[

(N

_,:;__]\: ’ w ‘ l\"\§\
.' S [

Sandia
National
Laboratories

Exceptional
service

in the
national

interest

u uu'u

SAND2014- 18249P

Toward Local Failure
Local Recovery (LFLR)
Resilience Model Using
MPI-ULFM

Keita Teranishi and Michael A. Heroux
Sandia National Laboratories

EuroMPI/ASIA’14, Kyoto, Japan
September 11, 2014

SAND# 2014-17339 PE

T YA N ag7s)
ENERGY MVA A

oratories is a multi-p boratory managed al d oper: dbyS ndia Corj poratlon a wholly owned subsidiary of Lockheed Marti
Corporation, for the U.S. Department of Energy’s National Nu I r Security Adm tion under ct DE-AC04-94AL85000. SAND NO. 2011 XXXXP

Sandia
Overview i) Natona

= Motivation for Local Failure-Local Recovery (LFLR)
= Architecture for LFLR

= Application Recovery

= Results

= Discussion

= Conclusions

Motivation for LFLR: h E‘Eﬁi":zlﬂes

= Current practice of Checkpoint/Restart is global response to

single node (local) failure
= Kill all processes (global terminate), then restart
= Dependent on Global File system
= SCR (LLNL) is fast, but adheres global recovery

= Single node failures are predominant
= 85% on LLNL clusters (Moody et al. 2010)
= 60-90% on Jaguar/Titan (ORNL)

= Need for scalable, portable and application agnostic solution

= Local Failure Local Recovery Model (LFLR)
= SPMD model

Sandia
Example — S3D production runs) fouea,

3901s 1617s 1612s <«— Recovery+rollback overhead —— 4439s 1928s 6025s

— —_— —_— — —_—

]]] (]] i]]] [
(]]] (]]]]]

0 1000‘0 ‘ 2000 31)000 40000 50000 ‘600’00 7’0000 ‘ 0000 86400
Execution wall time (s)

= Courtesy of Hemanth Kolla.

= 24-hour tests using Titan (125k cores) = Exploring Automatic Online Failure

= 9 process/node failures over 24 hours Recovery for Scientific Applications at
Extreme Scales, M. Gamell, M, Parashar,

= Failures are promoted to job failures, causing all)
D. Katz, H. Kolla and J. Chen, to appearin

125k processes to exit.

SC14.
As a result, checkpoint (5.2 MB/core) has to be done to
the PFS
= Checkpoint data: 55s Total: 1.72%
. processes: 470s Total: 5.67 % TO DAY 20-30%
. checkpoint: 44s Total: 1.38% . N0
= Rollback overhead: 1654s Total: 22.63 % FUtu re. ¢¢: A)
= Total overhead due to fault tolerance:|31.40 %

LFLR: Alternative Solution for Checkpoint/Restart T =

= LFLR overcomes the shortcomings of C/R

= The remaining processes stay alive with single process failures
= Application-based
= Multiple implementation options
= Roll-back, roll-forward, asynchronous, algorithm specific, etc.
= Active Hot Spare Process for recovery

PO Run

I:)1 Run

Run

Run as P,

Sandia
OV e rV I e W m Iluaat}g]rg?éries

Executive Summary
= Qverview
= Milestones Completed

= Motivation for Local Failure-Local Recovery (LFLR)
= Architecture for LFLR

= Application Recovery

= Results

= Discussion

= Conclusions

National

4 requirements to enable LFLR) e,

1. Runtime and middleware that permit parallel program
execution to continue under process failures.

2. Runtime and middleware that provide replacement
processes for the failed ones, and allow application programs
to query the status of processes.

3. Redundant persistent storage for restoring the data
associated with failed process.

4. Tools and framework to build application specific recovery

schemes.

7
-

Application and Architecture Agnostic)
Framework to enable LFLR

Laboratories

Scientific Data

Base class for
application data objects

Parity in memory
(diskless checkpoint)

Communication
and Spare Process

MPI-ULFM Parallel Execution Runtime (PER)

Parallel Execution Runtime (PER): Running) i
Applications Through Process Failures

Laboratories

= Requirement: The remaining process can run through the
failure of single (or a few) processes

= LFLR’s backend

= Possible to replace any resilient runtime other than MPI
= Ongoing work: Our in-house runtime built for UGNI (Cray XE/XC)

