

Implementation of Contact Global Search using
Kokkos

Glen Hansen, Samuel P. Mish and Patrick G. Xavier

Computational Multiphysics & Simulation Modeling Sciences Departments, Sandia National Laboratories

SAND 2014-18329 C

Overview
We focus on how one might pursue reworking an MPI-parallel code to achieve high
performance on MPI+X computer architectures. We present an approach that was applied to
contact simulation, specifically considering the expensive global contact search operation.
Using Sandia's Algorithms for Modeling Contact in a Multi-physics Environment (ACME) library
as the reference implementation, we developed a new approach for global search that
employed a manycore search algorithm based on a Morton-code linearized Bounding Volume
Hierarchy (BVH), developed by NVidia for use on GPU co-processors.

Modeling Contact with Parallel
Computation

Self-contact example (L) and the “Brick Wall” test problem (R).

ACME is a mature, widely used multibody contact library developed by Sandia National
Laboratories. The library implements various algorithms for:

•  Contact search: find potential interactions between body surfaces
–  Global search: calculate relationships between sets of surface entities
–  Local search: determine possibly intersecting pairs of discrete entities

•  Contact enforcement: calculate interaction forces between entities to prevent penetration or
other violations of surface integrity.

The purpose of the ACME library is to develop the mathematical terms and constraints used to
augment the equilibrium equations that describe the forces that govern bodies in contact.
ACME contains approximately 90,000 lines of C++ code, is an MPI-parallel code, and has a
test suite that was used to ensure the functionality and relevance of the final result.

Network	

Pack/
Unpack	

Zoltan_Migrate(), MPI_SEND(), etc

Rank k

Profiling. Running an ALEGRA+ACME
test program, we identified the operations
that were executed each timestep in a
simulation of the Brick Wall problem.
Profiling showed that the global search
and ghosting operations needed to
implement it dominated the contact
workload.

The accurate and efficient modeling of the behavior of contacting material surfaces and bodies
during a transient computational mechanics simulation is one of the more time consuming
activities in a typical engineering analysis calculation. Within a general calculation, one is
often challenged with the need to analyze the behavior of multiple bodies being deformed or in
relative motion with respect to each other, such as modeling individual interactions within a set
of billiard balls, as well as problems where only a single external surface is of interest but the
deformation of the surface is such that self-contact occurs.

ContactNodeBlock

node mini-topology list

ContactFaceBlock

face mini-topology list

Construct Bounding Boxes

Compute Ghosting (send, rcv)
Rank Pairs

Communicate
Node Boxes (MPI)

Search Faces against Nodes

Export Ghost Data
(Zoltan_Help_Migrate)

ContactSearch::Create_Search_To
pology

18+% Effort

ContactSearch::DoGhosting_New_
NodeFace
18% Effort

ContactSearch::GlobalSearch
34% Effort

Ghosting Algorithm

Re-Engineering for MPI+X using Kokkos
Kokkos Features
•  Collection of templated C++ components designed to address code portability across

multiple programming, memory, execution, and hardware models
•  Includes parallel for, scan, and reduce patterns implemented using functors
•  Containers: View (references to multidimensional arrays), vector, unordered map, CRS

graph
•  A View provides a default data layout according to the memory model; it can be overridden
•  A DualView provides convenient synchronization of data between the host (traditional CPU)

and the device (e.g., GPU) copies of multidimensional arrays.
•  Template specialization enables platform-specific implementations, e.g., for optimization.
[For more, see www.vecpar.org/slides/Kokkos-overview-GTC2014.pptx.]

Kokkos::DualViews Our goal is re-engineering of the code for MPI+X platforms; we
converted the code to store data in DualViews instead of the object-oriented pointer-based
data structures used in the original code. These modifications were performed everywhere we
needed to transfer data between the host and device. Data types included:
•  Field data, such as POSITION (displacements, etc)
•  Topology data, such as the number of nodes of a face or the index of where the set of node

identifiers that describe a particular face begins in an array.

ACME MiniContact Project “+X” Targets (today)
•  Cuda: obtained results on “Curie”, a Cray XK7 w/ Nvidia K20x GPUs, using one GPU per

MPI rank
•  Pthreads: on conventional multicore CPUs, single and multiple socket machines
•  OpenMP

Re-Engineering Contact Entity Ghosting

UNCLASSIFIED UNLIMITED RELEASE, UUR

ContactNodeBlock

node mini-topology list

ContactFaceBlock

face mini-topology list

Construct Bounding Boxes

proc_faces_bb and
vector of local face BBs:
 for each local face
 for loop over nodes(face)…
 push bb onto vector
 proc_faces_bb.merge(bb)

Similar for proc_nodes_bb and
vector of local node BBs.

