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Overview 

 Questions? 

 A Problem  

 Myth of a Reliable Machine 

 Reliability For Algorithms 
 Is the root cause of a fault important or is its manifestation? 

 Skeptical Programming 
 All iterative ABFT schemes assume some form of detection… how? 

 Questions? 



Questions 

 Quantitative comparisons of ABFT schemes 
 Solve the same problem? 

 

 Fault Models? 
 How critical are they? Granularity? (node, process, operation) 

 Fault rates? (we know so little) 

 

 Reliable Programming 
 Data is often replicated (devices and hosts) 

 

 Correct solution (research) vs performance 
 Bridging the gap… theory/math and systems 
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The Problem (well one of them) 

Function: Puppy = make_puppy(Dog, Dog) 

         +           =  
 

Two things happened: 

1. You noticed a fault, therefore … 

2. You can respond (correct the fault) 

 

Detection and Correction 

Not a 

Chihuahua 
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How to detect that a silent transient fault occured? 

 Enforce fine-grained correctness (systems approach) 
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× Ignores numerical properties of algorithms 
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The Problem (well one of them) 

How to detect? 

 Enforce fine-grained correctness (systems approach) 
 Do calculations multiple times and vote 

× Ignores numerical properties of algorithms 

 Convergence (numerical error dampening) 
 Iterative methods have proven properties to converge to a correct 

solution given preconditions/assumptions about the inputs 

× Convergence promise invalidated if assumptions/preconditions are 
invalidated at any point. 

 Can we do algorithm-based fault tolerance while still exploiting 
the numerical properties? 



Myth of a Reliable Machine 

Current algorithms assume numerical reliability 

As long the application does not crash… 
we will get the right answer 

solution operations start 

Reliable Machine 

Machine reliability addressed via 
checkpoint/restart, replication, 
algorithm based approaches 

Hard Faults: Not in scope of this work 



Myth of a Reliable Machine 
Numerical reliability: 

numerical operations may be unreliable 

Scope 

correct 
solution 

operations start 

Unreliable Machine tainted 
solution 

x 
 

Soft fault(s) 



Reliability for Algorithms 

Numerical Method = Theory + Data  

                                      (algorithm)               (with assumptions) 

 Two Categories: 
 Data: data required theoretically by the algorithm 

(Preconditions/Assumptions) 

 E.g., for GMRES: A, x0, orthonormal subspace of A, right-hand side 

 Meta-data: “stuff” required to implement the algorithm 

 E.g., loop counters, sparse data structures (indices), code 

 

 

 

 Most extensible research: focus on faults in data. 

Regardless of who implements GMRES or in what language, the data can always 

be assumed (otherwise we would not be considering GMRES!) 

Language and Implementation details may result in vastly different meta-data. 



Reliability for Algorithms 

 Result of silent fault in data: 
 Silent Data Corruption (SDC) 

 Result of silent transient fault in meta-data 
 Faults in code: 

 Weird behavior 

 Perform wrong operation (e.g., add instead of divide) = SDC (output is “tainted”) 

 Faults in loop counters, indices (if no segfault/crash) 

 Operate on incorrect data = SDC (output is “tainted”) 

 Iterate too much or too little = SDC (output is “tainted”) 

 Perhaps more 

 

Key: corrupted data model many types of faults! 



Big Idea: Bounded Error 
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Big Idea: Bounded Error 

 Focus on ensuring bounded error, rather than detecting and 
correcting all errors. 

 Use preconditions/assumptions on inputs with algorithms’ 
theoretical basis to derive invariants. 

 Invariant checks are silly in a reliable environment 

 If unreliable – invariants serve as cheap detectors that the 
algorithm is in a theoretically impossible state. 

 No promise to detect/correct all errors 

 One piece of the resilient algorithm pie 

 We call this Skeptical Programming. 

 Be skeptical of computations performed on an unreliable machine 



Reliability 

Looking from the Reliable Set: 

 Sandbox Model 

 

 

 

 

 

 Operate unreliably, but do not trust 
the results. 

 

 Selective Reliability: 

 What operations need to be reliable? 

