
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Toward Local Failure
Local Recovery (LFLR)
Resilience Model Using
MPI-ULFM

Keita Teranishi and Michael A. Heroux

Sandia National Laboratories

EuroMPI/ASIA’14, Kyoto, Japan

September 11, 2014

SAND# 2014-17339 PE

SAND2014-18249PE

Overview

 Motivation for Local Failure-Local Recovery (LFLR)

 Architecture for LFLR

 Application Recovery

 Results

 Discussion

 Conclusions

Motivation for LFLR:

 Current practice of Checkpoint/Restart is global response to
single node (local) failure
 Kill all processes (global terminate), then restart

 Dependent on Global File system

 SCR (LLNL) is fast, but adheres global recovery

 Single node failures are predominant
 85% on LLNL clusters (Moody et al. 2010)

 60-90% on Jaguar/Titan (ORNL)

 Need for scalable, portable and application agnostic solution
 Local Failure Local Recovery Model (LFLR)

 SPMD model

3

Example – S3D production runs

 24-hour tests using Titan (125k cores)

 9 process/node failures over 24 hours

 Failures are promoted to job failures, causing all
125k processes to exit.

As a result, checkpoint (5.2 MB/core) has to be done to
the PFS

 Checkpoint data: 55 s Total: 1.72 %

 Restarting processes: 470 s Total: 5.67 %

 Loading checkpoint: 44 s Total: 1.38 %

 Rollback overhead: 1654 s Total: 22.63 %

 Total overhead due to fault tolerance: 31.40 %

 Courtesy of Hemanth Kolla.

 Exploring Automatic Online Failure
Recovery for Scientific Applications at
Extreme Scales, M. Gamell, M, Parashar,
D. Katz, H. Kolla and J. Chen, to appear in
SC14.

TODAY: 20-30%
Future: ???%

LFLR: Alternative Solution for Checkpoint/Restart

5

RunP0

P1

Px-1

RunPx

Run

Crash

Stand byPx+1

xRun as Px

WaitRun

Run

 LFLR overcomes the shortcomings of C/R
 The remaining processes stay alive with single process failures

 Application-based

 Multiple implementation options
 Roll-back, roll-forward, asynchronous, algorithm specific, etc.

 Active Hot Spare Process for recovery

Overview

 Executive Summary
 Overview
 Milestones Completed

 Motivation for Local Failure-Local Recovery (LFLR)

 Architecture for LFLR

 Application Recovery

 Results

 Discussion

 Conclusions

4 requirements to enable LFLR

1. Runtime and middleware that permit parallel program
execution to continue under process failures.

2. Runtime and middleware that provide replacement
processes for the failed ones, and allow application programs
to query the status of processes.

3. Redundant persistent storage for restoring the data
associated with failed process.

4. Tools and framework to build application specific recovery
schemes.

7

Application and Architecture Agnostic
Framework to enable LFLR

8

Sparse
Matrix

VectorMesh

Application Program

Parity in memory
(diskless checkpoint)

PDE Solver

MPI-ULFM

Communication
and Spare Process

Base class for
application data objects

Scientific Data

Parallel Execution Runtime (PER)

Application Recovery Layer (ARL)

Resilient Communicator (RC)

Redundant Storage (RS)

Parallel Execution Runtime (PER): Running
Applications Through Process Failures

 Requirement: The remaining process can run through the
failure of single (or a few) processes

 LFLR’s backend

 Possible to replace any resilient runtime other than MPI
 Ongoing work: Our in-house runtime built for UGNI (Cray XE/XC)

9

Resilient MPI for Parallel Execution Runtime

 Several Fault Tolerant MPI implementations
 FT-MPI (Fagg et al.), LA-MPI (LANL) and NR-MPI (NUDT, China) makes

process recovery up on failure

 MPI-ULFM provides a minimum set of APIs for resilience
 No process recovery

 Users are responsible for writing application recovery

 Several MPI calls for fixing MPI communicator

 MPI_Comm_agree : Check the global status of MPI_Comm

 MPI_Comm_revoke: Invalidate MPI Communicator

 MPI_Comm_shrink: Fix MPI Communicator removing dead process

 Error notification when receiving message from lost process

 Prototype code is available at http://fault-tolerance.org

10

http://fault-tolerance.org
http://fault-tolerance.org
http://fault-tolerance.org

Resilient Communicator (RC): Handles Message
Passing and Spare Process Management

 Process Management
 Spare Processes

 Process Grouping for scalable commit and restore

 Direct access to MPI communicator
 For integration with the existing code

 Allows MPI’s message passing call and failure notification

 Wrapper Functions
 Support Non-ULFM capability

 Algorithm selection for resilient collective

 Status check, etc.

