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Uncertainty Quantification and Computational Science

y = f(x) y = f(x) 
x y

Forward problem
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Uncertainty Quantification and Computational Science

y = f(x) 

z = g(x) z = g(x) 

y = f(x) 
x y

zd

yd

y ={f1(x), f2(x) fM(x)}

Inverse & Forward UQ
Model validation & comparison, Hypothesis testing
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Relevance of hi-dimensionality in UQ

Large number of degrees of freedom in uncertain model
inputs/outputs

Random fields – material properties, initial/boundary
conditions
Model parameters – reaction rate constants, physical
constants, phenomenological models
State variables – model outputs

Consequences
Joint densities
Functional representations of random variables/fields
Global sensitivity analysis
Forward and Inverse UQ
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Probabilistic Forward UQ – y = f (x)

Represent uncertain quantities using probability theory
Random sampling, MC, QMC

Generate random samples {xi}N
i=1 from the PDF of x, p(x)

Bin the corresponding {yi} to construct p(y)
Not feasible for computationally expensive f (x)

– slow convergence of MC/QMC methods
⇒ very large N required for reliable estimates

Build a cheap surrogate for f (x), then use MC
Collocation – interpolants
Regression – fitting

Galerkin methods
– Polynomial Chaos (PC)
– Intrusive and non-intrusive PC methods
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Probabilistic Forward UQ & Polynomial Chaos
Representation of Random Variables

With y = f (x), x a random variable, estimate the RV y

Can describe a RV in terms of its
density, moments, characteristic function, or
as a function on a probability space

Constraining the analysis to RVs with finite variance
⇒ Represent RV as a spectral expansion in terms of

orthogonal functions of standard RVs
– Polynomial Chaos Expansion

Enables the use of available functional analysis methods
for forward UQ
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Polynomial Chaos Expansion (PCE)

Model uncertain quantities as random variables (RVs)
Given a germ ξ(ω) = {ξ1, · · · , ξn} – a set of i.i.d. RVs

– where p(ξ) is uniquely determined by its moments

Any random variable Z ∈ L2(Ω,S(ξ),P) can be written as a
PCE:

Z(ω) = Z(ξ) '
P∑

k=0

zkΨk(ξ(ω))

– zk are mode strengths
– Ψk() are multivariate functions orthogonal w.r.t. p(ξ)

With dimension n and order p: P + 1 =
(n + p)!

n!p!
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Orthogonality

By construction, the functions Ψk() are orthogonal with respect
to the density of ξ

zk =
〈ZΨk〉
〈Ψ2

k〉
=

1
〈Ψ2

k〉

∫
Z(λ(ξ))Ψk(ξ) pξ(ξ) dξ

Examples:
Hermite polynomials with Gaussian basis
Legendre polynomials with Uniform basis, ...
Global versus Local PC methods

Adaptive domain decomposition of the support of ξ
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Random Fields

A random field (RF) Z(x, ω) is a function on a product
space D× Ω

– a much more complex object than a RV
– an RV at an x ∈ D
– an infinite dimensional object

However, in many physical systems, uncertain field
quantities, described by RFs, have an underlying
smoothness due to correlations
Can be represented with a small no. of stochastic degrees
of freedom
Optimal representation – second-order statistics

– Karhunen-Loeve expansion
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Random Fields – KLE

Karhunen-Loeve Expansion (KLE) for a RF with a
continuous covariance function

Z(x, ω) = µ(x) +

∞∑
i=1

√
λiζi(ω)φi(x)

µ(x) is the mean of Z(x, ω) at x

λi and φi(x) are the eigenvalues and eigenfunctions of the
covariance

C(x1, x2) = 〈[Z(x1, ω)− µ(x1)][Z(x2, ω)− µ(x2)]〉

The ζi are uncorrelated zero-mean unit-variance RVs

ζi(ω) =
1√
λi

∫
D

Z(x, ω)φi(x)dx
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Rosenblatt transform for Multi-D RVs