Sandia
Resilient MPI for Parallel Execution Runtime i) et

= Several Fault Tolerant MPI implementations

= FT-MPI (Fagg et al.), LA-MPI (LANL) and NR-MPI (NUDT, China) makes
process recovery up on failure

= MPI-ULFM provides a minimum set of APIs for resilience
= No process recovery
= Users are responsible for writing application recovery

Several MPI calls for fixing MPI communicator
= MPI_Comm_agree : Check the global status of MPI_Comm
= MPI_Comm_revoke: Invalidate MPI Communicator
= MPI_Comm_shrink: Fix MPI Communicator removing dead process

Error notification when receiving message from lost process

Prototype code is available at http://fault-tolerance.org

10
-

http://fault-tolerance.org
http://fault-tolerance.org
http://fault-tolerance.org

Resilient Communicator (RC): Handles Message
Passing and Spare Process Management

= Process Management
= Spare Processes
= Process Grouping for scalable commit and restore

= Direct access to MPI communicator

= For integration with the existing code

= Allows MPI’s message passing call and failure notification
= Wrapper Functions

= Support Non-ULFM capability
= Algorithm selection for resilient collective
= Status check, etc.

ULFM Wrapper

Sandia
National
Laboratories

Sandia
Resilient Communicator: Current Design L

Comp_Group Comm Comp_Group Comm Comp_Group Comm

BEE

Redundant Storage (RS): Efficient Persistent Data ;) s,
Storage to Restore the Data from Lost Process

Laboratories

= Application data needs to be stored in persistent storage
= Accessible after process loss
= Data needs to be placed/copied outside the process

= Several Options

= Memory for the executable

= Diskless checkpointing
— RAID-like redundancy

= Local disk

= Caching

= RAM, NVRAM and disk

= Involves system configuration to set the size of /tmp
= Burst Buffer

= For NERSC-8 and Trinity system

= Need good APIs to access it!

= Global File Systems

13
-

Redundant Storage API (Tentative)) i,

register(void *data, size_t size, RC, distribution, storage_option)
commit()

restore(void *data, size_t *size)

unregister()

= “distribution” defines the type of data distribution to help flexible
recovery of the data in a particular piece of memory

= Distributed (Each process owns its local piece)
= Shared (Shared by multiple processes)
* Local (Exclusive to single rank)

= We provide options for the underlying storage scheme.

14

Scalable Recovery using Diskless Checkpointing ;) s,
and Active Spare

Laboratories
Compute processes split into groups Active spare processes

Commit
" [n-memory redundant

storage
= RAID4-like redundancy | | Restore a H
= Scalable Commit and
Restore @ e

= Spare process is
assigned to each group Lost l

_ 7/ XOR

Application Resilience Layer (ARL) : Builds)
Application Specific Recovery Scheme

Laboratories

= 2 Components
= LFLR registry
= recoverable

= LFLR registry monitors the allocation of scientific data
objects

= Provides stack of pointers for scientific objects
= Scientific object is pushed to LFLR_registry by its

constructor CoR i
= Popped when destroying (by destructor) —
= recoverable is a base class for scientific data objects =

= Orchestrate stack of Redundant Storage objects to
perform application specific data recovery

= Allows the user to describe the application specific data
recovery scheme

= Recovery method can be implemented without RS if
necessary

16

ARL: LFLR_Registory Manages Stack of Data)

Objets

Typical sequence of a Finite Element
application

Matrix Assembly

Mesh Creation

National _
Laboratories

Linear System Solver

Another Matrix
Assembly

Integrating ARL to the existing Scientific Data) i
Structure

National _
Laboratories

Sandia
OV e rV I e W m Iluaat}:?rg?éries

= Motivation for Local Failure-Local Recovery (LFLR)
= Architecture for LFLR

= Application Recovery

= Results

= Discussion

= Conclusions

Sandia

Application Recovery needs to Recover 3 Entities (T,

= Process (RC)

= Application Data (RS, ARL)

= Application State

= Skeletonize Program for Spare Process

P |I1 ﬁgtnigi:a] .
rocess Recovery s

= Error Detection

= MPI-ULFM'’s capability

= Once Detected: Set RC.state = false;
= Error Notification

= OMPI_Comm_agree(MPl_Comm) to check the status of all the process
associated with the MPI communicator
= Ongoing Work:
= More involvement of spare process for each group
= MPI_Comm_revoke to allow lazy notification

= Recovery

= Several MPI-ULFM calls
= OMPI_Comm_shrink to eliminate lost process
= OMPI_Comm_create to include spare process to computing process

