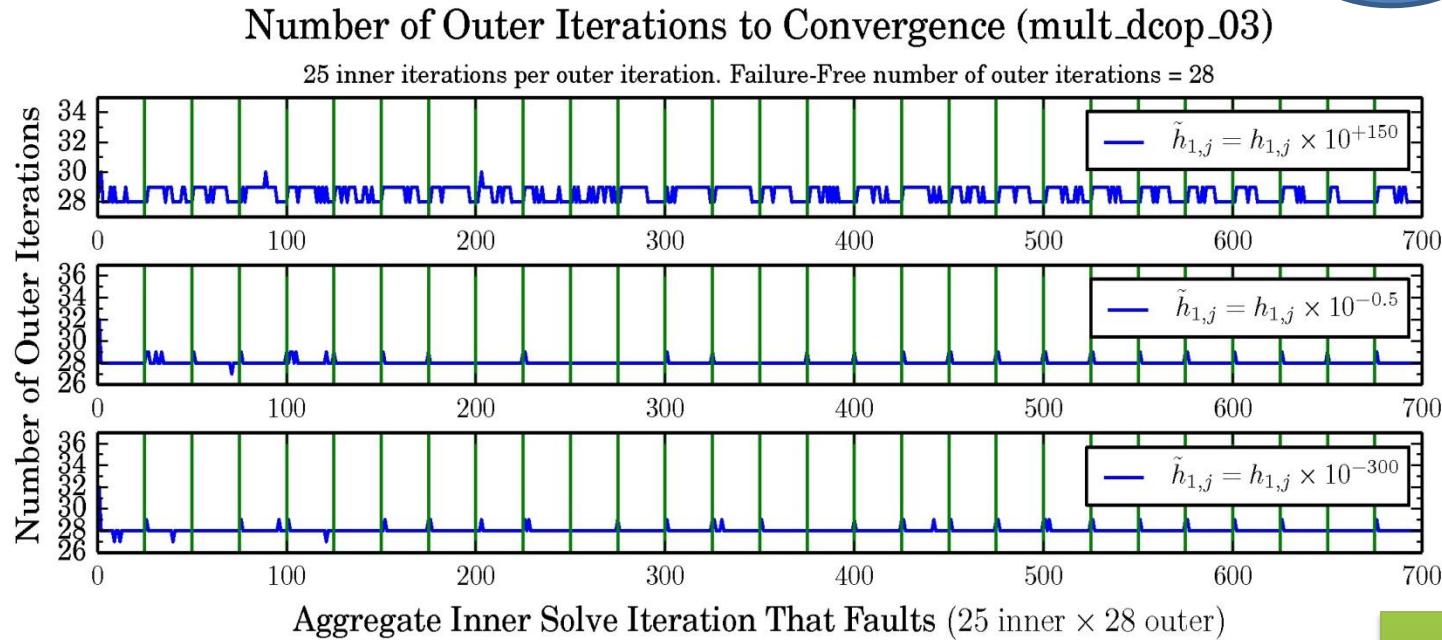
unreliable
GMRES

Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Experiments



Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

700 experiments per fault type

reliable FGMRES

unreliable GMRES

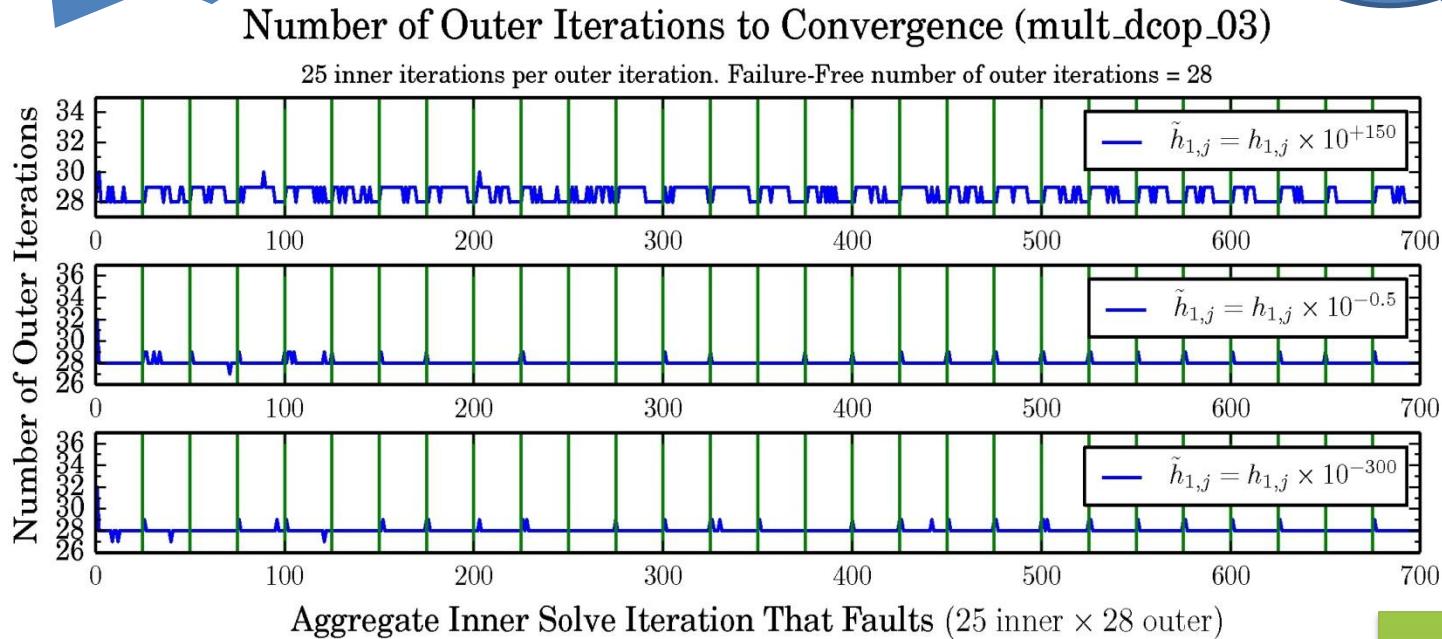