Rosenblatt transformation maps any set of jointly
distributed random variables (ζ1, . . . , ζd) to uniform i.i.d.
RVs ηi

iid∼ U(0, 1), i = 1, . . . , d (Rosenblatt, 1952).
Relies on conditional CDFs Fk|k−1,...,1(ζk|ζk−1, . . . , ζ1)

η1 = F1(ζ1)

η2 = F2|1(ζ2|ζ1)

...
ηd = Fd|d−1,...,1(ζd|ζd−1, . . . , ζ1)

A multi-D generalization of 1D CDF mapping.
Conditional CDFs harder to evaluate in high dimensions

SNL Najm Hi-D in UQ 12 / 54



Introduction RF ForUQ Sparsity Closure

Rosenblatt transformation with samples – KDE

Given samples {ζ i}N
i=1 of the random vector ζ = (ζ1, . . . , ζd)

Kernel Density Estimation (KDE) is useful to compute the
conditional CDFs

ηk = Fk|k−1,...,1(ζk|ζk−1, . . . , ζ1)

=

∫ ζk

−∞
pk|k−1,...,1(ζ

′
k|ζk−1, . . . , ζ1)dζ

′
k

=

∫ ζk

−∞

pk,...,1(ζ
′
k, ζk−1, . . . , ζ1)

pk−1,...,1(ζk−1, . . . , ζ1)
dζ
′
k
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Rosenblatt transformation with samples – KDE

ηk ≈ 1
h
√

2π

∫ ζk

−∞

N∑
i=1

exp
(
− (ζ1−ζi

1)2+···+(ζ
′
k−ζi

k)
2

2h2

)
N∑

i=1

exp
(
− (ζ1−ζi

1)2+···+(ζk−1−ζi
k−1)2

2h2

)dζ
′
k

=

∫ ζk

−∞

N∑
i=1

exp
(
−

(ζ1−ζi
1)2+···+(ζk−1−ζi

k−1)2

2h2

)
× 1

h
√

2π
exp
(
− (ζ

′
k−ζi

k)
2

2h2

)
N∑

i=1

exp
(
−

(ζ1−ζi
1)2+···+(ζk−1−ζi

k−1)2

2h2

) dζ
′
k

=

N∑
i=1

exp
(
−

(ζ1−ζi
1)2+···+(ζk−1−ζi

k−1)2

2h2

)
× Φ

(
ζk−ζi

k
h

)
N∑

i=1

exp
(
−

(ζ1−ζi
1)2+···+(ζk−1−ζi

k−1)2

2h2

)
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RF KLE PCE

Define ξi
iid∼ N(0, 1), i = 1, . . . , d, where ηi = Φ(ξi)

The Rosenblatt transform is then

Φ(ξk) = Fk|k−1,...,1(ζk|ζk−1, . . . , ζ1), k = 1, . . . , d

Using the inverse Rosenblatt transform, we have

ζk = F−1
k|k−1,...,1 (Φ(ξk)|ξk−1, . . . , ξ1) = fk(ξ1, . . . , ξk)

which allows the construction of a WH PCE for each ζk and
the representation of the RF Z(x, ω) as a WH PCE

Z(x, ω) =

∞∑
j=0

Zj(x)Ψj(ξ)
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Random Fields – large scale NOAA data – SVD

KLE for uncertain Sea Surface Temperature (SST)
1/4-degree spatial resolution data

106-dimensional random field encompassing spatial and
temporal uncertainty in SST data
SVD using Trilinos / parallelized block Krylov Schur solver

Mean SST 1st KL mode
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SVD on NOAA SST data – Scaling

Parallel SVD: use Trilinos eigensolver library Anasazi
Strong scaling study – fixed problem size

– 3-10k samples of a 106-dimensional data set

3k samples 10k samples
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Mean SST for different seasons, 1982 - 1989
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Mean SST for different seasons, 1990 - 1999
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Mean SST for different seasons, 2000 - 2009
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1st principal components for winter over decades
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2nd principal components for winter over decades
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3rd principal components for winter over decades
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4th principal components for winter over decades
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SST RF reconstruction, winter-2000s
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Truncated KLE with ∼25 modes captures most of the energy
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SST RF reconstruction, winter-2000s – 25 modes
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Random Fields – sparse data SNL

