
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin

Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2014-1285C

Resilient Iterative Linear Solvers
via Skeptical Programming

James Elliott1,2, Mark Hoemmen1, Frank Mueller2

1Sandia National Laboratories
2North Carolina State University

SAND2014-18363PE

Overview

 Questions?

 A Problem

 Myth of a Reliable Machine

 Reliability For Algorithms
 Is the root cause of a fault important or is its manifestation?

 Skeptical Programming
 All iterative ABFT schemes assume some form of detection… how?

 Questions?

Questions

 Quantitative comparisons of ABFT schemes
 Solve the same problem?

 Fault Models?
 How critical are they? Granularity? (node, process, operation)

 Fault rates? (we know so little)

 Reliable Programming
 Data is often replicated (devices and hosts)

 Correct solution (research) vs performance
 Bridging the gap… theory/math and systems

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

 +

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

 + =

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

 + =

Not a

Chihuahua

The Problem (well one of them)

Function: Puppy = make_puppy(Dog, Dog)

 + =

Two things happened:

1. You noticed a fault, therefore …

2. You can respond (correct the fault)

Detection and Correction

Not a

Chihuahua

The Problem (well one of them)

How to detect that a silent transient fault occured?

 Enforce fine-grained correctness (systems approach)
 Do calculations multiple times and vote

× Ignores numerical properties of algorithms

The Problem (well one of them)

How to detect?

 Enforce fine-grained correctness (systems approach)
 Do calculations multiple times and vote

× Ignores numerical properties of algorithms

 Convergence (numerical error dampening)
 Iterative methods have proven properties to converge to a correct

solution given preconditions/assumptions about the inputs

× Convergence promise invalidated if assumptions/preconditions are
invalidated at any point.

The Problem (well one of them)

How to detect?

 Enforce fine-grained correctness (systems approach)
 Do calculations multiple times and vote

× Ignores numerical properties of algorithms

 Convergence (numerical error dampening)
 Iterative methods have proven properties to converge to a correct

solution given preconditions/assumptions about the inputs

× Convergence promise invalidated if assumptions/preconditions are
invalidated at any point.

 Can we do algorithm-based fault tolerance while still exploiting
the numerical properties?

Myth of a Reliable Machine

Current algorithms assume numerical reliability

As long the application does not crash…
we will get the right answer

solution operations start

Reliable Machine

Machine reliability addressed via
checkpoint/restart, replication,
algorithm based approaches

Hard Faults: Not in scope of this work

Myth of a Reliable Machine
Numerical reliability:

numerical operations may be unreliable

Scope

correct
solution

operations start

Unreliable Machine tainted
solution

x

Soft fault(s)

Reliability for Algorithms

Numerical Method = Theory + Data

 (algorithm) (with assumptions)

 Two Categories:
 Data: data required theoretically by the algorithm

(Preconditions/Assumptions)

 E.g., for GMRES: A, x0, orthonormal subspace of A, right-hand side

 Meta-data: “stuff” required to implement the algorithm

 E.g., loop counters, sparse data structures (indices), code

 Most extensible research: focus on faults in data.

Regardless of who implements GMRES or in what language, the data can always

be assumed (otherwise we would not be considering GMRES!)

Language and Implementation details may result in vastly different meta-data.

Reliability for Algorithms

 Result of silent fault in data:
 Silent Data Corruption (SDC)

 Result of silent transient fault in meta-data
 Faults in code:

 Weird behavior

 Perform wrong operation (e.g., add instead of divide) = SDC (output is “tainted”)

 Faults in loop counters, indices (if no segfault/crash)

 Operate on incorrect data = SDC (output is “tainted”)

 Iterate too much or too little = SDC (output is “tainted”)

 Perhaps more

Key: corrupted data model many types of faults!

Big Idea: Bounded Error

 Focus on ensuring bounded error, rather than detecting and
correcting all errors.

Big Idea: Bounded Error

 Focus on ensuring bounded error, rather than detecting and
correcting all errors.

 Use preconditions/assumptions on inputs with algorithms’
theoretical basis to derive invariants.

Big Idea: Bounded Error

 Focus on ensuring bounded error, rather than detecting and
correcting all errors.

 Use preconditions/assumptions on inputs with algorithms’
theoretical basis to derive invariants.

 Invariant checks are silly in a reliable environment

 If unreliable – invariants serve as cheap detectors that the
algorithm is in a theoretically impossible state.

Big Idea: Bounded Error

 Focus on ensuring bounded error, rather than detecting and
correcting all errors.