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject *single* fault
Study impact

700
experiments per
fault type



Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

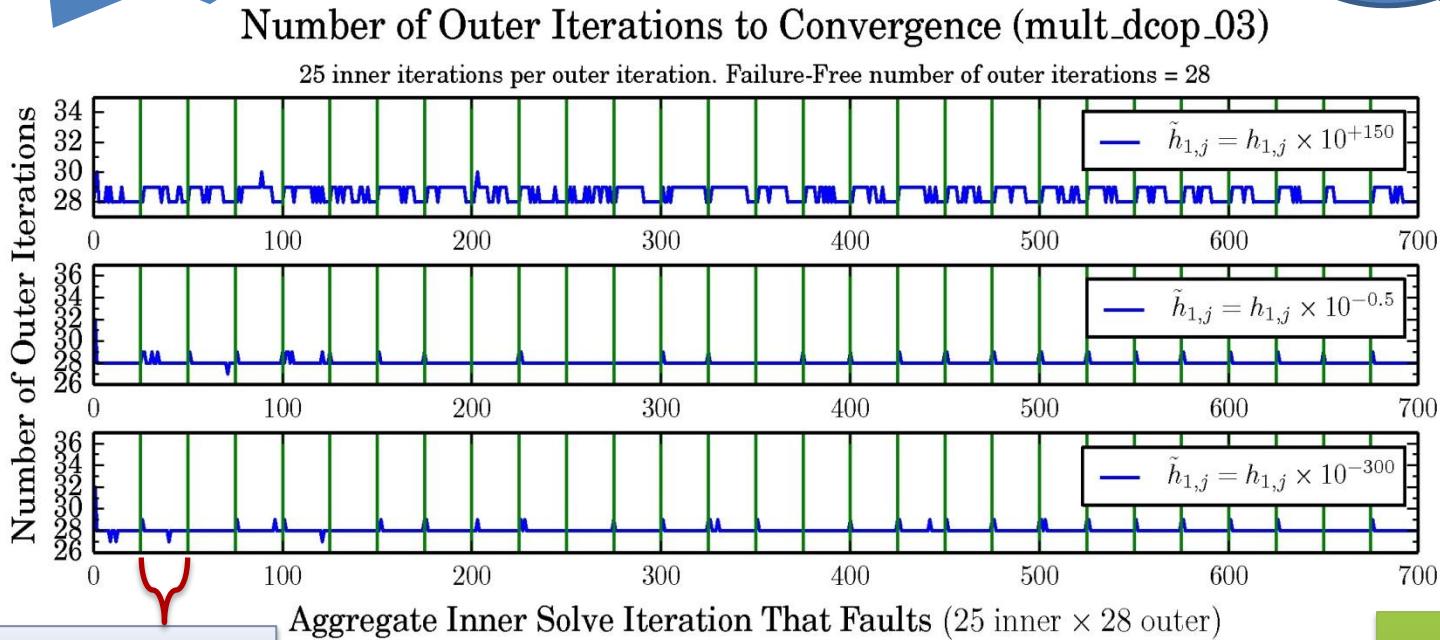
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject **single** fault
Study impact