Developed a Bayesian procedure for KLE construction
given sparse data

Bayesian Principal Component Analysis (BPCA)/BKLE
Address challenges arising due to

approximate knowledge of the covariance matrix
lack of positive definiteness of sample covariance matrix

BPCA framework explores the space of orthonormal
vectors, seeking those that best explain the data

Likelihood density p(Φ) is peaked at

Φ∗ = argmin
Φ∈Vk(Rd)

n∑
i=1

‖xi − PΦxi‖2

where Vk(Rd) is the space of k orthonormal d-dimensional vectors

Resulting KLE incorporates uncertainty due to small
number of samples
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BPCA Example – Data from a 3D MVN
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BPCA Example – Brownian motion – 25 samples

500-dimensional Brownian
motion stochastic process.
Using only 25 samples, we
compute samples from p(Φ) and
plot the first three principal
components.
The dark solid lines represent the
principal components and the
shaded region represents error
bars based on samples using the
Bayesian PCA approach.
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BPCA Example – Brownian motion – 250 samples

Using 250 samples
Modes are evaluated with
improved accuracy
Lower uncertainty
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Essential Use of PC in UQ

Strategy:
Represent model parameters/solution as random variables
Construct PCEs for uncertain parameters
Evaluate PCEs for model outputs

Advantages:
Computational efficiency
Utility

Moments: E(u) = u0, var(u) =
∑P

k=1 u2
k〈Ψ2

k〉, . . .
Global Sensitivities – fractional variances, Sobol’ indices
Surrogate for forward model

Requirement:
RVs in L2, i.e. with finite variance, on (Ω,S(ξ),P)
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Intrusive PC UQ: A direct non-sampling method

Given model equations: M(u(x, t);λ) = 0

Express uncertain parameters/variables using PCEs

u =

P∑
k=0

ukΨk; λ =

P∑
k=0

λkΨk

Substitute in model equations; apply Galerkin projection

New set of equations: G(U(x, t),Λ) = 0

– with U = [u0, . . . , uP]T , Λ = [λ0, . . . , λP]T

Solving this deterministic system once provides the full
specification of uncertain model ouputs
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Non-intrusive PC UQ

Sampling-based
Relies on black-box utilization of the computational model
Evaluate projection integrals numerically
For any quantity of interest φ(x, t;λ) =

∑P
k=0 φk(x, t)Ψk(ξ)

φk(x, t) =
1〈

Ψ2
k

〉 ∫ φ(x, t;λ(ξ)) Ψk(ξ)pξ(ξ)dξ, k = 0, . . . ,P

Integrals can be evaluated using

A variety of (Quasi) Monte Carlo methods
– Slow convergence; ∼ indep. of dimensionality

Quadrature/Sparse-Quadrature methods
– Fast convergence; depends on dimensionality
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UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

CH4-H2 jet, air coflow, 3D flow
Re=9500, LES subgrid modeling
12× 106 mesh cells, 1024 cores
3 days run time, 2× 105 time steps
3 uncertain parameters (Cs, Prt, Sct)
2nd-order PC, 25 sparse-quad. pts
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UQ in Ocean Modeling – Gulf of Mexico
A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.
A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA

Hurricane Ivan, Sep. 2004
HYCOM ocean model (hycom.org)
Predicted Mixed Layer Depth (MLD)
Four uncertain parameters, i.i.d. U

– subgrid mixing & wind drag params

385 sparse quadrature samples
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PC and High-Dimensionality

Dimensionality n of the PC basis: ξ = {ξ1, . . . , ξn}
n ≈ number of uncertain parameters
P + 1 = (n + p)!/n!p! grows fast with n

Impacts:
Size of intrusive PC system
Hi-D projection integrals⇒ large # non-intrusive samples

Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level = 3 Clenshaw-Curtis sparse grid, Level = 5
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PC Sparse Quadrature in hiD – Climate land model

Full quadrature: N = (N1D)n

Sparse Quadrature

Wide range of methods
Nested & hierarchical
Clenshaw-Curtis:
N = O(np)