 Use preconditions/assumptions on inputs with algorithms’
theoretical basis to derive invariants.

 Invariant checks are silly in a reliable environment

 If unreliable – invariants serve as cheap detectors that the
algorithm is in a theoretically impossible state.

 No promise to detect/correct all errors

 One piece of the resilient algorithm pie

 We call this Skeptical Programming.

 Be skeptical of computations performed on an unreliable machine

Reliability

Looking from the Reliable Set:

 Sandbox Model

 Operate unreliably, but do not trust
the results.

 Selective Reliability:

 What operations need to be reliable?

Universe of operations inherently unreliable

Reliable ops:

Flexible GMRES,

(currently all

collectives)

Unreliable ops:

Preconditioner call (and all

its operations) reliable

unreliable

Sandbox
Model

Selective Reliability
Mj are the preconditioners:

Mj represents using GMRES
as a preconditioner…
inside FGMRES.

reliable
FGMRES

unreliable
GMRES

Skeptical Programming

GMRES

Skeptical Programming

GMRES

Orthogonalization

Builds upper Hessenburg

matrix (H)

Skeptical Programming

GMRES

Theoretical Bounds on the
Arnoldi Process

From isometry of orthogonal projections,

• hi,j form Hessenberg Matrix
• Bound only computed once, valid for entire

solve

Skeptical Programming

GMRES

Theoretical Bounds on the
Arnoldi Process

From isometry of orthogonal projections,

• hi,j form Hessenberg Matrix
• Bound only computed once, valid for entire

solve
• Identifies that something isn’t right

Preconditioners

Preconditioners

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

Preconditioners

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz
(with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a fault at all possible (120) preconditioner applications.

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

Preconditioners

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz
(with zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a fault at all possible (120) preconditioner applications.

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output reliable faulty

No communication with other subdomains

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with
zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional

preconditioner applies

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with
zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional

preconditioner applies

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with
zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional

preconditioner applies

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

1 faulty subdomain

all subdomains

faulty

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with
zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional

preconditioner applies

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

1 faulty subdomain

all subdomains

faulty

Small
errors

Large
errors

120 inner preconditioner applies using Flexible Gmres + Gmres + Additive Schwarz (with
zero overlap) ILU(0) as subdomain solver (right preconditioning).

Statistics from introducing a single fault at all possible (120) preconditioner applications.

Mean percent additional

preconditioner applies

Fault:

subdomain permutes

preconditioner’s

output

(preserves length)

X-axis:

subdomain also

scales permuted

output

1 faulty subdomain

all subdomains

faulty

Small
errors

Large
errors

Detected via norm
bound

Multiple Faults and Reactive FT
 What to do when a fault is detected – options based on FT strategy

Restarting:

 theoretically bad for GMRES (you lose valuable state)

Aborting: inner solve exits abnormally

Both cases: (for right preconditioned solver)– must apply
preconditioner to get solution. (This can be expensive!)

 Residual checks (Ax-b), require preconditioner application

Solver Type Restart Abort Solve

GMRES

Restarted

GMRES

X

Nested Solvers X X

Multiple Faults and Reactive FT
 Experiment, 10 MPI processes

 at every preconditioner apply, single MPI rank is faulty

 Fault: MPI process permutes (shuffles) all values in the output from it’s
preconditioner or swamps the min and max values in its output

 Requirement: residual (||Ax-b||) less than 1x10^-6

 Solver:

 Reliable Restarted FGmres: Flexible GMRES, with reliable (triple modular
redundancy) dot products and Sparse Mat-Vec (SpMV) – 3x cost in flops

 Reliable Restarted FGmres + Gmres: Nested solver, e.g., FT-GMRES

 Preconditioner :