700
experiments per
fault type



Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

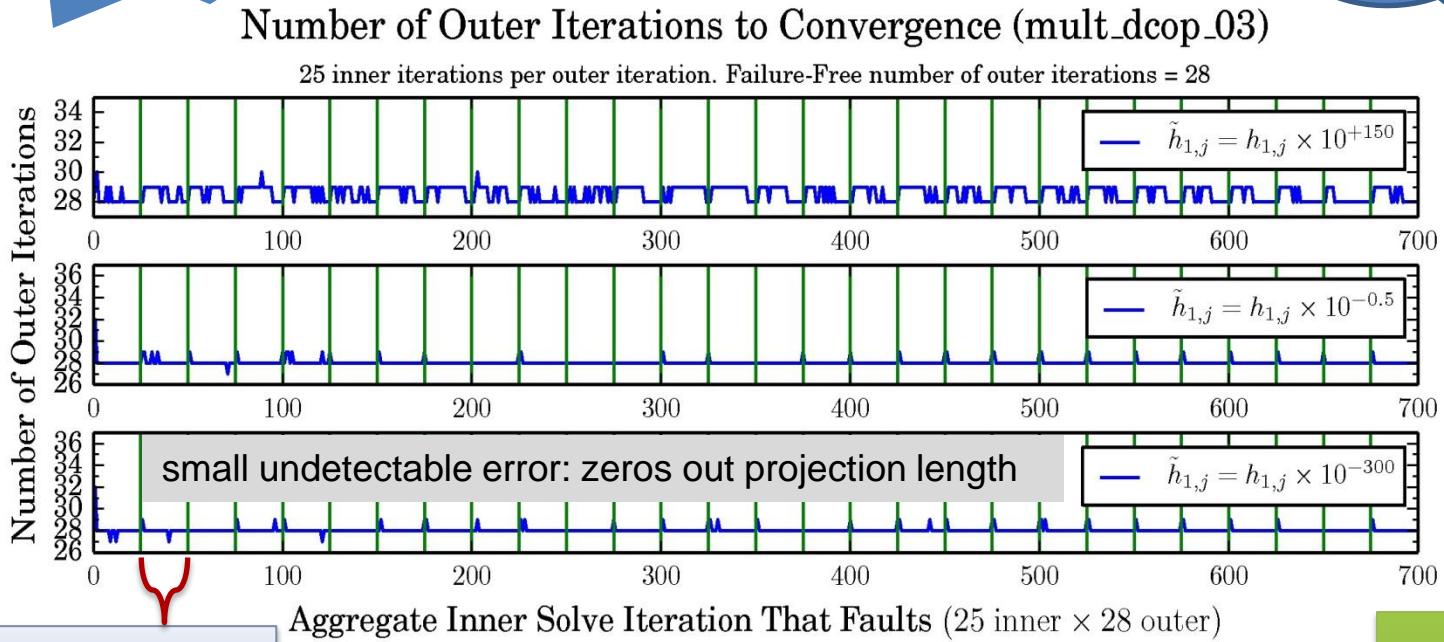
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject *single* fault
Study impact