Adaptive – greedy
algorithms

Number of points can still be
excessive in hi-D

– Large no. of terms
– Reduction/sparsity
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Dimensionality Reduction

Sensitivity analysis
Local vs. Global
Once-at-a-time; Random sampling; Response surface

Known correlations in the input space
Choice of basis

Karhunen-Loève Expansion
Proper Generalized Decomposition
Adaptive sparse representations

Low dimensional manifolds in high dimensional space
Intrinsic dimension
PCA; Isometric map; Diffusion map

HDMR methods (ANOVA)
cut-HDMR / Anchored-ANOVA

Sparsification:
Compressive Sensing (CS), LASSO
Bayesian Compressive Sensing (BCS)
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PC coefficients via sparse regression

PCE:

y = f (x) '
K−1∑
k=0

ckΨk(x)

with x ∈ Rn, Ψk max order p, and K = (p + n)!/p!/n!

N samples (x1, y1), . . . , (xN , yN)

Estimate K terms c0, . . . , cK−1, s.t.

min ||y− Ac||22

where y ∈ RN , c ∈ RK , Aik = Ψk(xi), A ∈ RN×K

With N << K ⇒ under-determined
Need some form of regularization
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Regularization – Compressive Sensing (CS)

`2-norm — Tikhonov regularization; Ridge regression:

min {‖y− Ac‖2
2 + ‖c‖2

2}

`1-norm — Compressive Sensing; LASSO; basis pursuit

min {‖y− Ac‖2
2 + ‖c‖1}

min {‖y− Ac‖2
2} subject to ‖c‖1 ≤ ε

min {‖c‖1} subject to ‖y− Ac‖2
2 ≤ ε

⇒ discovery of sparse signals
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Bayesian Regression

Bayes formula
p(c|D) ∝ p(D|c)π(c)

Bayesian regression: prior as a regularizer, e.g.
Log Likelihood⇔ ‖y− Ac‖2

2
Log Prior⇔ ‖c‖p

p

Laplace sparsity priors π(ck|α) = 1
2αe−|ck|/α

LASSO (Tibshirani 1996) ... formally:

min {‖y− Ac‖2
2 + λ‖c‖1}

Solution ∼ the posterior mode of c in the Bayesian model

y ∼ N (Ac, IN), ck ∼
1

2α
e−|ck|/α

Bayesian LASSO (Park & Casella 2008)
Bayesian compressive sensing (Ji 2008)
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Bayesian Compressive Sensing (BCS)

Dimensionality reduction using hierarchical priors

p(ck|σ2
k ) =

1√
2πσk

e
−

c2
k

2σ2
k p(σ2

k |α) =
α

2
e−

ασ2
k

2

Effectively, one obtains Laplace sparsity prior

p(c|α) =

∫
K−1∏
k=0

p(ck|σ2
k )p(σ

2
k |α)dσ2

k =

K−1∏
k=0

√
α

2
e−
√
α|ck|

The parameter α can be further modeled hierarchically, or fixed.
Evidence maximization dictates values for σ2

k , α, σ
2 and allows exact

Bayesian solution
c ∼MVN (µ,Σ)

with

µ = σ−2ΣPT u Σ = σ2(PT P + diag(σ2/σ2
k ))
−1

KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.

[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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BCS removes unnecessary basis terms

f (x, y) = cos(x + 4y) f (x, y) = cos(x2 + 4y)
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The square (i, j) represents the (log) spectral coefficient
for the basis term ψi(x)ψj(y).
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Success rate grows with more data and ‘sparser’ model

Test function: f (x) =
∑K−1

k=0 ckΨk(x)

Only S coefficients ck are non-zero, with S < N < K
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Success rate grows with more data and ‘sparser’ model

Test function: f (x) =
∑K−1

k=0 ckΨk(x)

Only S coefficients ck are non-zero, with S < N < K
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Introduction RF ForUQ Sparsity Closure

BCS recovers true coefficients with more data
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BCS recovers true coefficients with more data
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Introduction RF ForUQ Sparsity Closure

