. | 'l > M‘.-‘ ‘ 9 . - :, . 3T | 2 —— S _‘...:l_..}‘
Computational Multiphysics:/&-Sin: ' R ot D i et G o

Overview

We focus on how one might pursue reworking an MPI-parallel code to achieve high
performance on MPI+X computer architectures. We present an approach that was applied to
contact simulation, specifically considering the expensive global contact search operation.
Using Sandia's Algorithms for Modeling Contact in a Multi-physics Environment (ACME) library
as the reference implementation, we developed a new approach for global search that
employed a manycore search algorithm based on a Morton-code linearized Bounding Volume
Hierarchy (BVH), developed by NVidia for use on GPU co-processors.

Modeling Contact with Parallel
Computation

The accurate and efficient modeling of the behavior of contacting material surfaces and bodies
during a transient computational mechanics simulation is one of the more time consuming
activities in a typical engineering analysis calculation. Within a general calculation, one is
often challenged with the need to analyze the behavior of multiple bodies being deformed or in
relative motion with respect to each other, such as modeling individual interactions within a set
of billiard balls, as well as problems where only a single external surface is of interest but the
deformation of the surface is such that self-contact occurs.

Self-contact example (L) and the “Brick Wall” test problem (R).

ACME is a mature, widely used multibody contact library developed by Sandia National
Laboratories. The library implements various algorithms for:

« Contact search: find potential interactions between body surfaces
- Global search: calculate relationships between sets of surface entities
- Local search: determine possibly intersecting pairs of discrete entities
« Contact enforcement: calculate interaction forces between entities to prevent penetration or
other violations of surface integrity.

The purpose of the ACME library is to develop the mathematical terms and constraints used to
augment the equilibrium equations that describe the forces that govern bodies in contact.

ACME contains approximately 90,000 lines of C++ code, is an MPI-parallel code, and has a
test suite that was used to ensure the functionality and relevance of the final result.

Zoltan_Migrate(), MPI_SEND(), etc

<:> Pack/ <:> Network
Unpack

Profiling. Running an ALEGRA+ACME Ghosting Algorithm

test program, we identified the operations
that were executed each timestep in a L contactNodeBiock™ py ContactfaceBlock
SimUIation Of the BriCk Wa” prOblem. node mini-topology list face mini-topology list
Profiling showed that the global search
and ghosting operations needed to
implement it dominated the contact
workload.

Construct Bounding Boxes

Compute Ghosting (send, rcv)
Rank Pairs

ContactSearch::GlobalSearch

34% Effort
Communicate

Node Boxes (MPI)

ContactSearch::Create_Search_To

pology

18+% Effort Search Faces against Nodes

Export Ghost Data
(Zoltan_Help_Migrate)

ContactSearch::DoGhosting_ New
NodeFace
18% Effort

. Los Alamos

NATIONAL LABORATORY
EST.1943

NENLS., Odriti

v ;:.‘IA T A >~ e N) S B e e T

Re-Engineering for MPI+X using Kokkos

Kokkos Features

« Collection of templated C++ components designed to address code portability across
multiple programming, memory, execution, and hardware models

 Includes parallel for, scan, and reduce patterns implemented using functors

« Containers: View (references to multidimensional arrays), vector, unordered map, CRS
graph

« A View provides a default data layout according to the memory model; it can be overridden

« A DualView provides convenient synchronization of data between the host (traditional CPU)
and the device (e.g., GPU) copies of multidimensional arrays.

« Template specialization enables platform-specific implementations, e.g., for optimization.

[For more, see www.vecpar.org/slides/Kokkos-overview-GTC2074.ppix.]

Kokkos::DualViews Our goal is re-engineering of the code for MPI+X platforms; we

converted the code to store data in DualViews instead of the object-oriented pointer-based

data structures used in the original code. These modifications were performed everywhere we

needed to transfer data between the host and device. Data types included:

* Field data, such as POSITION (displacements, etc)

« Topology data, such as the number of nodes of a face or the index of where the set of node
identifiers that describe a particular face begins in an array.

ACME MiniContact Project “+X” Targets (today)

« Cuda: obtained results on “Curie”, a Cray XK7 w/ Nvidia K20x GPUs, using one GPU per
MPI rank

« Pthreads: on conventional multicore CPUs, single and multiple socket machines

« OpenMP

Re-Engineering Contact Entity Ghosting

ContactNodeBlock ContactFaceBlock

node mini-topology list face mini-topology list
A DualView manages Views into host (h_view)

Construct Bounding Boxes and device (d_view) memory

FacesBBFunctor (simplified):
* Input d_views of topology and field data
« d_view to 2d array for output BBs data
« operator(uint face id, BB &rdx_val)
- finds num_nodes and node_ids for face
via face id
- computes BB from node positions
- merges BB into reduction variable
rdx_val

proc_faces bb and
vector of local face BBs:
for each local face
for loop over nodes(face)...
push bb onto vector
proc_faces bb.merge(bb)

Similar for proc_nodes bb and
vector of local node BBs.

