

The metal to semiconductor transition in chemically exfoliated MoS₂ and application towards energy and catalysis.

**Stanley S. Chou
1815**

**The Rio Grande Symposium on Advanced Materials
October 6th, 2014**

A fundamental understanding of the semiconductor to metal transition in exfoliated transition metal dichalcogenide (TMD), such as MoS₂ and WS₂, is relevant for many applications, ranging from electronic to energy production and storage. Nevertheless, present knowledge of this phase transition is marked by incertitude. Particularly, the microstructural phase evolution of the material after lithium intercalation and exfoliation is often debated due to challenges associated with resulting phase stability under energetic conditions. In this talk, we will describe atomic level characterizations of these phases, and progress being made towards controlling its evolution. Further, we will describe the impact of this structure-property relationship on conductivity, catalysis and hydrogen energy production.