 

Universe of operations inherently unreliable 

Reliable ops: 

Flexible GMRES, 

(currently all 

collectives) 

Unreliable ops: 

Preconditioner call (and all 

its operations) reliable 

unreliable 

Sandbox 
Model 



Selective Reliability 
Mj are the preconditioners: 
 
 
Mj represents using GMRES 
as a preconditioner… 
inside FGMRES. 

reliable 
FGMRES 

unreliable 
GMRES 



Skeptical Programming 

GMRES 



Skeptical Programming 

GMRES 

Orthogonalization 

Builds upper Hessenburg 

matrix (H) 



Skeptical Programming 

GMRES 

Theoretical Bounds on the 
Arnoldi Process 

 
 
From isometry of orthogonal projections, 

• hi,j  form Hessenberg Matrix 
• Bound only computed once, valid for entire 

solve 



Skeptical Programming 

GMRES 

Theoretical Bounds on the 
Arnoldi Process 

 
 
From isometry of orthogonal projections, 

• hi,j  form Hessenberg Matrix 
• Bound only computed once, valid for entire 

solve 
• Identifies that something isn’t right 



Preconditioners 
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120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with 
zero overlap) ILU(0) as subdomain solver (right preconditioning). 

 
Statistics from introducing a single fault at all possible (120) preconditioner applications. 

Mean percent additional 

preconditioner applies 

Fault: 

subdomain permutes 

preconditioner’s 

output 

(preserves length) 

 

X-axis: 

subdomain also 

scales permuted 

output 

1 faulty subdomain 

all subdomains 

faulty 

Small 
errors 

Large 
errors 

Detected via norm 
bound 



Multiple Faults and Reactive FT 
 What to do when a fault is detected – options based on FT strategy 

 

 

 

 

Restarting: 

 theoretically bad for GMRES (you lose valuable state) 

Aborting: inner solve exits abnormally 

Both cases: (for right preconditioned solver)– must apply 
preconditioner to get solution. (This can be expensive!) 

 Residual checks (Ax-b), require preconditioner application 

Solver Type Restart Abort Solve 

GMRES 

Restarted 

GMRES 

X 

Nested Solvers X X 



Multiple Faults and Reactive FT 
 Experiment, 10 MPI processes 

  at every preconditioner apply, single MPI rank is faulty 

 Fault: MPI process permutes (shuffles) all values in the output from it’s 
preconditioner or swamps the min and max values in its output 

 Requirement: residual ( ||Ax-b||) less than 1x10^-6 

 Solver: 

 Reliable Restarted FGmres: Flexible GMRES, with reliable (triple modular 
redundancy) dot products and Sparse Mat-Vec (SpMV) – 3x cost in flops 

 Reliable Restarted FGmres + Gmres: Nested solver, e.g., FT-GMRES 

 Preconditioner : 

 10 layer Multigrid – one of (if not) the best Poisson solvers 

 Solver  + Preconditioner are widely used because of robustness and speed 

 Compares against a “good” solver 



Multiple Faults and Reactive FT 
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Multiple Faults and Reactive FT 

Solution 2.e-7 2.e-7 9.e-7 3.e-7 2.e-7 

Checks residual every time, catches “bad” errors early 

          Total work equal to work done in failure free 

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every 

PC Applies 5 5 62 319 11 
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 Example: Dot products: 
 
 
 
 
 
 
 
 
 
 
 

Figure shows probability of experiencing large error. 
Due to floating point implementation, not all bit flips create large 

error – can model the probability of experiencing specific 
magnitudes of error. 

 

James Elliott 
Computer Science, North Carolina State Univ. 
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Experiments 

Prototype Design: Fault Tolerant GMRES iterative solver 
Flexible GMRES (FGMRES) creates sandbox 
Implemented using Trilinos 

reliable 
FGMRES 

unreliable 
GMRES 

Smaller than 

bound 

large detectable error: makes value very large 

large undetectable error: makes value slightly smaller 

small undetectable error: zeros out projection length 

Larger than 

bound 

one inner solve 

Inject single fault 
Study impact 

700 
experiments per 

fault type 

Failure Free: 700 orthgonalization calls 

28 outer iterations to converge 

25 inner iterations per outer 

x-axis: 

introducing single fault in x-th orthogonalization 
unbounded error = high variability in time to solution 

bounded error = low variability, in time to solution 



Conclusions 

 Enforcing bounds is cheap 

 Enables numerical approaches to roll-through errors 
without “blowing up” 

Future Work 

 Link norm bound to Inexact Krylov convergence rate 
(push bounded faults back onto the matrix) 

 Investigate link between reliable computations and 
redundancy (e.g., reorthogonalization vs redundant 
orthogonalization) 
Questions/Comments: {jjellio,mhoemme}@sandia.gov mueller@cs.ncsu.edu 

Papers: http://arxiv.org/find/cs/1/au:+Elliott_J 

 http://www4.ncsu.edu/~jjellio3/ 
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