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Overview 
We focus on how one might pursue reworking an MPI-parallel code to achieve high 
performance on MPI+X computer architectures.   We present an approach that was applied to 
contact simulation, specifically considering the expensive global contact search operation.  
Using Sandia's Algorithms for Modeling Contact in a Multi-physics Environment (ACME) library 
as the reference implementation, we developed a new approach for global search that 
employed a manycore search algorithm based on a Morton-code linearized Bounding Volume 
Hierarchy (BVH), developed by NVidia for use on GPU co-processors. 
 

Modeling Contact with Parallel 
Computation 

Self-contact example (L) and the “Brick Wall” test problem (R). 

ACME is a mature, widely used multibody contact library developed by Sandia National 
Laboratories.  The library implements various algorithms for: 

•  Contact search: find potential interactions between body surfaces 
–  Global search: calculate relationships between sets of surface entities 
–  Local search: determine possibly intersecting pairs of discrete entities 

•  Contact enforcement: calculate interaction forces between entities to prevent penetration or 
other violations of surface integrity. 

 
The purpose of the ACME library is to develop the mathematical terms and constraints used to 
augment the equilibrium equations that describe the forces that govern bodies in contact.  
ACME contains approximately 90,000 lines of C++ code, is an MPI-parallel code, and has a 
test suite that was used to ensure the functionality and relevance of the final result.   
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Profiling. Running an ALEGRA+ACME 
test program, we identified the operations 
that were executed each timestep in a 
simulation of the Brick Wall problem. 
Profiling showed that the global search 
and ghosting operations needed to 
implement it dominated the contact 
workload. 
 

The accurate and efficient modeling of the behavior of contacting material surfaces and bodies 
during a transient computational mechanics simulation is one of the more time consuming 
activities in a typical engineering analysis calculation.  Within a general calculation, one is 
often challenged with the need to analyze the behavior of multiple bodies being deformed or in 
relative motion with respect to each other, such as modeling individual interactions within a set 
of billiard balls, as well as problems where only a single external surface is of interest but the 
deformation of the surface is such that self-contact occurs. 
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Re-Engineering for MPI+X using Kokkos 
Kokkos Features 
•  Collection of templated C++ components designed to address code portability across 

multiple programming, memory, execution, and hardware models 
•  Includes parallel for, scan, and reduce patterns implemented using functors 
•  Containers: View (references to multidimensional arrays), vector, unordered map, CRS 

graph 
•  A View provides a default data layout according to the memory model; it can be overridden 
•  A DualView provides convenient synchronization of data between the host (traditional CPU) 

and the device (e.g., GPU) copies of multidimensional arrays. 
•  Template specialization enables platform-specific implementations, e.g., for optimization. 
[For more, see www.vecpar.org/slides/Kokkos-overview-GTC2014.pptx.] 
 
Kokkos::DualViews  Our goal is re-engineering of the code for MPI+X platforms; we 
converted the code to store data in DualViews instead of the object-oriented pointer-based 
data structures used in the original code. These modifications were performed everywhere we 
needed to transfer data between the host and device. Data types included: 
•  Field data, such as POSITION (displacements, etc) 
•  Topology data, such as the number of nodes of a face or the index of where the set of node 

identifiers that describe a particular face begins in an array. 
 
ACME MiniContact Project “+X” Targets (today) 
•  Cuda:  obtained results on “Curie”, a Cray XK7 w/ Nvidia K20x GPUs, using one GPU per 

MPI rank 
•  Pthreads: on conventional multicore CPUs, single and multiple socket machines 
•  OpenMP 
 

Re-Engineering Contact Entity Ghosting 
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proc_faces_bb and 
vector of local face BBs: 
  for each local face 
     for loop over nodes(face)… 
     push bb onto vector 
     proc_faces_bb.merge(bb) 
 
Similar for proc_nodes_bb and 
vector of local node BBs. 

Compute Ghosting  Rank Pairs 
 

Compute BVH of proc_nodes_bbs and 
BVH proc_faces_bbs from other ranks.  
Use for intersection searches: 
 
   If proc_faces_bb intersects 
proc_nodes_bb_i, then receive node_bbs 
from and send ghosting (face data) to 
rank i 
   If proc_nodes_bb intersects 
proc_faces_bb_i, then send local 
node_bbs to and rcv ghosting from rank i. 
 