= OMPI_Comm_create and MPI_Group_create to modify other sub-
communicators

21
-

Data Recovery Involves LFLR_Registory h) i,

= Recovery Order is bottom-up of
the stack in LFLR_registory

Vector

= The data in the bottom can be the
source for the those above

= Recovery the data required to
execute the latest state of
application

Recovery Order

Leveraging the Application for Efficient Storage (7; =,
Reduction

Laboratories

= Exploit Data Dependencies of Application data

= Recovery through inexpensive local computation
(Example: MiniFE)
= Reuse the existing Matrix Assembly code

f(x7y7z7 l)

= Localized matrix regeneration Topology Eg:ezg Initial Latest
. . Mesh Conditi Condition
* Substantial storage reduction alz=) Matrix) ONGHion

Redundant Storeage of MinIFE: 2,048 Processes
1000 —— 100

i Data Size :Store All
o
s Data Size: Regenrate Matrix '6
m == Commit/Restore: Store All ‘é
= e=g== Restore: Regenrate Matrix - 10 E Matrix
= e=t== Commit: Regenerate Matrix = Regeneration
" S
100
» S
3 4 O
° (&)
S 15
o L
:5 o
<1 - 01 £
o —
N 10 g
» o
© =
whd
5 o B 001 3
Q Improvements in commit amortizes)
. . X
the relatively high overhead of restore w
1 - - 0.001

512 1024 1536
Global Mesh Size (X=Y=2) 23

National _
Laboratories

Code Transformation to allow spare processto ()

obtain the latest state of the application

Compute(comm,data) {
CSR_Matrix A(comm);

for ... {
Vector x(comm);

// Do real computation

Sandia
OV e rV I e W m Iluaat}g]rg?éries

Executive Summary
= Qverview
= Milestones Completed

= Motivation for Local Failure-Local Recovery (LFLR)
= Architecture for LFLR

= Application Recovery

= Results

= Discussion

= Conclusions

Preliminary Result: Experiment Settings) i,

= Time Stepping PDE

= 20 steps, multiple linear system solve

= |LFLR enabled

= Vectors are stored in every time step

= Weak scaling

" 64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z)
linearly

= Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node,
QDR Infiniband

= Process failure during linear system solve (2048 PEs)
= MPI-ULFM with our own fix for resilient collective

26

Resilient Time-Stepping MiniFE) i,

Create Mesh M

Compute Matrix A out of M
Save M in Persistent Storage
Do until the last time step

b, and b, ; in Persistent Storage

Get new b, from x, ; (Update Boundary Condition) Process 10ss is

b . h k . .
Solve Ax;=b, (Linear System Solution) checked periodically

if the linear system solver fails, try the same iterative step
end do

* Local vector is stored with the subscript (iteration count) info

« Allow linear system solver to crash or end up with wrong solution
— Process loss
— Convergence failure due to silent data corruption

* Repeat the same iteration when linear system solver fails
— Need to get x; ; and b, ,

CG Iteration with Process Failure Check g

Algorithm 2 Conjugate Gradient with Process Failure Detection
Input:A, b and initial guess xg
ro :=b—Axgy, x :=Xxg, po:=rg,i:=0
while ||r;|| is small enough or Failure do
q :=Ap; Detection)
o= ||ri|/(pF) tion)
X =x+ap;
Fit1 = Fri — g
Frew 1= ||7iy1|* €BrrorDeteetion) Error Detection at
B = ryew/|7il)? MatVec and Dot
Pit1:=rit1+Ppi Product
ii=i+1
if (Process failure is found) then
break
end if
end while

Performance Fix in MPI-ULFM

= Enable Tuned Collectives
= Enable Tree based resilient MPI_allreduce

= Replaced resilient Global Agreement protocol used for
OMPI_Comm_shrink and MPI_Comm_create.

