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0 Introduction

© Random Fields

© Integration in Forward UQ
@ Sparsity

e Closure
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Introduction

Uncertainty Quantification and Computational Science
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Inverse & Forward UQ
Model validation & comparison, Hypothesis testing
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Introduction

Relevance of hi-dimensionality in UQ

@ Large number of degrees of freedom in uncertain model
inputs/outputs
e Random fields — material properties, initial/lboundary
conditions
e Model parameters — reaction rate constants, physical
constants, phenomenological models
o State variables — model outputs
@ Consequences
Joint densities
Functional representations of random variables/fields
Global sensitivity analysis
Forward and Inverse UQ
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Introduction

Probabilistic Forward UQ

Represent uncertain quantities using probability theory
@ Random sampling, MC, QMC

e Generate random samples {x'}Y_, from the PDF of x, p(x)
e Bin the corresponding {y'} to construct p(y)
e Not feasible for computationally expensive f(x)

— slow convergence of MC/QMC methods
= very large N required for reliable estimates

@ Build a cheap surrogate for f(x), then use MC

@ Collocation — interpolants

e Regression — fitting
@ Galerkin methods

— Polynomial Chaos (PC)

— Intrusive and non-intrusive PC methods
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Introduction

Probabilistic Forward UQ & Polynomial Chaos

Representation of Random Variables

With y = f(x), x a random variable, estimate the RV y

@ Can describe a RV in terms of its

e density, moments, characteristic function, or
e as a function on a probability space

@ Constraining the analysis to RVs with finite variance

= Represent RV as a spectral expansion in terms of
orthogonal functions of standard RVs

— Polynomial Chaos Expansion

@ Enables the use of available functional analysis methods
for forward UQ
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Introduction

Polynomial Chaos Expansion (PCE)

@ Model uncertain quantities as random variables (RVs)
@ Givenagerm{(w) = {&1,--- &} —asetof iid. RVs
— where p(&) is uniquely determined by its moments

Any random variable Z € L*(Q, &(&), P) can be written as a
y

PCE:

Z(w) = Z(8) = Y aW(é(w))
k=0

— zx are mode strengths
— U, () are multivariate functions orthogonal w.r.t. p(&)

!
With dimension n and order p: P+1= (L?@

nlp!
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Orthogonality

By construction, the functions ¥, () are orthogonal with respect

to the density of £

<<Z;;§> _ @12> / Z(A(€))Wk(€) pe(£) d€
k k

2k

@ Hermite polynomials with Gaussian basis

@ Legendre polynomials with Uniform basis, ...
@ Global versus Local PC methods
e Adaptive domain decomposition of the support of &
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RF

Random Fields

@ Arandom field (RF) Z(x,w) is a function on a product
space D x (2
— a much more complex object than a RV
—anRVatanxeD
— an infinite dimensional object
@ However, in many physical systems, uncertain field
quantities, described by RFs, have an underlying
smoothness due to correlations
@ Can be represented with a small no. of stochastic degrees
of freedom
@ Optimal representation — second-order statistics
— Karhunen-Loeve expansion
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RF

Random Fields — KLE

@ Karhunen-Loeve Expansion (KLE) for a RF with a
continuous covariance function

Z(x,w) = p(x) + Z \/):‘Ci(w)qﬁi(x)
i=1

@ 1(x) is the mean of Z(x,w) at x
@ )\; and ¢;(x) are the eigenvalues and eigenfunctions of the
covariance
Clxr,x2) = ([Z(x1,w) — p(x1)][Z(x2,w) — p(x2)])

@ The (; are uncorrelated zero-mean unit-variance RVs

1
Glw) = o= /D Z(x, w)éi(x)dx

Najm Hi-Din UQ



RF

Rosenblatt transform for Multi-D RVs

@ Rosenblatt transformation maps any set of jointly

distributed random variables ((i, . .., {4) to uniform iid.
RVs 7, % U(0,1),i=1,...,d (Rosenblatt, 1952).
@ Relies on conditional CDFs Fy_1 1 (Ck|C—1---,C1)
m = Fi(Q)

m = Fau(GlG)

na = Fag-1,.1(ClCa-1,---,C1)