700
experiments per
fault type



one inner solve

Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

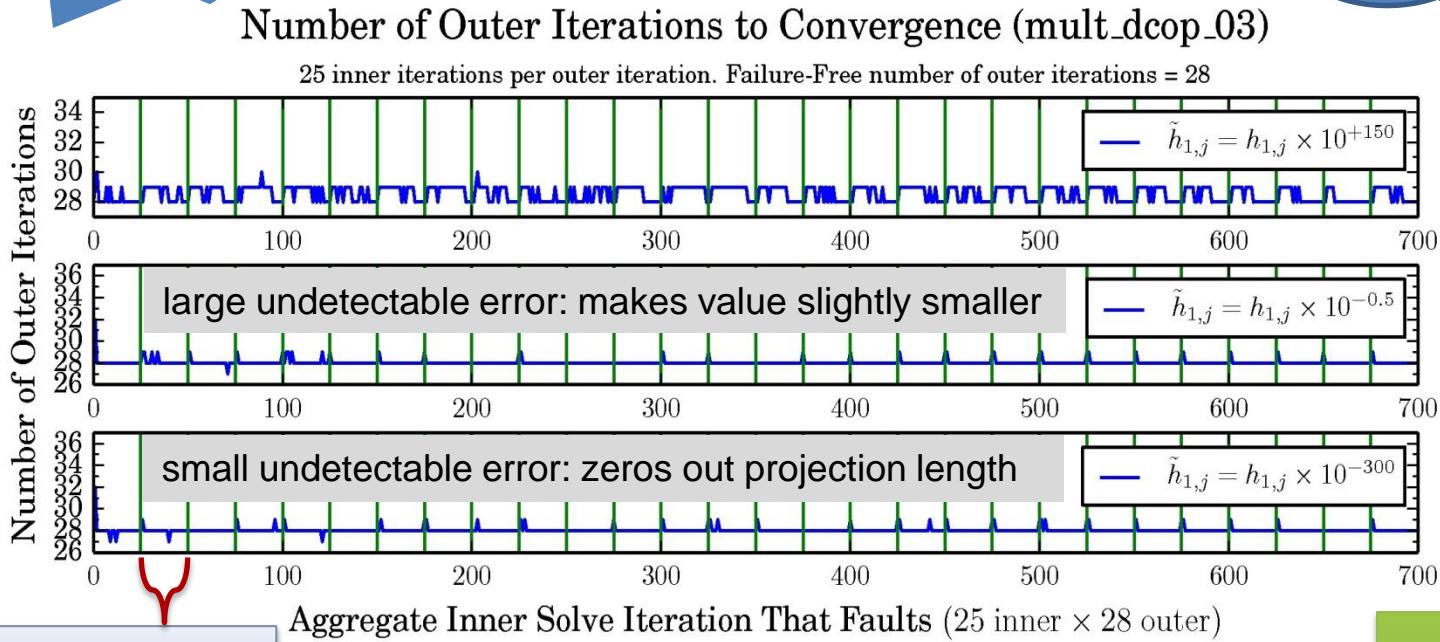
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject *single* fault
Study impact

700
experiments per
fault type



one inner solve

Failure Free: **700 orthogonalization calls**
28 outer iterations to converge
25 inner iterations per outer
x-axis:
introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