   If a local node_bb intersects 
proc_faces_bb_i, then that node_bb must 
be sent to rank i 
   If a local face_bb intersects 
proc_nodes_bb_i, then the face might 
need to be ghosted to rank i. 

Communicate 
Node Boxes 

(MPI) 

Search Faces against Nodes  
 

Loop over ranks i: 
  Compute BVH of node_bbs from 
rank i.  If a local face_bb intersects, 
the data for that face must be 
ghosted to rank i. 

Export Ghost Data 
(Zoltan_Help_Migrate) 

MPI AllReduce 
over vectors of 

proc_nodes_bb, 
proc_faces_bb 

 
A DualView manages Views into host (h_view) 
and device (d_view) memory 
 
FacesBBFunctor (simplified): 
•  Input d_views of topology and field data 
•  d_view to 2d array for output BBs data 
•  operator(uint face_id, BB &rdx_val) 

–  finds num_nodes and node_ids for face 
via face_id 

–  computes BB from node positions 
–  merges BB into reduction variable 

rdx_val 
 

Parallel reduce with functor across face_ids.  
Initial rdx_val is empty.  rdx_val grows to 
proc_faces_bb when reduce is completed. 
 
 

For intersection searches, use parallel 
(Kokkos) code based on algorithm developed 
by Karras for Cuda on GPUs. 
[http://devblogs.nvidia.com/parallelforall/
thinking-parallel-part-ii-tree-traversal-gpu] 
 
Input:    2 vectors of BBs 
Output: vector of pairs of idxs of BBs (one 
from each vector) that intersect 
 
BVH is a Morton code linearized tree, built 
with sequence of parallel functor applications: 
          TotalBounds 
          MortonEncodeCentroids 
          SortByCode 
          BuildRadixTree (Karras) 
          UpdateInteriorNodeBoundingVolumes 
[Karras, 2012 Eurographics/SIGGRAPH 
Symp. On High Performance Graphics] 
 
Parallel BVH traversal (one set of BBs vs one 
BVH) can exploit fast atomics for easy non-
colliding output fill on Kepler and later GPU 
architectures. 

Intersection search inside a loop does not 
exhibit sufficient parallelism!  Need to 
restructure the approach, not just plug in a 
parallel algorithm. 
   
New search:  BBs of all faces potentially to be 
ghosted vs all node BBs received. 
 
Output pairs used to index into tables of dest 
ranks and recvd ranks.  Check to avoid 
redundantly adding to Zoltan export list. 

Conclusion 

We compared the performance of the new ghosting function against the reference ACME 
version on Brick Wall test problems employing 243K, 954K, and 4072K elements.  We ran the 
code on 4 MPI ranks on Curie, with one MPI rank per compute node.   We used one regular 
processor core and one GPU per MPI rank.  In the graph below, we show the time spent in the 
ghosting function in the reference version of the code (denoted “4 MPI ACME”) and the new 
version (“4 MPI AMC Kokkos::Cuda”).  We also show the time spent using Zoltan to export the 
data to be ghosted between ranks once the communication pattern was determined within the 
global search. 
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Performance Results 

While the scaling of the MPI+X version is superior to the reference, there is a high fixed cost.  
Examining additional profiling data, we have discovered that 2/3 of this may be traced to our 
use of a naïve parallel sorting implementation and 64-bit Morton codes. We will address these 
issues in future work. 

To address the challenges and opportunities of MPI+X, we implemented a staged re-
engineering approach using ACME; a 90K line library. 

•  To select what sections of code to address, we first used profiling to identify where to focus.  
We then looked for the top time consuming sections while considering dependencies and 
the existing code structure. 

•  We have completed the rework of the ghosting function for node-face contact models.  
Changes in the new version include: a) implementation of the parallel Morton code algorithm 
using Kokkos, and b) calling the parallel search methods using generic DualView interfaces 
and functors. 

•  Kokkos has enabled code portability and convenience, with good performance on Cuda. 

Future work includes results on the Xeon Phi, re-engineering local contact search, developing 
new contact enforcement methods, and improving performance of our intersection search 
implementation. 
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MigrateExportedData()

Note that the MPI+X version is considerably faster (14x for the 4M element brick problem) at 
computing the problem geometry to be ghosted. Further, the migrate operation is an MPI 
communication process that is common to both approaches. This fixed cost baseline is the 
blue curve in the above. 
 
Below, we show the scaling of the bounding-box intersection search algorithm. For the MPI+X 
version, we include the time required to sync data between the host and GPU. 