11

ULFM Wrapper

MPI-ULFM

MPI_COMM_WORLD

Compute_Comm

Spare_Processes_Comm

Group_Comm

Comp_Group Comm Comp_Group Comm Comp_Group Comm

Group_CommGroup_Comm

Resilient Communicator: Current Design

Redundant Storage (RS): Efficient Persistent Data
Storage to Restore the Data from Lost Process

 Application data needs to be stored in persistent storage
 Accessible after process loss

 Data needs to be placed/copied outside the process

 Several Options
 Memory for the executable

 Diskless checkpointing
– RAID-like redundancy

 Local disk
 Caching

 RAM, NVRAM and disk

 Involves system configuration to set the size of /tmp

 Burst Buffer
 For NERSC-8 and Trinity system

 Need good APIs to access it!

 Global File Systems

13

Redundant Storage API (Tentative)

register(void *data , size_t size , RC, distribution, storage_option)

commit()

restore(void *data, size_t *size)

unregister()

 “distribution” defines the type of data distribution to help flexible
recovery of the data in a particular piece of memory
 Distributed (Each process owns its local piece)
 Shared (Shared by multiple processes)
 Local (Exclusive to single rank)

 We provide options for the underlying storage scheme.

14

Scalable Recovery using Diskless Checkpointing
and Active Spare

 In-memory redundant
storage
 Spare process is

assigned to each group

 RAID4-like redundancy

 Scalable Commit and
Restore

Commit

Restore

P0 P2P1 Spare

P0 P2 Spare

XOR

XOR

New
P1P0 P2

LostLost

Compute processes split into groups Active spare processes

Application Resilience Layer (ARL) : Builds
Application Specific Recovery Scheme

 2 Components
 LFLR_registry
 recoverable

 LFLR_registry monitors the allocation of scientific data
objects
 Provides stack of pointers for scientific objects
 Scientific object is pushed to LFLR_registry by its

constructor
 Popped when destroying (by destructor)

 recoverable is a base class for scientific data objects
 Orchestrate stack of Redundant Storage objects to

perform application specific data recovery
 Allows the user to describe the application specific data

recovery scheme
 Recovery method can be implemented without RS if

necessary

16

CSR_Matrix

Recoverable

Mesh

CSR_Matrix

Vector

Mesh

CSR_Matrix

Mesh Mesh

CSR_Matrix

Linear System Solver

Mesh Creation

Matrix Assembly

Another Matrix
Assembly

ARL: LFLR_Registory Manages Stack of Data
Objets

Typical sequence of a Finite Element
application

Integrating ARL to the existing Scientific Data
Structure

18

s

}

struct CSR_Matrix {
std::vector row_offset;
std::vector col_index;
std::vector coefs;

}

struct CSR_Matrix :: public recoverable {
std::vector row_offset;
std::vector col_index;
std::vector coefs;

CSR_Matrx(LFLR_registry *reg) {
myreg = reg;
myreg.push(this);

}

~CSR_Matrix() { myreg.pop(); …}

int commit() {
rsstack.commit();

}
int restore() {

rsstack.restore();

}
}

Overview

 Motivation for Local Failure-Local Recovery (LFLR)

 Architecture for LFLR

 Application Recovery

 Results

 Discussion

 Conclusions

Application Recovery needs to Recover 3 Entities

 Process (RC)

 Application Data (RS, ARL)

 Application State
 Skeletonize Program for Spare Process

20

Process Recovery

 Error Detection
 MPI-ULFM’s capability

 Once Detected: Set RC.state = false;