@ A multi-D generalization of 1D CDF mapping.
@ Conditional CDFs harder to evaluate in high dimensions
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RF

Rosenblatt transformation with samples — KDE

@ Given samples {¢'}Y, of the random vector ¢ = ({1, .., Ca)

@ Kernel Density Estimation (KDE) is useful to compute the
conditional CDFs

= Frp—i,.1(ClCG=15---,C1)

Ck
= [Pk|k1 ,,,,, HClGt, - -, C1)dG

o)

Ck p
Prot (G Gty -, C1)
/Oo Pi—1,..1(C=1,---,C1) g
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RF

Rosenblatt transformation with samples — KDE

(¢t —411)2)
’

Zexp 2h?
e = dy
hv2 / GGG =G )?

212 )

N . . / .
S (CI=CD 4+ (G =G )’ —¢D?
& exp (_ 1 1 — k—1 k—1 ) x . 1 exp (_ (Ckzhgk) )
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RF

RF KLE PCE

@ Define ¢; %N(O, 1),i=1,...,d, where n; = ®(&)
@ The Rosenblatt transform is then

D(&) = Frpe—1,...1 (Gl 15+, 1), k=1,....d

@ Using the inverse Rosenblatt transform, we have

G = F;]k]_l V(@& -1, -5 &) = fil€r, -, &)

,,,,,

which allows the construction of a WH PCE for each ¢, and
the representation of the RF Z(x,w) as a WH PCE

Z(x,w) =) Z(0)¥(€)
j=0

Najm Hi-Din UQ



RF

Random Fields — large scale NOAA data — SVD

@ KLE for uncertain Sea Surface Temperature (SST)
o 1/4-degree spatial resolution data

@ 10°-dimensional random field encompassing spatial and
temporal uncertainty in SST data

e SVD using Trilinos / parallelized block Krylov Schur solver

Jan (1982 - 1989) mean SST KL Mode 1 of Jan. 1982 - 1989 Cov Data

Mean SST 15" KL mode
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RF

SVD on NOAA SST data — Scaling

@ Parallel SVD: use Trilinos eigensolver library Anasazi
@ Strong scaling study — fixed problem size
— 3-10k samples of a 10°-dimensional data set

3k samples 10k samples

14 T 7 T T T

) Pl Wy
510 o 5s
2 2, |
5 / 5 /
g g
g 23
E 2
g, /// g, 1/

[ Tt
0 200 400 0 800 1000 1200 0 500 1000 1500 2000 2500 3000 3500 4000 4500

6
# of cores # of cores

Strong-scaling speedup of the SVD solver
NERSC-Hopper
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RF

Mean SST for different seasons, 1982 - 1989

Mean for Winter 1982 - 1989 Mean for Spring 1982 - 1989

Mean for Fall 1982 - 1989




RF

Mean SST for different seasons, 1990 - 1999

Mean for Winter 1990 - 1999 Mean for Spring 1990 - 1999
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RF

Mean SST for different seasons, 2000 - 2009

Mean for Winter 2000 - 2009 Mean for Spring 2000 - 2009
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RF

1st principal components for winter over decades

KL mode 1 for Winter 1982 - 1989 KL mode 1 for Winter 1990 - 1999

-0.0045 -0.0030 -0.0015 00000 00015 00030 00045  0.0060 -0.0060 -0.0045 -0.0030 -0.0015 0.0000 0.0015 00030  0.0045

KL mode 1 for Winter 2000 - 2009

~0.0060 -0.0045 -0.0030 —0.0015 0.0000 0.0015
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RF