 10 layer Multigrid – one of (if not) the best Poisson solvers

 Solver + Preconditioner are widely used because of robustness and speed

 Compares against a “good” solver

Multiple Faults and Reactive FT

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

Dot Products 0 15 0 23725 3964

Reliable Dot Products 45 3 61500 4143 61500

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
e

lia
b

le
 v

s
U

n
re

lia
b

le

Full Permute

Solution 2.e-7 2.e-7 2.e-1 8.e-7 2.e-3

Multiple Faults and Reactive FT

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

Dot Products 0 15 0 23725 3964

Reliable Dot Products 45 3 61500 4143 61500

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
e

lia
b

le
 v

s
U

n
re

lia
b

le

Full Permute

Solution 2.e-7 2.e-7 2.e-1 8.e-7 2.e-3

Checks residual once, all work is “bad’, single checks ensures

 you do not go backwards

 Total work equal to work done in failure free

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

PC Applies 5 5 1000 1903 4230

0

500

1000

1500

2000

2500

3000

3500

4000

4500
N

u
m

b
e

r
o

f
p

c
ap

p
lie

s

Full Permute

Multiple Faults and Reactive FT

Solution 2.e-7 2.e-7 2.e-1 8.e-7 2.e-3

Checks residual once, all work is “bad’, single checks ensures

 you do not go backwards

 Total work equal to work done in failure free

Multiple Faults and Reactive FT

Solution 2.e-7 2.e-7 9.e-7 3.e-7 2.e-7

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

Dot Products 0 15 0 3900 15

Reliable Dot Products 45 3 3219 234 3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
e

lia
b

le
 v

s
U

n
re

lia
b

le

Min/Max Swap

Multiple Faults and Reactive FT

Solution 2.e-7 2.e-7 9.e-7 3.e-7 2.e-7

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

Dot Products 0 15 0 3900 15

Reliable Dot Products 45 3 3219 234 3

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

R
e

lia
b

le
 v

s
U

n
re

lia
b

le

Min/Max Swap

Checks residual every time, catches “bad” errors early

 Total work equal to work done in failure free

Multiple Faults and Reactive FT

Solution 2.e-7 2.e-7 9.e-7 3.e-7 2.e-7

Checks residual every time, catches “bad” errors early

 Total work equal to work done in failure free

FF FGmres FF Nested Restarted FGmres Nested Once Nested Every

PC Applies 5 5 62 319 11

0

50

100

150

200

250

300

350
R

e
lia

b
le

 v
s

U
n

re
lia

b
le

Min/Max Swap

 45

 Example: Dot products:

Figure shows probability of experiencing large error.
Due to floating point implementation, not all bit flips create large

error – can model the probability of experiencing specific
magnitudes of error.

James Elliott
Computer Science, North Carolina State Univ.

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

small undetectable error: zeros out projection length

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

large undetectable error: makes value slightly smaller

small undetectable error: zeros out projection length

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

large detectable error: makes value very large

large undetectable error: makes value slightly smaller

small undetectable error: zeros out projection length

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Smaller than

bound

large detectable error: makes value very large

large undetectable error: makes value slightly smaller

small undetectable error: zeros out projection length

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Smaller than

bound

large detectable error: makes value very large

large undetectable error: makes value slightly smaller

small undetectable error: zeros out projection length

Larger than

bound

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization

Experiments

Prototype Design: Fault Tolerant GMRES iterative solver
Flexible GMRES (FGMRES) creates sandbox
Implemented using Trilinos

reliable
FGMRES

unreliable
GMRES

Smaller than

bound

large detectable error: makes value very large

large undetectable error: makes value slightly smaller

small undetectable error: zeros out projection length

Larger than

bound

one inner solve

Inject single fault
Study impact

700
experiments per

fault type

Failure Free: 700 orthgonalization calls

28 outer iterations to converge

25 inner iterations per outer

x-axis:

introducing single fault in x-th orthogonalization
unbounded error = high variability in time to solution

bounded error = low variability, in time to solution

Conclusions

 Enforcing bounds is cheap

 Enables numerical approaches to roll-through errors
without “blowing up”

Future Work

 Link norm bound to Inexact Krylov convergence rate
(push bounded faults back onto the matrix)

 Investigate link between reliable computations and
redundancy (e.g., reorthogonalization vs redundant
orthogonalization)
Questions/Comments: {jjellio,mhoemme}@sandia.gov mueller@cs.ncsu.edu

Papers: http://arxiv.org/find/cs/1/au:+Elliott_J

 http://www4.ncsu.edu/~jjellio3/

http://arxiv.org/find/cs/1/au:+Elliott_J
http://www4.ncsu.edu/~jjellio3/

Acknowledgements
This research was supported by the Consortium for
Advanced Simulation of Light Water Reactors
(http://www.casl.gov), an Energy Innovation Hub
(http://www.energy.gov/hubs) for Modeling and Simulation
of Nuclear Reactors under U.S. Department of Energy
Contract No. DE-AC05-00OR22725.

This work was supported in part by grants from
National Science Foundation (awards 1058779 and
0958311).

Sandia National Laboratories is a multiprogram
laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed
Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration
under contract DE-AC04-94AL85000.