 Error Notification
 OMPI_Comm_agree(MPI_Comm) to check the status of all the process

associated with the MPI communicator

 Ongoing Work:
 More involvement of spare process for each group

 MPI_Comm_revoke to allow lazy notification

 Recovery
 Several MPI-ULFM calls

 OMPI_Comm_shrink to eliminate lost process

 OMPI_Comm_create to include spare process to computing process

 OMPI_Comm_create and MPI_Group_create to modify other sub-
communicators

21

Mesh

CSR_Matrix

Vector

Data Recovery Involves LFLR_Registory

 Recovery Order is bottom-up of
the stack in LFLR_registory

 The data in the bottom can be the
source for the those above

 Recovery the data required to
execute the latest state of
application

R
e

c
o

ve
ry

 O
rd

e
r

Leveraging the Application for Efficient Storage
Reduction

 Exploit Data Dependencies of Application data
 Recovery through inexpensive local computation

(Example: MiniFE)
 Reuse the existing Matrix Assembly code
 Localized matrix regeneration
 Substantial storage reduction

23

Topology
(Mesh)

Tensor
(Stiffness

Matrix)

Initial
Condition

Matrix

Matrix
Regeneration

Latest
Condition

k k

k k









 f (x, y, z, 0) f (x, y, z, i)

0.001

0.01

0.1

1

10

100

1

10

100

1000

512 1024 1536

E
x

e
c

u
ti

o
n

 T
im

e
 f

o
r

C
o

m
m

it
/R

e
s

to
re

D
a

ta
 S

iz
e

 p
e

r
P

ro
c

e
s

s
 i
n

 M
B

Global Mesh Size (X=Y=Z)

Redundant Storeage of MinIFE: 2,048 Processes

Data Size :Store All

Data Size: Regenrate Matrix

Commit/Restore: Store All

Restore: Regenrate Matrix

Commit: Regenerate Matrix

Improvements in commit amortizes
the relatively high overhead of restore

Compute(comm,data) {
CSR_Matrix A(comm);

for … {
Vector x(comm);

// Do real computation

}

}

Compute(comm,data) {
CSR_Matrix A(comm);

for … {
Vector x(comm);

// Do real computation

}

}

Compute(rcomm, registry, data, flg) {
CSR_Matrix A(rcomm,®istry);
registry.commit();
for (i = 0; … {

Vector x(rcomm,®istry);
registry.commit();
if(flag == true) {

// Do real computation
}
if(failed) {

rcomm,recover();
registrty.recover();
if(I am joining from spare) {

flag = true;
}
i--;

}
} // x is unregistered
// Check failure here

}

Code Transformation to allow spare process to
obtain the latest state of the application

Overview

 Executive Summary
 Overview
 Milestones Completed

 Motivation for Local Failure-Local Recovery (LFLR)

 Architecture for LFLR

 Application Recovery

 Results

 Discussion

 Conclusions

Preliminary Result: Experiment Settings

 Time Stepping PDE
 20 steps, multiple linear system solve

 LFLR enabled
 Vectors are stored in every time step

 Weak scaling
 64x64x64 for ULFM for 4 cores and increase the problem size (x*y*z)

linearly

 Cray Cluster with SandyBridge (2.6Mhz) 16 cores (2CPU) per node,
QDR Infiniband

 Process failure during linear system solve (2048 PEs)
 MPI-ULFM with our own fix for resilient collective

26

Resilient Time-Stepping MiniFE

Create Mesh M

Compute Matrix A out of M

Save M in Persistent Storage

Do until the last time step

bi and bi-1 in Persistent Storage

Get new bi from xi-1 (Update Boundary Condition)

Solve Axi=bi (Linear System Solution)

if the linear system solver fails, try the same iterative step

end do

• Local vector is stored with the subscript (iteration count) info

• Allow linear system solver to crash or end up with wrong solution

– Process loss

– Convergence failure due to silent data corruption

• Repeat the same iteration when linear system solver fails

– Need to get xi-1 and bi-1

Process loss is
checked periodically

CG Iteration with Process Failure Check

28

Error Detection at
MatVec and Dot

Product

Performance Fix in MPI-ULFM

 Enable Tuned Collectives

 Enable Tree based resilient MPI_allreduce

 Replaced resilient Global Agreement protocol used for
OMPI_Comm_shrink and MPI_Comm_create.
 The original version was one-to-all and all-to-one

 Applied tree-based version based on Hursey and Graham

29

Scalable Recovery: LFLR-enabled miniFE

30

0.01

0.1

1

10

100

1000

0 256 512 768 1024 1280 1536 1792 2048

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 S

e
c
o

n
d

s

of Processes (cores)