2nd principal components for winter over decades

KL mode 2 for Winter 1982 - 1989 KL mode 2 for Winter 1990 - 1999

I
~0.0075 ~0.0060 —0.0045 0.0030 —0.0015 0.0000 0.0015 0.0030 0.0045 ~0.0045 -0.0030 -00015 00000 00015 00030  0.0045

KL mode 2 for Winter 2000 - 2009

-0.006  -0.004  —0.002 0.000 02
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RF

3rd principal components for winter over decades

KL mode 3 for Winter 1982 - 1989

-

KL mode 3 for Winter 1990 - 1999

-

-0.008 -0.006 -0.004 -0002 0000 0002  0.004 -0.0060 -0.0045 —-0.0030 -0.0015 00000 00015 00030  0.0045

KL mode 3 for Winter 2000 - 2009

-0.006 -0.004 -0.002 0000 0002 0.004

Najm Hi-D in




RF

4th principal components for winter over decades

KL mode 4 for Winter 1982 - 1989 KL mode 4 for Winter 1990 - 1999

-

I [ — |
~0.0075 —0.0050 -0.0025 0.0000 00025 0.0050 00075 0.0100 0.0125 ~0.006  -0.004  -0.002  0.000 0,002 0.004 0.006

KL mode 4 for Winter 2000 - 2009

-0.008 -0.006 —-0.004 -0.002 0.00 0002 0004 0.006 0.008
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RF

SST RF reconstruction, winter-2000s

Cumulatlve Energy of Winter 2000 - 2009

o 8 o= 0 WU v —>

o= ©
'._.-0-0
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Truncated KLE with ~25 modes captures most of the energy
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RF

SST RF reconstruction, winter-2000s — 25 modes

SST original sample 1 for Winter 2000 - 2009 SST recon. sample 1 for Winter 2000 - 2009




RF

Random Fields — sparse data

@ Developed a Bayesian procedure for KLE construction
given sparse data

e Bayesian Principal Component Analysis (BPCA)/BKLE
@ Address challenges arising due to
e approximate knowledge of the covariance matrix
e lack of positive definiteness of sample covariance matrix
@ BPCA framework explores the space of orthonormal
vectors, seeking those that best explain the data
o Likelihood density p(®) is peaked at

n
®* = argmin Z [[x" — Pyx'||?
DeVi(RY) ;4

where V,(R?) is the space of k orthonormal d-dimensional vectors

@ Resulting KLE incorporates uncertainty due to small
number of samples
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RF

BPCA Example — Data from a 3D MVN

-1.0
Samples of random variables from a First two principal components.
3D Multivariate Normal (MVN) distribution Black is the vector with maximum variance

/5/1.0

0.!
0
00 o5 50

Samples from p(®) using 100 samples, x' Samples from p(®) using 300 samples, x'




RF

BPCA Example — Brownian motion — 25 samples

OO00000000
cooooo0000

o
N
o

0.08f
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@ 500-dimensional Brownian

Najm

motion stochastic process.

Using only 25 samples, we
compute samples from p(®) and
plot the first three principal
components.

The dark solid lines represent the
principal components and the
shaded region represents error
bars based on samples using the
Bayesian PCA approach.
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RF

BPCA Example — Brownian motion — 250 samples

N = 250
0.06 MLE PCA
0.051 — - true PCA
0.04 mean bP

00 02 04 06 08 1.0

‘ ‘
MLE PCA

@ Using 250 samples

@ Modes are evaluated with
improved accuracy

0000000
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Essential Use of PC in UQ

Strategy:
@ Represent model parameters/solution as random variables
@ Construct PCEs for uncertain parameters
@ Evaluate PCEs for model outputs

Advantages:
@ Computational efficiency
o Utility
e Moments: E(u) = ug, var(u) = Zle uZ (W2, ...
o Global Sensitivities — fractional variances, Sobol’ indices
e Surrogate for forward model

Requirement:
@ RVsin L2, i.e. with finite variance, on (2, &(€), P)
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ForuQ

