
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

War Stories : Graph Algorithms in
GPUs

Siva Rajamanickam(SNL)

George Slota, Kamesh Madduri (PSU)

FASTMath Meeting

SAND2014-18323PE

Increasingly Complex Heterogeneous Future;
¿ Future Proof Performance Portable Code?

1

PIMPIM
DDR

L2*

NVRAM

PIMPIM

L
1
*

T
e
x

Scr

L
1
*

T
e
x

Scr

L
1
*

T
e
x

Scr

NIC
L3L3

Memory Spaces
- Bulk non-volatile (Flash?)
- Standard DDR (DDR4)
- Fast memory (HBM/HMC)
- (Segmented) scratch-pad on die

Execution Spaces
- Throughput cores (GPU)
- Latency optimized cores (CPU)
- Processing in memory

Special Hardware
- Non caching loads
- Read only cache
- Atomics

Programming
models
- GPU: CUDA-ish
- CPU: OpenMP
- PIM: ??

Outline

 What is Kokkos (Slides from Kokkos Developers: Carter
Edwards, Christian Trott, Dan Sunderland)

 Layered collection of C++ libraries

 Thread parallel programming model that managed data access patterns

 Graph Algorithms with OpenMP

 Graph Algorithms with Kokkos

 Conclusion

2

Application & Library Domain Layer

Kokkos: A Layered Collection of Libraries

 Standard C++, Not a language extension
 In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...

 Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

 Uses C++ template meta-programming
 Currently rely upon C++1998 standard (everywhere except IBM’s xlC)

 Prefer to require C++2011 for lambda syntax

 Need CUDA with C++2011 language compliance

3

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Kokkos’ Layered Libraries

 Core
 Multidimensional arrays and subarrays in memory spaces

 parallel_for, parallel_reduce, parallel_scan on execution spaces

 Atomic operations: compare-and-swap, add, bitwise-or, bitwise-and

 Containers
 UnorderedMap – fast lookup and thread scalable insert / delete

 Vector – subset of std::vector functionality to ease porting

 Compress Row Storage (CRS) graph

 Host mirrored & synchronized device resident arrays

 Sparse Linear Algebra
 Sparse matrices and linear algebra operations

 Wrappers for vendors’ libraries

 Portability layer for Trilinos manycore solvers

4

Kokkos Core: Managing Data Access
Performance Portability Challenge:

Require Device-Dependent Memory Access Patterns

 CPUs (and Xeon Phi)
 Core-data affinity: consistent NUMA access (first touch)

 Hyperthreads’ cooperative use of L1 cache

 Alignment for cache-lines and vector units

 GPUs
 Thread-data affinity: coalesced access with cache-line alignment

 Temporal locality and special hardware (texture cache)

 ¿ “Array of Structures” vs. “Structure of Arrays” ?

This is, and has been, the wrong question

Right question: Abstractions for Performance Portability ?

5

Kokkos Core: Fundamental Abstractions

 Devices have Execution Space and Memory Spaces
 Execution spaces: Subset of CPU cores, GPU, ...

 Memory spaces: host memory, host pinned memory, GPU global memory,
GPU shared memory, GPU UVM memory, ...

 Dispatch computation to execution space accessing data in memory spaces

 Multidimensional Arrays, with a twist
 Map multi-index (i,j,k,...)  memory location in a memory space

 Map is derived from an array layout

 Choose layout for device-specific memory access pattern

 Make layout changes transparent to the user code;

 IF the user code honors the simple API: a(i,j,k,...)

Separates user’s index space from memory layout

6

Kokkos Core: Multidimensional Array
Layout and Access Attributes

 Override device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);

 E.g., force row-major or column-major

 Multi-index access is unchanged in user code

 Layout is an extension point for blocking, tiling, etc.

 Example: Tiled layout
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M);

 Layout changes are transparent to user code

 IF the user code honors the a(i,j,k,...) API

 Data access attributes – user’s intent
class View<const double**[3][8], Device, RandomRead> x = a ;

 Constant + RandomRead + GPU → read through GPU texture cache

 Transparent to user code

7

Kokkos Core: Dispatch Data Parallel Functors
‘NW’ units of data parallel work

 parallel_for(NW , functor)
 Call functor(iw) with iw  [0,NW) and #thread ≤ NW

 parallel_reduce(NW , functor)
 Call functor(iw , value) which contributes to reduction ‘value’

 Inter-thread reduction via functor.init(value) & functor.join(value,input)

 Kokkos manages inter-thread reduction algorithms and scratch space

 parallel_scan(NW , functor)
 Call functor(iw , value , final_flag) multiple times (possibly)

 if final_flag == true then ‘value’ is the prefix sum for ‘iw’

 Inter-thread reduction via functor.init(value) & functor.join(value,input)

 Kokkos manages inter-thread reduction algorithms and scratch space

8

Kokkos Core: Dispatch Data Parallel Functors
League of Thread Teams (grid of thread blocks)

 parallel_for({ #teams , #threads/team } , functor)
 Call functor(teaminfo)

 teaminfo = { #teams, team-id, #threads/team, thread-in-team-id }

 parallel_reduce({ #teams , #threads/team } , functor)
 Call functor(teaminfo , value)

 parallel_scan({ #teams , #threads/team } , functor)
 Call functor(teaminfo , value , final_flag)

 A Thread Team has
 Concurrent execution with intra-team collectives (barrier, reduce, scan)

 Team-shared scratch memory

 Exclusive use of CPU and Xeon Phi cores while executing

9

Outline

 What is Kokkos

 Graph Algorithms with OpenMP

 Graph Algorithms with Kokkos

 Conclusion

10

Computing Strongly Connected Components

 Problem: Given a graph find all the strongly connected
components in the graph

 Multistep method:

 Multithreaded with OpenMP

 Optimized for the best CPU performance, state-of-the-art code.