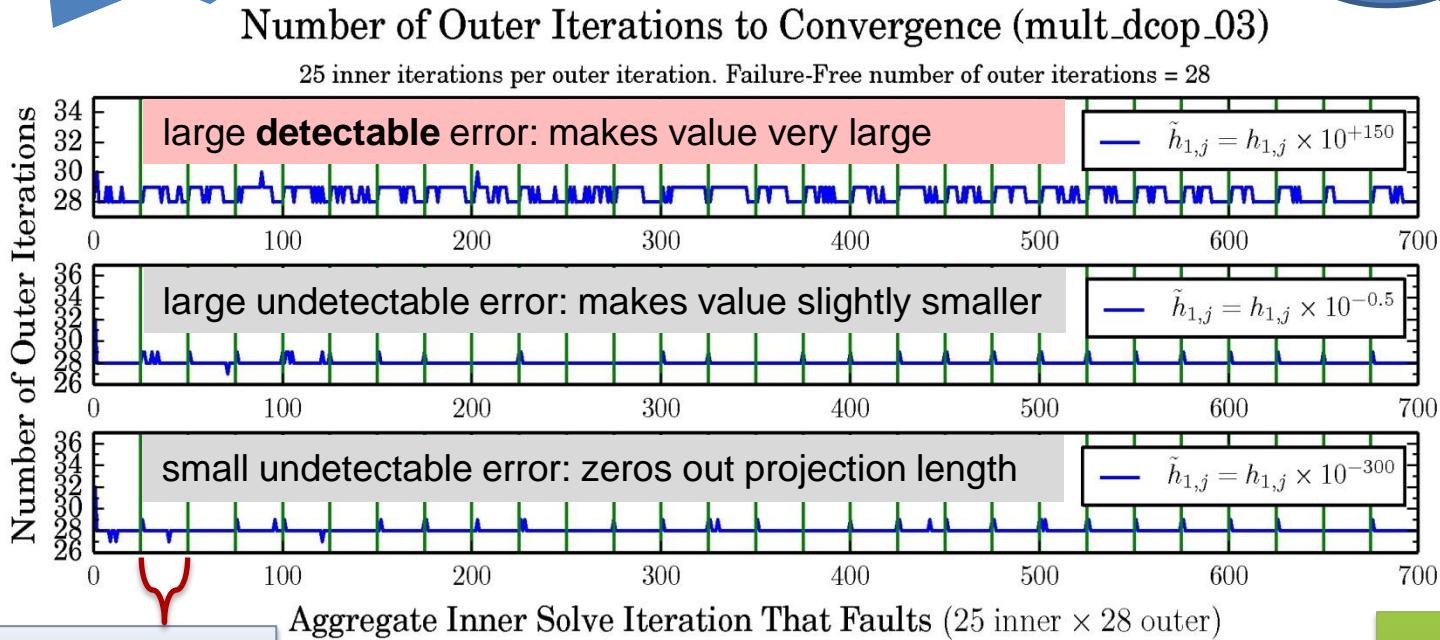
Prototype Design: Fault Tolerant GMRES iterative solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject **single** fault
Study impact

700
experiments per
fault type



one inner solve

Failure Free: **700 orthogonalization calls**
28 outer iterations to converge
25 inner iterations per outer
x-axis:
introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

Prototype Design: Fault Tolerant GMRES iterative solver

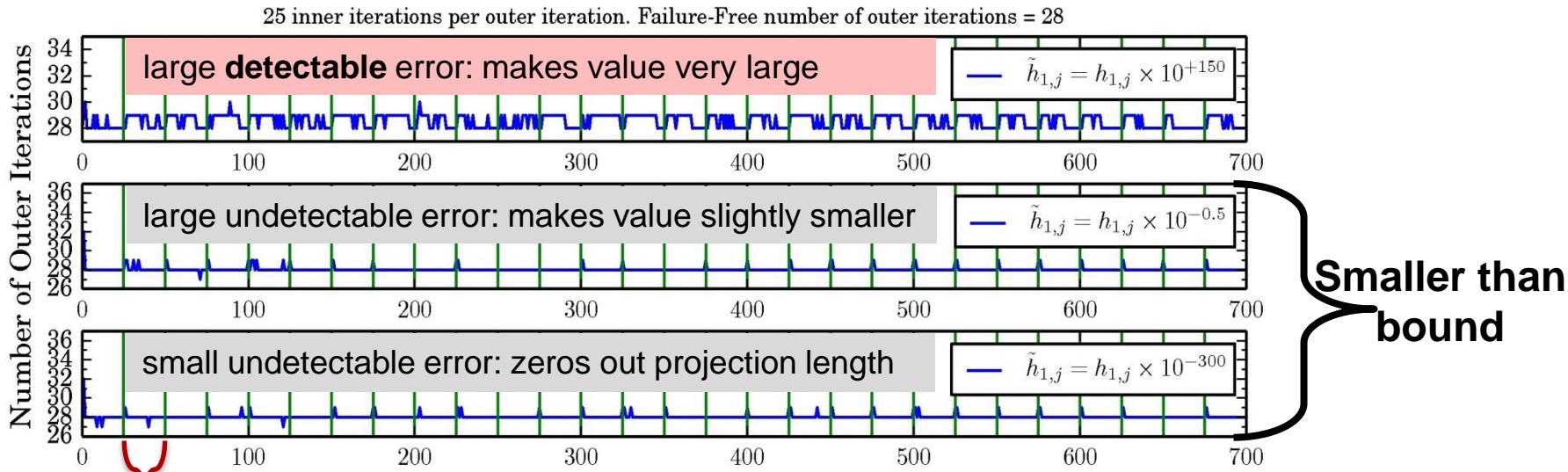
Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject **single** fault
Study impact