Intrusive PC UQ: A direct non-sampling method

@ Given model equations: _

@ Express uncertain parameters/variables using PCEs

P P
u = Zuk\llk; A= Z )\k\I/k
k=0 k=0

@ Substitute in model equations; apply Galerkin projection

@ New set of equations: _

— with U:[l/t(),...,up]T,A:[Ao,...,AP]T

@ Solving this deterministic system once provides the full
specification of uncertain model ouputs
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ForUQ
Non-intrusive PC UQ

@ Sampling-based

@ Relies on black-box utilization of the computational model
@ Evaluate projection integrals numerically

@ For any quantity of interest ¢(x,; \) = S5 dx(x, 1) Tk (€)

@ Integrals can be evaluated using

o A variety of (Quasi) Monte Carlo methods
— Slow convergence; ~ indep. of dimensionality

e Quadrature/Sparse-Quadrature methods
— Fast convergence; depends on dimensionality

Najm Hi-Din UQ



ForuQ

UQ in LES computations: turbulent bluff-body flame
with M. Khalil, G. Lacaze, & J. Oefelein, Sandia Nat. Labs

@ CHy-H, jet, air coflow, 3D flow

T [K]
@ Re=9500, LES subgrid modeling 000
@ 12 x 10% mesh cells, 1024 cores Focs
@ 3 days run time, 2 x 10° time steps '800
400
298

@ 3 uncertain parameters (Cs, Pr;, Sc;)
e 2"-order PC, 25 sparse-quad. pts

Mean axial velocity on centerline RMS axial velocity on centerline
1 T T 1

mC
08 m 308
m ]

.|| ‘ \ l ]
J. Oefelein & G. Lacaze, SNL

5 1
Xial 'm) H
Main-Effect Sensitivit Indlces
SN Najm | Hi-DinUQ 34/54

Main-Effect Sensitivity Index

"
o
|
L
—
=]
Main-Effect Sensitivity Ind




ForuQ

UQ in Ocean Modeling — Gulf of Mexico
A. Alexanderian, J. Winokur, I. Sraj, O.M. Knio, Duke Univ.
A. Srinivasan, M. Iskandarani, Univ. Miami; W.C. Thacker, NOAA

@ Hurricane Ivan, Sep. 2004

@ HYCOM ocean model (hycom.org)
@ Predicted Mixed Layer Depth (MLD)
o

Four uncertain parameters, i.i.d. U
— subgrid mixing & wind drag params

385 sparse quadrature samples



ForuQ

PC and High-Dimensionality

Dimensionality n of the PC basis: &€ = {¢1,..., &}
@ n ~ number of uncertain parameters
@ P+ 1= (n+p)!/nlp! grows fast with n
Impacts:

@ Size of intrusive PC system
@ Hi-D projection integrals = large # non-intrusive samples
@ Sparse quadrature methods

Clenshaw-Curtis sparse grid, Level =3 Clenshaw-Curtis sparse grid, Level = 5
. . ; .
. e o . . e o
°
°
°
. . ° .
°
L4
°
o o . . . e o 000000000000 000000000ococns
°
°
°
. . ° .
L4
°
o
. e o . e . e o
3 o i o
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ForuQ

PC Sparse Quadrature in hiD — Climate land model

Full quadrature: N = (Np)"
Sparse Quadrature | 80-D Surrogate

@ Wide range of methods 1e+07;

(] NeSted & hierarChicaI ]€+06; No. of Sparse Quadrature Points

@ Clenshaw-Curtis:
N = O(np) _“.é’ 1e+05?

@ Adaptive — greedy “ 10000 No.of PC Terms ]
algorithms

1000;
Number of points can still be §
excessive in hi-D wog”
1 2 3 4
— Large no. of terms PC Order

— Reduction/sparsity
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ForuQ
Dimensionality Reduction

@ Sensitivity analysis
e Local vs. Global
@ Once-at-a-time; Random sampling; Response surface
@ Known correlations in the input space
@ Choice of basis
e Karhunen-Loéve Expansion
e Proper Generalized Decomposition
o Adaptive sparse representations
@ Low dimensional manifolds in high dimensional space
@ Intrinsic dimension
e PCA; Isometric map; Diffusion map
@ HDMR methods (ANOVA)
e cut-HDMR / Anchored-ANOVA
@ Sparsification:
e Compressive Sensing (CS), LASSO
e Bayesian Compressive Sensing (BCS)
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Sparsity
PC coefficients via sparse regression

PCE: e
y=Fx) 2> aWi(x)
k=0

with x € R", ¥, max order p, and K = (p + n)!/p!/n!