Parallel reduce with functor across face _ids.

MPI AlIReduce Initial rdx_val is empty. rdx_val grows to
over vectors of proc_faces bb when reduce is completed.
proc_nodes bb,

proc_faces bb

For intersection searches, use parallel

Compute Ghosting Rank Pairs (Kokkos) code based on algorithm developed
by Karras for Cuda on GPUs.
Compute BVH of proc_nodes_bbs and [http://devblogs.nvidia.com/parallelforall/
BVH proc faces bbs from other ranks. thinking-parallel-part-ii-tree-traversal-gpul]

Use for intersection searches:
Input: 2 vectors of BBs

If proc_faces_bb intersects Output: vector of pairs of idxs of BBs (one
proc_nodes bb i, then receive node bbs from each vector) that intersect
from and send ghosting (face data) to
rank i BVH is a Morton code linearized tree, built

If proc_nodes bb intersects with sequence of parallel functor applications:
proc_faces bb i, then send local TotalBounds
node bbs to and rcv ghosting from rank i. MortonEncodeCentroids

SortByCode

If a local node Dbb intersects BuildRadixTree (Karras)
proc_faces bb i, then that node bb must UpdatelnteriorNodeBoundingVolumes
be sent to rank i [Karras, 2012 Eurographics/SIGGRAPH

If a local face bb intersects Symp. On High Performance Graphics]
proc_nodes bb i, then the face might
need to be ghosted to rank i. Parallel BVH traversal (one set of BBs vs one

BVH) can exploit fast atomics for easy non-

colliding output fill on Kepler and later GPU
Communicate architectures.

Node Boxes
(MPI)

Intersection search inside a loop does not
exhibit sufficient parallelism! Need to
Loop over ranks i restructure the approach, not just plug in a

Compute BVH of node bbs from parallel algorithm.

rank i. If a local face bb intersects,
the data for that face must be New search: BBs of all faces potentially to be

ghosted to rank i. ghosted vs all node BBs received.

Search Faces against Nodes

Output pairs used to index into tables of dest

Export Ghost Data ranks and recvd ranks. Check to avoid
(Zoltan_Help_Migrate) \@undantly adding to Zoltan export list. /

UNCLASSIFIED UNLIMITED RELEASE, UUR

SAND 2014-18329 C

-
.

rch using-

\\‘ &
3 _
% ~ n‘.

2z : N
> b
e\ e\

e

Performance Results

We compared the performance of the new ghosting function against the reference ACME
version on Brick Wall test problems employing 243K, 954K, and 4072K elements. We ran the
code on 4 MPI ranks on Curie, with one MPI rank per compute node. We used one regular
processor core and one GPU per MPI rank. In the graph below, we show the time spent in the
ghosting function in the reference version of the code (denoted “4 MPI ACME") and the new
version (“4 MPI AMC Kokkos::Cuda”). We also show the time spent using Zoltan to export the
data to be ghosted between ranks once the communication pattern was determined within the
global search.

3.5
4 MPI ACME ——
4 MP| AMC Kokkos::Cuda ——
3 MigrateExportedData() —»—

2.5

Wall Clock Time (s)

1M 2M 3M 4 M 5M
Number of Elements

Note that the MPI+X version is considerably faster (14x for the 4M element brick problem) at
computing the problem geometry to be ghosted. Further, the migrate operation is an MPI
communication process that is common to both approaches. This fixed cost baseline is the
blue curve in the above.

Below, we show the scaling of the bounding-box intersection search algorithm. For the MPI+X
version, we include the time required to sync data between the host and GPU.

0.06

4 MPI ACME ——
4 MPI AMC Kokkos::Cuda ——

0.05

0.04

0.03

0.02

Wall Clock Time (s)

0.01

O]]]]
1M 2M 3M 4M 5M

Number of Elements

While the scaling of the MPI+X version is superior to the reference, there is a high fixed cost.
Examining additional profiling data, we have discovered that 2/3 of this may be traced to our
use of a naive parallel sorting implementation and 64-bit Morton codes. We will address these
issues in future work.

Conclusion

To address the challenges and opportunities of MPI+X, we implemented a staged re-
engineering approach using ACME; a 90K line library.

» To select what sections of code to address, we first used profiling to identify where to focus.
We then looked for the top time consuming sections while considering dependencies and
the existing code structure.

« We have completed the rework of the ghosting function for node-face contact models.
Changes in the new version include: a) implementation of the parallel Morton code algorithm
using Kokkos, and b) calling the parallel search methods using generic DualView interfaces
and functors.

« Kokkos has enabled code portability and convenience, with good performance on Cuda.

Future work includes results on the Xeon Phi, re-engineering local contact search, developing
new contact enforcement methods, and improving performance of our intersection search
Implementation.

Acknowledgements:

« We would like to thank Tero Karras of Nvidia for his Cuda code and suggestions.

« Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000.

Wl T L =37
.g»