Compute Ghosting Rank Pairs

Compute BVH of proc_nodes_bbs and
BVH proc_faces_bbs from other ranks.
Use for intersection searches:

 If proc_faces_bb intersects
proc_nodes_bb_i, then receive node_bbs
from and send ghosting (face data) to
rank i
 If proc_nodes_bb intersects
proc_faces_bb_i, then send local
node_bbs to and rcv ghosting from rank i.

 If a local node_bb intersects
proc_faces_bb_i, then that node_bb must
be sent to rank i
 If a local face_bb intersects
proc_nodes_bb_i, then the face might
need to be ghosted to rank i.

Communicate
Node Boxes

(MPI)

Search Faces against Nodes

Loop over ranks i:
 Compute BVH of node_bbs from
rank i. If a local face_bb intersects,
the data for that face must be
ghosted to rank i.

Export Ghost Data
(Zoltan_Help_Migrate)

MPI AllReduce
over vectors of

proc_nodes_bb,
proc_faces_bb

A DualView manages Views into host (h_view)
and device (d_view) memory

FacesBBFunctor (simplified):
•  Input d_views of topology and field data
•  d_view to 2d array for output BBs data
•  operator(uint face_id, BB &rdx_val)

–  finds num_nodes and node_ids for face
via face_id

–  computes BB from node positions
–  merges BB into reduction variable

rdx_val

Parallel reduce with functor across face_ids.
Initial rdx_val is empty. rdx_val grows to
proc_faces_bb when reduce is completed.

For intersection searches, use parallel
(Kokkos) code based on algorithm developed
by Karras for Cuda on GPUs.
[http://devblogs.nvidia.com/parallelforall/
thinking-parallel-part-ii-tree-traversal-gpu]

Input: 2 vectors of BBs
Output: vector of pairs of idxs of BBs (one
from each vector) that intersect

BVH is a Morton code linearized tree, built
with sequence of parallel functor applications:
 TotalBounds
 MortonEncodeCentroids
 SortByCode
 BuildRadixTree (Karras)
 UpdateInteriorNodeBoundingVolumes
[Karras, 2012 Eurographics/SIGGRAPH
Symp. On High Performance Graphics]

Parallel BVH traversal (one set of BBs vs one
BVH) can exploit fast atomics for easy non-
colliding output fill on Kepler and later GPU
architectures.

Intersection search inside a loop does not
exhibit sufficient parallelism! Need to
restructure the approach, not just plug in a
parallel algorithm.

New search: BBs of all faces potentially to be
ghosted vs all node BBs received.

Output pairs used to index into tables of dest
ranks and recvd ranks. Check to avoid
redundantly adding to Zoltan export list.

Conclusion

We compared the performance of the new ghosting function against the reference ACME
version on Brick Wall test problems employing 243K, 954K, and 4072K elements. We ran the
code on 4 MPI ranks on Curie, with one MPI rank per compute node. We used one regular
processor core and one GPU per MPI rank. In the graph below, we show the time spent in the
ghosting function in the reference version of the code (denoted “4 MPI ACME”) and the new
version (“4 MPI AMC Kokkos::Cuda”). We also show the time spent using Zoltan to export the
data to be ghosted between ranks once the communication pattern was determined within the
global search.

Acknowledgements:
•  We would like to thank Tero Karras of Nvidia for his Cuda code and suggestions.
•  Sandia National Laboratories is a multi-program laboratory managed and operated by

Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Performance Results

While the scaling of the MPI+X version is superior to the reference, there is a high fixed cost.
Examining additional profiling data, we have discovered that 2/3 of this may be traced to our
use of a naïve parallel sorting implementation and 64-bit Morton codes. We will address these
issues in future work.

To address the challenges and opportunities of MPI+X, we implemented a staged re-
engineering approach using ACME; a 90K line library.

•  To select what sections of code to address, we first used profiling to identify where to focus.
We then looked for the top time consuming sections while considering dependencies and
the existing code structure.

•  We have completed the rework of the ghosting function for node-face contact models.
Changes in the new version include: a) implementation of the parallel Morton code algorithm
using Kokkos, and b) calling the parallel search methods using generic DualView interfaces
and functors.

•  Kokkos has enabled code portability and convenience, with good performance on Cuda.

Future work includes results on the Xeon Phi, re-engineering local contact search, developing
new contact enforcement methods, and improving performance of our intersection search
implementation.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1M 2M 3M 4M 5M

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Elements

4 MPI ACME
4 MPI AMC Kokkos::Cuda

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1M 2M 3M 4M 5M

W
al

l C
lo

ck
 T

im
e

(s
)

Number of Elements

4 MPI ACME
4 MPI AMC Kokkos::Cuda

MigrateExportedData()

Note that the MPI+X version is considerably faster (14x for the 4M element brick problem) at
computing the problem geometry to be ghosted. Further, the migrate operation is an MPI
communication process that is common to both approaches. This fixed cost baseline is the
blue curve in the above.

Below, we show the scaling of the bounding-box intersection search algorithm. For the MPI+X
version, we include the time required to sync data between the host and GPU.