@ N samples (x1,y1),- .-, (xn,yn)
@ Estimate K terms cg, ...,cx—1, S.t.

min [ly — Acl[3
wherey €¢ RY, ¢ € R, A, = Ui (x;), A € RVXK

With N << K = under-determined
@ Need some form of regularization
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Sparsity

Regularization — Compressive Sensing (CS)

@ /,-norm — Tikhonov regularization; Ridge regression:
min {|ly — Ac||3 + [le[3}
@ /;-norm — Compressive Sensing; LASSO; basis pursuit

min {[ly — Aell3 + llel|1}
min {|ly — Ac||3} subject to ||c||; < €
min {[lc|i} subject to [ly — Ac||3 < e

= discovery of sparse signals @ K

Najm Hi-Din UQ



Sparsity
Bayesian Regression

@ Bayes formula
p(e|D) o< p(Dle)(c)
@ Bayesian regression: prior as a regularizer, e.g.

o Log Likelihood < |y — Ac||3
e Log Prior < |lc||h

@ Laplace sparsity priors m(ci|a) = 2-e~lexl/@
@ LASSO (Tibshirani 1996) ... formally:

min {|ly —Ac[3 + Alle[l1}
Solution ~ the posterior mode of ¢ in the Bayesian model
y ~ N(Ac,Iy) Cr ~ Le—\ql/a
? Y 20{

@ Bayesian LASSO (Park & Casella 2008)
@ Bayesian compressive sensing (Ji 2008)
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Sparsity

Bayesian Compressive Sensing (BCS)

@ Dimensionality reduction using hierarchical priors

L 2
1 2: o

p(cxloir) = \ﬁok plot]a) = 5¢

@ Effectively, one obtains Laplace sparsity prior
K—1
o _ [4
[1 p(cilodp(otla)do? = H Vo - vatal
k=0

@ The parameter « can be further modeled hierarchically, or fixed.
@ Evidence maximization dictates values for o7, ., o> and allows exact
Bayesian solution
¢~ MVN(u,X)
with
pw=o "SPu 3 = o*(P"P + diag(o?/o})) "
@ KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
[Tipping, 2001, Ji et al., 2008; Babacan et al., 2010]
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Sparsity
BCS removes unnecessary basis terms

f(x,y) = cos(x + 4y) f(x,y) = cos(x* + 4y)
Order (dim 2) Order (dim 2)
o 1 2 3 4 5 6 7 8 9 10 0 1 2 3 4 5 6 7 8 9 10

Order (dim 1)
Order (dim 1)
© -] ~ (=) (4] » W N - (=]

-2
-4
-6
-8
-10
-12
-14
-16
18

The square (i,j) represents the (log) spectral coefficient
for the basis term «;(x);(y).

o

Najm Hi-D in UQ



Sparsity
Success rate grows with more data and ‘sparser’ model

@ Test function: f(x) = S c; T (x)
@ Only S coefficients ¢; are non-zero, with S < N < K

7

/

o
fe°)

o
A

/
/

0. 0 10 20 30 40 50 60 70
Number of measurements

Success rate
o
IS

e
N
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Sparsity

Success rate grows with more data and ‘sparser’ model

@ Test function: f(x) = S c; T (x)
@ Only S coefficients ¢; are non-zero, with S < N < K

1

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

200 400 600 800 10001200140016001800200022002400250028003000 0
Number of measurements,
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BCS recovers true coefficients with more data

10°

|

=

o O
N

P R R R
o O O O
& ¢~ W

Coef magnitude, |c,

1@ @ Truth
* % BCS w/ N=30

20

20

60
Coef Id, &

Hi-Din UQ
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BCS recovers true coefficients with more data
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BCS recovers true coefficients with more data

|

i

o 9o o
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Sparsity
Bayesian Compressive Sensing

@ Dimensionality reduction using hierarchical priors

¢

_ Yk apol?