= The original version was one-to-all and all-to-one

= Applied tree-based version based on Hursey and Graham

Sandia
National _
Laboratories

Scalable Recovery: LFLR-enabled miniFE) i,

Execution Time: 20 time step LFLR-miniFE

1000

» 100
©
c
o
(8]
0
g 1
o
£
-
c 1 = All Solve+Failure Recovery
o
5 === A|| Solve without Recovery
(8]
§<, «= /= Single Linear Solve
w 01 n
e=fl=s | | R Overhead
=== \IPI-ULFM Overhead
0.01
0 256 512 768 1024 1280 1536 1792 2048

of Processes (cores)

30

Scalability Issues of LFLR-minlIFE: MPI-ULFM

Recovery Cost in LFLR-miniFE in Details

Sandia
National
Laboratories

20
Original ULFM hangs with 2,048 cores
o 18 (More than 30 minutes) N
€ 16
3
o 14
n
£12
£ 10
-
£ 8
'-% 6
Ej: 4
2 / -
et
0 512 1024 1536 2048
of Cores
=¢=Commit (20 times) ==Data Recovery
=#=Communicator Fix =@=Error Notification
=3=Recovery All ====Communicator Fix (original ULFM) 31

Performance Fluctuation of Resilient Agreement (3 s,
with MPI-ULFM

Laboratories

Execution Time of Global Agreement Calls on
1,024 cores

2.00E+00
i
1.50E+00 i
1
!
1.00E+00 i
1
!
5.00E-01 E
’ -
0.00E+00 . SR S . SR . .
1 2 3 4 5 6 7 8 9 10 11 12
MPI_Comm_shrink MPI_Comm_create, etc.

Sandia
OV e rV I e W m Iluaat}g]rg?éries

= Motivation for Local Failure-Local Recovery (LFLR)

= Architecture for LFLR

= Application Recovery

= Results

= Discussions

= Conclusions

Sandia
Why spare processes?)l

= Simple model indicates small increase in computing nodes
(less than 1%) to run 7 days.
= Large ROI for Reliability

= Eliminates complications of running SPMD program with
fewer processes

= Non-SPMD programming model may not require this
requirement

= Scheduler can assign data and task to maintain a good load balancing
= Need Performance model w spare and w/o spare

34

Why not uncoordinated Checkpoint?) i,

= Uncoordinated Checkpoint allows asynchronous commit, and
recovery does not involve global roll-back

= Looks promising
= But....

= Realistic implementation involves good infrastructure support
= Fast redundant and persistent storage
= Spare process
= Message logger

= Complex protocol to minimize the amount of rollback for the remaining
process

= Need good understanding in the application performance
(communication) patterns
= Clustering (Cappello et al.)
= Hybridize with Coordinated Checkpointing (Ferreira et al.)

= LFLR allows application users to coordinate recovery scheme with the
application!

35

Problem: Lack of Asynchronous Spare Process) e,
Assignment

Laboratories

= OMPI_Comm_shrink and MPI_Comm_Create are blocking

= |tis possible to perform local recovery operation until the
communicator is re-set.

Sandia
Problem: Performance of Resilient Collective i) fatonat

= The majority of the application recovery cost is resilient
collective at this moment

= Error Detection requires good resilient collective

= Need better resilient collectives to satisfy application needs!

= Needs to support multiple (simultaneous) process failures
= MPI-ULFM focus all possible cases of failures
= This includes massive loss of processes, which we do not CARE!

= Needs special version that works under a reasonable assumption
= Failure happens at node, blade or nodes associated with a single NIC

= Spare process and grouping can help the performance

37
-

Conclusions

= We leverage existing technologies to enable an LFLR model for

SPMD code

= Fault Tolerant MPI (MPI-ULFM)

= Hot spare process

= In-memory redundant storage is scalable
= No access to global file system

Sandia
National
Laboratories

= Scalable Communicator (Spare Process) Management is essential in

future resilient MPI
= Otherwise, we have to use other parallel programming runtime....

= Future Work
= Performance study on large (Peta) scale systems
= Recovery for catastrophic situations (e.g. many-node crash)

= Explore different recovery semantics other than roll-back
= Roll-forward

38

Acknowledgement

= George Bosilca, University of Tennessee, Knoxville
= Robert Clay, Sandia National Laboratories, CA

= Pedro Diniz, Information Science Institute, University of
Southern California

= Mark Hoemmen, Sandia National Laboratories, NM

Sandia
National _
Laboratories

Resilient Communicator: Partial List of APIs rh) teima_

= |nitalization and Recovery
int RC.init();
int RC.recover();
= Access to MPI Communicator
MPI_Comm * RC.getGlobalComm();
MPI_Comm * RC.getSpareComm();
MPI_Comm * RC.getComputeComm();
MPI_Comm * RC.getGroupComm();
MPI_Comm * RC.getComputeGroupComm();
= Wrapper Routines:
int RC.GlobalSend(void *mem, size_t data_size, int rank
);

int RC.GlobalRecv(void *mem, sizt_t data_size, int rank); 4