700
experiments per
fault type

Number of Outer Iterations to Convergence (mult_dcop_03)



one inner solve

Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

Prototype Design: Fault Tolerant GMRES iterative solver

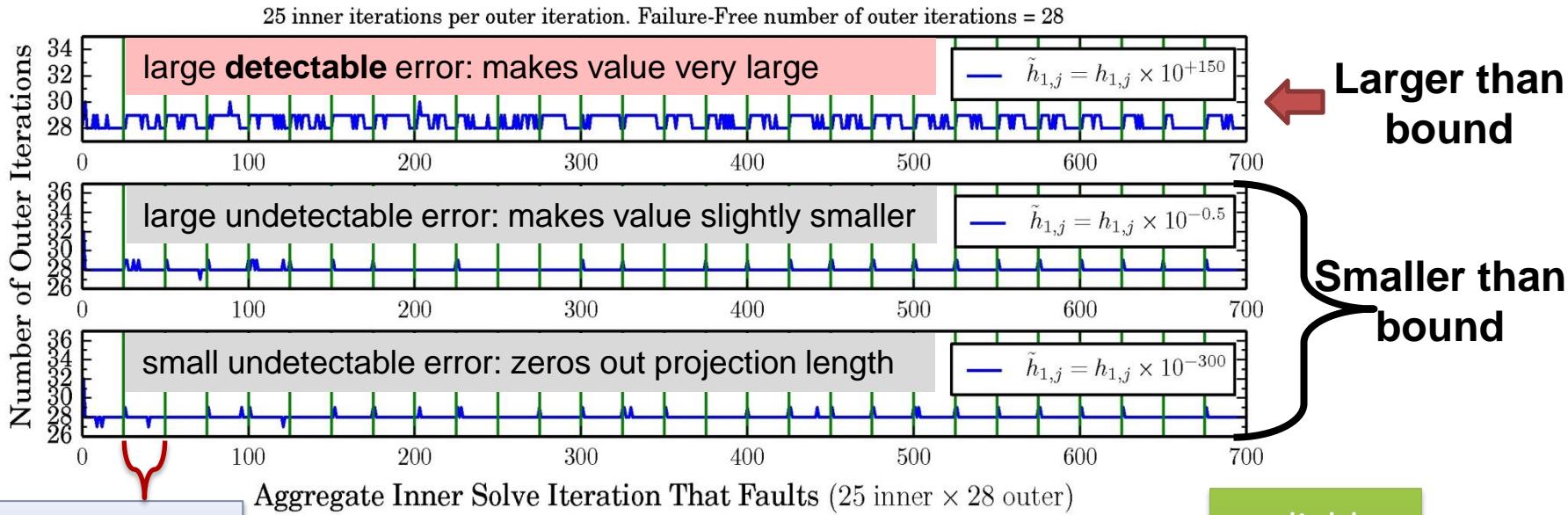
Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject **single** fault
Study impact