1 7 o _ %K%k
207 2 k >

pledol) = ———e ploilow) = —-e
V2o 2
@ Effectively, one obtains Laplace sparsity prior

plelow) = HP Ck\ffk ka|OlA dffk H Fm
@ The parameter oy can be further modeled hierarchically, or fixed.
@ Evidence maximization dictates values for o7, oy, o and allows exact
Bayesian solution
¢~ MVN(p,X)
with
w=o ‘3P Y= UZ(PTP + diag(az/af))71

@ KEY: Some o7 — 0, hence the corresponding basis terms are dropped.
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Sparsity

WBCS recovers true coefficients better

Coef magnitude, |¢,|

10—12
10-13

14
1075

*
*

° %t
L Xg e
&

.

*
o“b
*

e o Truth

* * Unweighted BCS

* * Weighted BCS

50

100 1
Coefld, k

50

200

f(x) = xocos (e + Z?:] xi/i)
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Sparsity
lteratively reweighting Compressive Sensing

Sparsest solution:  min ||c||o such that u ~ Pc
Compressive sensing: min||c||; such that u ~ Pc
Weighted compressive sensing: min||We¢||; such thatu ~ Pc

For sparse signals, u = Pc, with ||c||o = S < K, ideal weights are

1 . .
W = diag <|Ck|> [i.e., Wi = +ocif ¢ = 0]

In practice, the true signal coefficients are not known, so ...
= lterative re-weighting

. 1
Wit = digg (M) [e < 1 for stability]
|t €

Najm Hi-Din UQ



Sparsity

lterative Bayesian Compressive Sensing (iBCS)

Iterative BCS: Implement an iterative procedure that allows
increasing the order for the relevant basis terms while
maintaining the dimensionality reduction. [Sargsyan et al. 2014]

Model data

Y

Initial Basis [-—>

»

lterations

Basis
Growth
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Sparsity

IBCS with reweighting

@ Combine basis growth and reweighting!

Model data
Y

~

Initial Basis —>

~

[ Sparse Basis ]——»[ Final Basis ]

Weighted
BCS

|

Iterations

Basis
Growth
Reweighting




Sparsity

Basis set growth

F(x,y) = cos(x + 4y)

Order (dim 2) Order (dim 2)
-2
[}
1 -4
2 -6
3
= = -8
£ £*
T K
T 5 -1
Q @
< S
o o —12
7
8 -1

-
> ©




Sparsity

Application of Interest: Community Land Model

http://www.cesm.ucar.edu/models/clm/

@ Nested computational grid hierarchy

@ A single-site, 1000-yr simulation takes ~ 10 hrs on 1 CPU
@ Involves ~ 70 input parameters; some dependent

@ Non-smooth input-output relationship
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Sparsity

Sparse PC surrogate for the Community Land Model

@ Main effect sensitivities : rank input parameters

@ Joint sensitivities : most influential input couplings

@ About 200 polynomial basis terms in the 70-dimensional space
@ Sparse PC will further be used for

— sampling in a reduced space
— parameter calibration against experimental data

Surrogate Model

5-95% Confidence Interval
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Sparsity

Sparse PC surrogate for the Community Land Model

@ Main effect sensitivities : rank input parameters
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Closure
Closure

@ Probabilistic UQ framework

@ Hi-dimensionality challenges

@ Spectral PC representation of random variables
@ Optimal KLE representation of random fields

@ Dimensionality reduction — sparsity

@ Bayesian compressive sensing

Najm Hi-Din UQ
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