BCS recovers true coefficients with more data

0 20 40 60 80 100
Coef Id, k

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

C
o
e
f
m
a
g
n
it
u
d
e
,

|c
k
|

Truth

BCS w/ N=100

SNL Najm Hi-D in UQ 45 / 54



Introduction RF ForUQ Sparsity Closure

Weighted Bayesian Compressive Sensing

Dimensionality reduction using hierarchical priors

p(ck|σ2
k ) =

1√
2πσk

e
−

c2
k

2σ2
k p(σ2

k |αk) =
αk

2
e−

αkσ
2
k

2

Effectively, one obtains Laplace sparsity prior

p(c|αk) =

∫
K−1∏
k=0

p(ck|σ2
k )p(σ

2
k |αk)dσ2

k =

K−1∏
k=0

√
αk

2
e−
√
αk|ck|

The parameter αk can be further modeled hierarchically, or fixed.

Evidence maximization dictates values for σ2
k , αk, σ

2 and allows exact
Bayesian solution

c ∼MVN (µ,Σ)

with

µ = σ−2ΣPT u Σ = σ2(PT P + diag(σ2/σ2
k ))
−1

KEY: Some σ2
k → 0, hence the corresponding basis terms are dropped.
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WBCS recovers true coefficients better
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f (x) = x0 cos
(

e +
∑9

i=1 xi/i
)

SNL Najm Hi-D in UQ 47 / 54



Introduction RF ForUQ Sparsity Closure

Iteratively reweighting Compressive Sensing [Candes et al., 2007]

Sparsest solution: min ||c||0 such that u ≈ Pc
Compressive sensing: min ||c||1 such that u ≈ Pc

Weighted compressive sensing: min ||Wc||1 such that u ≈ Pc

For sparse signals, u = Pc, with ||c||0 = S < K, ideal weights are

W = diag
(

1
|ck|

)
[i.e., Wkk = +∞ if ck = 0]

In practice, the true signal coefficients are not known, so ...
⇒ Iterative re-weighting

W(i+1) = diag

(
1

|c(i)
k |+ ε

)
[ε� 1 for stability]
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Iterative Bayesian Compressive Sensing (iBCS)

Iterative BCS: Implement an iterative procedure that allows
increasing the order for the relevant basis terms while
maintaining the dimensionality reduction. [Sargsyan et al. 2014]

Initial Basis

Iterations

BCS

Model data

Sparse Basis Final Basis

Basis
GrowthNew Basis
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iBCS with reweighting

Combine basis growth and reweighting!

Initial Basis

Iterations

Weighted
BCS

Model data

Sparse Basis Final Basis

Basis
Growth

Reweighting
New Basis
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Basis set growth

f (x, y) = cos(x + 4y)
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Introduction RF ForUQ Sparsity Closure

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

Nested computational grid hierarchy
A single-site, 1000-yr simulation takes ∼ 10 hrs on 1 CPU
Involves ∼ 70 input parameters; some dependent
Non-smooth input-output relationship
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Sparse PC surrogate for the Community Land Model

Main effect sensitivities : rank input parameters

Joint sensitivities : most influential input couplings

About 200 polynomial basis terms in the 70-dimensional space

Sparse PC will further be used for

– sampling in a reduced space
– parameter calibration against experimental data
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Sparse PC surrogate for the Community Land Model

Main effect sensitivities : rank input parameters

Joint sensitivities : most influential input couplings

About 200 polynomial basis terms in the 70-dimensional space

Sparse PC will further be used for

– sampling in a reduced space
– parameter calibration against experimental data
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Sparse PC surrogate for the Community Land Model

Main effect sensitivities : rank input parameters

Joint sensitivities : most influential input couplings

About 200 polynomial basis terms in the 70-dimensional space

Sparse PC will further be used for

– sampling in a reduced space
– parameter calibration against experimental data
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Closure

Probabilistic UQ framework
Hi-dimensionality challenges
Spectral PC representation of random variables
Optimal KLE representation of random fields
Dimensionality reduction – sparsity
Bayesian compressive sensing
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