SAND2014- 18323P

War Stories : Graph Algorithms in
GPUs

Siva Rajamanickam(SNL)
George Slota, Kamesh Madduri (PSU)

FASTMath Meeting

Sandia
National
Laboratories

Exceptional
service
in the

f/"% U.S. DEPARTMENT OF 'DQ%

. & i
national ENERGY ﬁ’VAD -
Sandia National Laboratories is a multi-program laboratory managed and operated by San d Cor p ration, a wholly owned subsidiary of Lockheed Martin

iilte?’e"t Corporatio f the U.S. D epartment of Energy’s National Nuclear Security Administration under contral tDE -AC04-94AL85000. SAND NO. 2011-XXXXP

Increasingly Complex Heterogeneous Future; (@)=,
¢ Future Proof Performance Portable Code?

Memory Spaces Special Hardware
- Bulk non-volatile (Flash?) - Non caching loads
- Standard DDR (DDR4) - Read only cache

- Fast memory (HBM/HMC) - Atomics
- (Segmented) scratch-pad on die
Programming
Execution Spaces E E E models
- Throughput cores (GPU) - GPU: CUDA-ish
- Latency optimized cores (CPU) - CPU: OpenMP
- Processing in memory - PIM: ?7?

e

O U t I I n e m Il“ahnratt!nies

= What is Kokkos (Slides from Kokkos Developers: Carter
Edwards, Christian Trott, Dan Sunderland)

= Layered collection of C++ libraries

= Thread parallel programming model that managed data access patterns

= Graph Algorithms with OpenMP

= Graph Algorithms with Kokkos

= Conclusion

Kokkos: A Layered Collection of Libraries

= Standard C++, Not a language extension
= |n spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
= Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

= Uses C++ template meta-programming

= Currently rely upon C++1998 standard (everywhere except IBM’s xIC)

= Prefer to require C++2011 for lambda syntax
Need CUDA with C++2011 language compliance

mh

Sandia
National
Laboratories

Application & Library Domain Layer

Kokkos Sparse Linear Algebra

Kokkos Containers

Kokkos Core

Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

° ° Sandia
Kokkos’ Layered Libraries Lufre

= Core
= Multidimensional arrays and subarrays in memory spaces
= parallel_for, parallel_reduce, parallel_scan onexecution spaces
= Atomic operations: compare-and-swap, add, bitwise-or, bitwise-and

= Containers
» UnorderedMap — fast lookup and thread scalable insert / delete
= Vector — subset of std::vector functionality to ease porting
= Compress Row Storage (CRS) graph
= Host mirrored & synchronized device resident arrays

= Sparse Linear Algebra
= Sparse matrices and linear algebra operations
= Wrappers for vendors’ libraries
= Portability layer for Trilinos manycore solvers

Kokkos Core: Managing Data Access) s,
Performance Portability Challenge:
Require Device-Dependent Memory Access Patterns
= CPUs (and Xeon Phi)

= Core-data affinity: consistent NUMA access (first touch)
= Hyperthreads’ cooperative use of L1 cache
= Alignment for cache-lines and vector units

= GPUs

= Thread-data affinity: coalesced access with cache-line alignment
= Temporal locality and special hardware (texture cache)

= ¢ “Array of Structures” vs. “Structure of Arrays” ?
» This is, and has been, the wrong question

Right question: Abstractions for Performance Portability ?

Sandia

Kokkos Core: Fundamental Abstractions i) ors

= Devices have Execution Space and Memory Spaces
= Execution spaces: Subset of CPU cores, GPU, ...

= Memory spaces: host memory, host pinned memory, GPU global memory,
GPU shared memory, GPU UVM memory, ...

= Dispatch computation to execution space accessing data in memory spaces

= Multidimensional Arrays, with a twist
= Map multi-index (i,j,k,...) <> memory location in a memory space
= Map is derived from an array layout
» Choose layout for device-specific memory access pattern
= Make layout changes transparent to the user code;
» |IF the user code honors the simple API: a(i,j,k,...)