 Scales to millions of vertices and billions of edges

 Data-Parallel code, minimal synchronization

 Good as a baseline for porting to Kokkos

 Scales to 16-32 threads

 FASTMath session in PP14 and IPDPS 14.

11

Multistep Method with OpenMP

 Different Steps of the Algorithm
uses different types of parallelism

 Per-vertex for-loop

 Level synchronous BFS

12

Outline

 What is Kokkos

 Graph Algorithms with OpenMP

 Graph Algorithms with Kokkos

 Conclusion

13

Thread Parallel vs Thread Scalable

#pragma omp

{

// allocate an array

parallel for do work

}

14

 Common construct in OpenMP
programming
 Allocate threadlocal data, do parallel work

 Non-Starter in the GPUs for large arrays

 Count, Allocate, Fill, paradigms
 Non-Starter for graph algorithms

 Need Algorithms that use tiny threadlocal data and
synchronize with global memory
 Tiny == 16 – 32 edges

 Expensive, too many synchronizations

 Need Algorithms that use threadteams and shared
memory (scratch space) between a team of threads.

Thread Teams in GPUs

15

 Multiprocessor (up to about 15/GPU)

 Multiple groups of stream processors (12×16)

 Warps of threads all execute SIMT on single group of stream
processors (32 threads/warp, two cycles per instruction)

 Irregular computation (high degree verts, if/else, etc.) can result in
most threads in warp doing NOOPs

 Kokkos Model:
 Thread team - multiple warps on same multiprocessor, but all still

SIMT for GPU

 Thread league - multiple thread teams

 Work statically partitioned to teams before parallel code is called

Challenges in ThreadScalable codes

16

 Goal: Fast Kokkos-based ThreadScalable algorithm for
CPU/GPU/Phi

 Challenges:
 No persistent thread-local storage

 Minimize serial portions for GPU/Phi

 Mitigate effect of high degree vertices, irregular graphs

 Mitigate algorithmic differences of various architectures

 Solutions:
 Very small static thread-owned arrays

 No more Tarjan’s, minimize possible per-thread work

 Implement new algorithmic tweaks, for loadbalancing, to current
methods

 HOPE this doesn’t happen !!!!

Handling Imbalance in GPU threads

17

 Chunking:
 Tranform vertex queue into edge queue

 Each thread can explore only a few edges and chunks the rest of the
edges for later stages

 Delayed Exploration of High Degree Vertices:
 When a single thread in a team encounters a high degree vertex, its

exploration is delayed

 The vertex is placed in shared memory queue, only accessible by
thread team (just a template parameter in Kokkos)

 Once team finishes original work (minus large degree vertices), the
team works to explore all delayed vertices via inner loop parallelism

 On CPU, size of thread teams is usually 1, so this algorithm would
default back to standard approach on that architecture

Results - Algorithms

18

 Multistep (M): Simple trimming, Dir. Opt BFS, Coloring until
less than 100k vertices remain with single thread exploration
on backward stage, Serial Tarjan algorithm.

 Multistep in Kokkos (MK): Simple trimming, Dir. Opt BFS with
small thread owned queues, coloring with fully parallel
forward and backward, no Tarjan

 GPU in Kokkos (GK): Simple trimming, Dir. Opt BFS with
chunking, coloring with delayed exploration

 GPU min Memory in Kokkos (GKM): Only utilize out edges,
simple trimming, Forward BFS with chunking and fully
bottom-up BFS on backward stage, forward coloring with
delayed exploration and fully bottom-up reverse search

Results with Kokkos versions

19

 LiveJournal RMAT−24 DBpedia

 WikiLinks sk−2005 Twitter

0.0

0.2

0.4

0.6

0

1

2

3

4

0

5

10

15

20

25

0

5

10

15

20

0

40

80

120

0.0

2.5

5.0

7.5

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

M
−
C

M
−
P

M
K

−
C

M
K

−
G

G
K

−
C

G
K

−
G

G
K

M
−
C

G
K

M
−
G

Algorithm: 'M−' = Multistep, 'MK−' = Multistep Kokkos, 'GK−' = GPU Kokkos, 'GKM−' = GPU Kokkos Mem
Environment: '−C' = CPU, '−G' = GPU, '−P' = Xeon Phi

R
u
n
ti
m

e
(s

)

 Multistep (M) is the fastest algorithm in CPU

 GK is the fastest algorithm in the GPU

 Phi is (a lot) slower

Conclusion

20

 Kokkos provides the path-forward for refactoring codes to
different architectures

 Handles data layout

 Portable, ThreadScalable performance

 Algorithmic Challenges:

 Still different algorithms perform better in different architectures

 Hard to see a single refactor for algorithms in different architectures

 Kokkos programming is C++ programming not CUDA
programming