700
experiments per
fault type

Number of Outer Iterations to Convergence (mult_dcop_03)



one inner solve

Failure Free: **700 orthogonalization calls**

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

reliable
FGMRES

unreliable
GMRES

Prototype Design: Fault Tolerant GMRES iterative solver

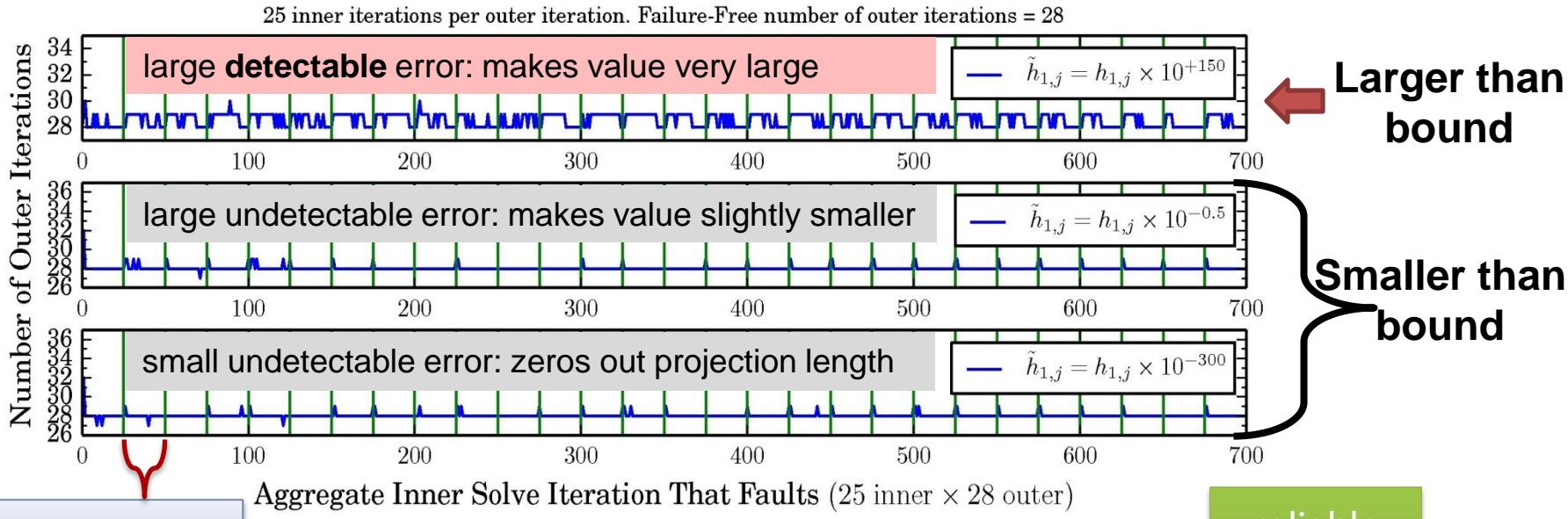
Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Inject **single** fault
Study impact

700
experiments per
fault type

Number of Outer Iterations to Convergence (mult_dcop_03)



one inner solve

Failure Free: **700 orthogonalization calls**
28 outer iterations to converge
25 inner iterations per outer

reliable
FGMRES

unbounded error = high variability in time to solution
bounded error = low variability, in time to solution

Prototype Design: Fault Tolerant GMRES Iterative Solver

Flexible GMRES (FGMRES) creates sandbox

Implemented using Trilinos

Conclusions

- Enforcing bounds is cheap
- Enables numerical approaches to roll-through errors without “blowing up”

Future Work

- Link norm bound to Inexact Krylov convergence rate (push bounded faults back onto the matrix)
- Investigate link between reliable computations and redundancy (e.g., reorthogonalization vs redundant orthogonalization)

Questions/Comments: {jjellio,mhoemme}@sandia.gov mueller@cs.ncsu.edu

Papers: http://arxiv.org/find/cs/1/au:+Elliott_J
<http://www4.ncsu.edu/~jjellio3/>

Acknowledgements

This research was supported by the Consortium for Advanced Simulation of Light Water Reactors (<http://www.casl.gov>), an Energy Innovation Hub (<http://www.energy.gov/hubs>) for Modeling and Simulation of Nuclear Reactors under U.S. Department of Energy Contract No. DE-AC05-00OR22725.

This work was supported in part by grants from National Science Foundation (awards 1058779 and 0958311).

Sandia National Laboratories is a multiprogram laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.