Separates user’s index space from memory layout

Kokkos Core: Multidimensional Array)
Layout and Access Attributes

= QOverride device’s default array layout
class View<double**[3][8], Layout , Device> a(“a”,N,M);
= E.g., force row-major or column-major

» Multi-index access is unchanged in user code
= Layout is an extension point for blocking, tiling, etc.

= Example: Tiled layout VWl Al12 1A
class View<double**, TileLeft<8,8> , Device> b(“b”,N,M); / / /
> Layout changes are transparent to user code ARARAR’

» IF the user code honors the a(i,j,k,...) API
= Data access attributes — user’s intent
class View<const double**[3][8], Device, RandomRead> x = a;

= Constant + RandomRead + GPU - read through GPU texture cache
= Transparent to user code

Kokkos Core: Dispatch Data Parallel Functors (i) s,
‘NW’ units of data parallel work

= parallel_for(NW , functor)
= Call functor(iw) with iw € [0,NW) and #thread < NW

= parallel_reduce(NW, functor)
= Call functor(iw, value) which contributes to reduction ‘value’
= |nter-thread reduction via functor.init(value) & functor.join(value,input)
= Kokkos manages inter-thread reduction algorithms and scratch space

= parallel_scan(NW, functor)
= Call functor(iw, value, final_flag) multiple times (possibly)
= if final_flag == true then ‘value’ is the prefix sum for ‘iw’
= |nter-thread reduction via functor.init(value) & functor.join(value,input)
= Kokkos manages inter-thread reduction algorithms and scratch space

Kokkos Core: Dispatch Data Parallel Functors ()&=,
League of Thread Teams (grid of thread blocks)

= parallel_for({ #teams , #threads/team }, functor)
= Call functor(teaminfo)
= teaminfo = { #fteams, team-id, #threads/team, thread-in-team-id }

= parallel_reduce({ #teams , #threads/team }, functor)

= Call functor(teaminfo , value)

= parallel_scan({ #teams , #threads/team }, functor)
= Call functor(teaminfo , value, final_flag)

= A Thread Team has
= Concurrent execution with intra-team collectives (barrier, reduce, scan)
= Team-shared scratch memory
= Exclusive use of CPU and Xeon Phi cores while executing

O U t I I n e m Il“ahnratcllries

= What is Kokkos
= Graph Algorithms with OpenMP

= Graph Algorithms with Kokkos

= Conclusion

Computing Strongly Connected Components

Sandia
|I1 National
Laboratories

= Problem: Given a graph find all the strongly connected
components in the graph

= Multistep method:

= FASTMath session in PP14 and IPDPS 14.

Multithreaded with OpenMP
Optimized for the best CPU performance, state-of-the-art code.
Scales to millions of vertices and billions of edges

Data-Parallel code, minimal synchronization
Good as a baseline for porting to Kokkos

Scales to 16-32 threads

Multistep Method with OpenMP) .

= Different Steps of the Algorithm
uses different types of parallelism

= Per-vertex for-loop

= Level synchronous BFS

Algorithm -s- Multistep 4~ Hong

Twitter ItWeb WikiLinks LiveJournal

12.5 -
10.0 -
7.5
5.0 7

2.5+

1.6 -
1.2+
0.8 -
0.4 -

|
n's
== N
o o O
| I I |
- N W
\
Nwbs o
| I T I |

(€3]
|
—
|

Speedup vs. Tarj
X
<
()
(0]
T
>
=
N
=~
()
=2
v
=
o
=

=N W D
N O N
o1 O O
[
=N WS
OO OO
\

O U t I I n e m Il“ahnratcllries

= What is Kokkos
= Graph Algorithms with OpenMP

= Graph Algorithms with Kokkos

= Conclusion

Saqdia]
Thread Parallel vs Thread Scalable Lf

#pragma omp

{

/[allocate an array

= Common construct in OpenMP
programming
= Allocate threadlocal data, do parallel work

parallel for do work
= Non-Starter in the GPUs for large arrays)

= Count, Allocate, Fill, paradigms
= Non-Starter for graph algorithms

= Need Algorithms that use tiny threadlocal data and
synchronize with global memory
= Tiny == 16 — 32 edges
= Expensive, too many synchronizations
= Need Algorithms that use threadteams and shared
memory (scratch space) between a team of threads.