Execution Time: 20 time step LFLR-miniFE

All Solve+Failure Recovery

All Solve without Recovery

 Single Linear Solve

LFLR Overhead

MPI-ULFM Overhead

Scalability Issues of LFLR-minIFE: MPI-ULFM

0

2

4

6

8

10

12

14

16

18

20

0 512 1024 1536 2048

E
x
e
c
u

ti
o

n
 T

im
e
 i

n
 S

e
c
o

n
d

s

of Cores

Recovery Cost in LFLR-miniFE in Details

Commit (20 times) Data Recovery

Communicator Fix Error Notification

Recovery All Communicator Fix (original ULFM) 31

Original ULFM hangs with 2,048 cores
(More than 30 minutes)

MPI_Comm_shrink MPI_Comm_create, etc.

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

1 2 3 4 5 6 7 8 9 10 11 12

Execution Time of Global Agreement Calls on
1,024 cores

Performance Fluctuation of Resilient Agreement
with MPI-ULFM

Overview

 Motivation for Local Failure-Local Recovery (LFLR)

 Architecture for LFLR

 Application Recovery

 Results

 Discussions

 Conclusions

Why spare processes?

 Simple model indicates small increase in computing nodes
(less than 1%) to run 7 days.
 Large ROI for Reliability

 Eliminates complications of running SPMD program with
fewer processes

 Non-SPMD programming model may not require this
requirement
 Scheduler can assign data and task to maintain a good load balancing

 Need Performance model w spare and w/o spare

34

Why not uncoordinated Checkpoint?

 Uncoordinated Checkpoint allows asynchronous commit, and
recovery does not involve global roll-back
 Looks promising

 But ….
 Realistic implementation involves good infrastructure support

 Fast redundant and persistent storage

 Spare process

 Message logger

 Complex protocol to minimize the amount of rollback for the remaining
process

 Need good understanding in the application performance
(communication) patterns
 Clustering (Cappello et al.)

 Hybridize with Coordinated Checkpointing (Ferreira et al.)

 LFLR allows application users to coordinate recovery scheme with the
application!

35

Problem: Lack of Asynchronous Spare Process
Assignment

 OMPI_Comm_shrink and MPI_Comm_Create are blocking
 It is possible to perform local recovery operation until the

communicator is re-set.

36

Problem: Performance of Resilient Collective

 The majority of the application recovery cost is resilient
collective at this moment

 Error Detection requires good resilient collective

 Need better resilient collectives to satisfy application needs!
 Needs to support multiple (simultaneous) process failures

 MPI-ULFM focus all possible cases of failures

 This includes massive loss of processes, which we do not CARE!

 Needs special version that works under a reasonable assumption

 Failure happens at node, blade or nodes associated with a single NIC

 Spare process and grouping can help the performance

37

Conclusions

 We leverage existing technologies to enable an LFLR model for
SPMD code
 Fault Tolerant MPI (MPI-ULFM)

 Hot spare process

 In-memory redundant storage is scalable

 No access to global file system

 Scalable Communicator (Spare Process) Management is essential in
future resilient MPI
 Otherwise, we have to use other parallel programming runtime….

 Future Work
 Performance study on large (Peta) scale systems

 Recovery for catastrophic situations (e.g. many-node crash)

 Explore different recovery semantics other than roll-back
 Roll-forward

38

Acknowledgement

 George Bosilca, University of Tennessee, Knoxville

 Robert Clay, Sandia National Laboratories, CA

 Pedro Diniz, Information Science Institute, University of
Southern California

 Mark Hoemmen, Sandia National Laboratories, NM

39

Resilient Communicator: Partial List of APIs

 Initalization and Recovery

int RC.init();

int RC.recover();

 Access to MPI Communicator

MPI_Comm * RC.getGlobalComm();

MPI_Comm * RC.getSpareComm();

MPI_Comm * RC.getComputeComm();

MPI_Comm * RC.getGroupComm();

MPI_Comm * RC.getComputeGroupComm();

 Wrapper Routines:

int RC.GlobalSend(void *mem, size_t data_size, int rank
);

int RC.GlobalRecv(void *mem, sizt_t data_size, int rank); 40