Saqdia]
Thread Teams in GPUs) e

= Multiprocessor (up to about 15/GPU)

= Multiple groups of stream processors (12 X 16)

= Warps of threads all execute SIMT on single group of stream
processors (32 threads/warp, two cycles per instruction)

= |rregular computation (high degree verts, if/else, etc.) can result in
most threads in warp doing NOOPs

» Kokkos Model:

= Thread team - multiple warps on same multiprocessor, but all still
SIMT for GPU

= Thread league - multiple thread teams

= Work statically partitioned to teams before parallel code is called

Challenges in ThreadScalable codes

= Goal: Fast Kokkos-based ThreadScalable algorithm for
CPU/GPU/Phi
= Challenges:
= No persistent thread-local storage
= Minimize serial portions for GPU/Phi
= Mitigate effect of high degree vertices, irregular graphs
= Mitigate algorithmic differences of various architectures

= Solutions:
= Very small static thread-owned arrays

= No more Tarjan’s, minimize possible per-thread work

= Implement new algorithmic tweaks, for loadbalancing, to current
methods

= HOPE this doesn’t happen !!!!

Sandia
National
Laboratories

Handling Imbalance in GPU threads)iz

= Chunking:
= Tranform vertex queue into edge queue
= Each thread can explore only a few edges and chunks the rest of the
edges for later stages
= Delayed Exploration of High Degree Vertices:

= When a single thread in a team encounters a high degree vertex, its
exploration is delayed

= The vertex is placed in shared memory queue, only accessible by
thread team (just a template parameter in Kokkos)

= Once team finishes original work (minus large degree vertices), the
team works to explore all delayed vertices via inner loop parallelism

= On CPU, size of thread teams is usually 1, so this algorithm would
default back to standard approach on that architecture

Sandia
"1 National

Laboratories

Results - Algorithms

= Multistep (M): Simple trimming, Dir. Opt BFS, Coloring until
less than 100k vertices remain with single thread exploration
on backward stage, Serial Tarjan algorithm.

= Multistep in Kokkos (MK): Simple trimming, Dir. Opt BFS with
small thread owned queues, coloring with fully parallel
forward and backward, no Tarjan

= GPU in Kokkos (GK): Simple trimming, Dir. Opt BFS with
chunking, coloring with delayed exploration

= GPU min Memory in Kokkos (GKM): Only utilize out edges,
simple trimming, Forward BFS with chunking and fully
bottom-up BFS on backward stage, forward coloring with
delayed exploration and fully bottom-up reverse search

Results with Kokkos versions

Sandia
National
Laboratories

LiveJournal

RMAT-24

DBpedia

II-I I

25 -

15—

0__IIl lll||||||||lll|||||||
T T T T
A

@ | Z| Q Q T T $ Z| g Q Q T T
o WikiLinks sk—-2005 Twitter
. 120 -
7.5-
15 - 80—
5.0 -
10 -
o I
-1l . -— . O — - 0o-1IH . [.
2 2 Z < z z 2 2 Z
P

'-C'=CPU, '-G'=GPU, -

= Xeon Phi

= Multistep (M) is the fastest algorithm in CPU
= GKis the fastest algorithm in the GPU
= Phiis (alot) slower

Algorithm: 'M-' = Multistep, 'MK-' = Multistep Kokkos, 'GK-' = GPU Kokkos, 'GKM-' = GPU Kokkos Mem
Environment:

Sandia
|l1 National

Laboratories

Conclusion

= Kokkos provides the path-forward for refactoring codes to
different architectures

= Handles data layout
= Portable, ThreadScalable performance
= Algorithmic Challenges:
= Still different algorithms perform better in different architectures

= Hard to see a single refactor for algorithms in different architectures

= Kokkos programming is C++ programming not CUDA
programming

