
Fast Solvers for Graph Laplacians

Erik G. Boman

Sandia National Labs, NM

Sept. 19, 2014

Sandia is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for
the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2014-18213PE



Outline

Graph Laplacian

Brief History: Combinatorial Solvers

The New Simple Near-Optimal Solver by Kelner et al.

Algebraic Interpretation

Work in Progress

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 2 / 17



Graph Laplacian

We consider the combinatorial graph Laplacian,

L(G) = D −A,

where D is diagonal (the degrees) and A the adjacency matrix.

Solving linear systems with the normalized graph Laplacian is
equivalent (by symmetric scaling).

3 4

1 2 
2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2



Boman (Sandia) Fast Laplacian Solvers Sept. 2014 3 / 17



Solving Linear Systems

How to solve Lx = b?

Sparse direct methods require too much memory.

Iterations such as Jacobi or SGS converge but slowly.

PCG with algebraic preconditioners is viable in many cases.

A “piece of cake” for multigrid, right?

Multigrid/AMG optimal for meshes
Proofs need many assumptions
Irregular structure (scale-free, power-law) pose challenges

Much work in CS theory over last decade.

Goal: Develop linear-time solver for any graph Laplacian

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 4 / 17



Combinatorial Preconditioners

Key idea: Use a sparser graph as a preconditioner.
We say H is a spectral sparsifier for G if H is sparser than G and

α
xT L(H)x

xT x
≤ xT L(G)x

xT x
≤ β

xT L(H)x

xT x
∀x

for some constants α, β (near one).

We can use L(H) as a preconditioner to accelerate any Krylov
iterative method (eg. conjugate gradients).

Pick H so L(H) is “easy” to solve for. Example: spanning tree.

May need to use recursive preconditioning via a sequence of
sparsifiers.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 5 / 17



Brief History

Vaidya (’91): First proposed spanning tree preconditioners. Analysis
for planar and non-planar graphs. Introduced augmentation (add
select edges to tree). Not optimal, but good starting point.

Spielman & Teng (’04): Seminal work showed recursive graph
sparsification can give near-linear time solver. Very complicated.
Later split into three papers, over 100 pages in total. Last one
published SIMAX 2014.

Koutis, Miller & Peng (’13): Simpler subgraph preconditioning
using random sampling based on stretch to approximate effective
resistance. Also near-linear.

Note: Using stretch to measure the quality of spanning trees was first
proposed by Boman (2001), not published but later used by the authors
above.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 6 / 17



Breakthrough: Kelner et al.

Kelner et al. (2013) developed a new, simpler Laplacian solver that

converges in O
(
m log2 n log log n log(ε−1)

)
time,

is very simple (“proof fits on a single black-board”!),

does not build upon the ST or KMP methods (weird),

does not use preconditioning nor Krylov solvers,

can potentially be practical.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 7 / 17



Electrical Networks

The circuit is a graph, G. Find currents f on the edges and potentials
(voltages, v) on the vertices. Each edge (i, j) has conductance 1

rij
.

Ohm’s Law gives:
L(G)v = b

where b are the external demands. Kirchhoff’s laws useful, too.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 8 / 17



Approach

Solve for the current (flow), then derive the potentials (voltages).

Any valid flow satisfies f(e) = (vi − vj)/re for all edges e (Ohm).

The potentials around a cycle in the network sum to zero (Kirchhoff).
Thus, ∑

e∈C

f(e)re = 0

Wish to satisfy condition above for every (simple) cycle.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 9 / 17



Algorithm

Find a cycle basis for the graph (e.g. a spanning tree) and a
corresponding probability distribution over the cycles.

Repeat until converged:

Randomly sample a cycle C.

If
∑

e∈C f(e)re 6= 0, add multiple of C to f to make it zero.

Idea: Find a violated constraint, fix it locally. Mathematically, this is a
sequence of projections and corresponds to the randomized Kaczmarz
method.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 10 / 17



Kaczmarz’s Method

Row projection method for solving Ax = b (Kaczmarz, 1933). Let ai be
the ith row of A.

for k = 0, 1, 2, . . .

for i = 1, 2, . . . , n

xk+1 = xk + bi−(ai,x
k)

‖ai‖2 aT
i

Convergence guaranteed but may be slow. Sensitive to ordering of A.

Strohmer & Vershynin ’09: Pick rows randomly with probability
proportional to ‖ai‖. Then

E‖xk − x‖2 ≤
(

1− 1

κ(A)2

)k

‖x0 − x‖2

The proof of Kelner’s method uses this result.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 11 / 17



Algebraic Interpretation

Let the voltages v be the primal variables and let the current flow f be the
dual variables. Let U denote the vertex-edge incident matrix. Then the
primal-dual system is (

R UT

U 0

) (
f
v

)
=

(
b
0

)
This is a saddle-point or equilibrium system, see Strang (SIREV 1988).
Usually no advantage solving a larger, indefinite system.
If we eliminate the dual variables, we get the primal system

Lv ≡ UR−1UT v = UR−1b ≡ b̂,

where L = UR−1UT is the graph Laplacian.
Hoewever, Kelner’s method uses a dual approach.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 12 / 17



Toledo’s Dual Interpretation

For simplicity, suppose R = I (no weights). We wish to solve

Lx = UUT x = b

Given U , construct a basis N for its null space, UNT = 0. Define

K =

(
U
N

)
which is square and full rank. Find a vector f such that

Kf =

(
U
N

)
f =

(
b
0

)
Find x such that UT x = f (easy). Since Uf = b, we have

Uf = UUT x = Lx = b

Kelner’s method is randomized Kaczmarz on K (for certain N).
Boman (Sandia) Fast Laplacian Solvers Sept. 2014 13 / 17



Practical Issues

To implement Kelner’s method one needs:

A cycle basis, typically given by a “nice” spanning tree.

Spanning tree makes it easy to find cycles. (Every non-tree edge
defines a cycle.)
Low-stretch spanning tree used by Kelner, but tricky to compute.
Other spanning trees will work, but analysis need be modified.

Data structures for fast cycle finding/updates.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 14 / 17



Work in Progress

Collaboration with J. Gilbert and K. Deweese (UCSB).

Have (inefficient) Matlab code. Hard to compare to other methods.

Alternative cycle bases:

No fundamental reason for tree-based cycles.
We don’t strictly need a basis: more cycles is OK.
Are there better cycle bases or generating sets? Empirically: Yes!

Parallel version:

Can update edge-disjoint cycles simultaneously.
Cycles from spanning trees tend to overlap; need other basis.
Greedy ”packing” of cycles problematic since probabilities will differ.
Asynchronous method possible, but changes convergence.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 15 / 17



Conclusions

The Kelner et al. solver is a novel and important method.

34 citations in 9 months! (Google Scholar)

Theoretically nearly-linear, but constants matter in practice . . .

Simple enough it can be implemented (even by non-experts?).

Lower barrier to entry into the field.

Lots of practical issues still to be investigated.

Opens up possibilities for follow-on work.

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 16 / 17



Acknowledgments

Kevin Deweese (UCSB)

John Gilbert (UCSB)

Sivan Toledo (Tel-Aviv)

Boman (Sandia) Fast Laplacian Solvers Sept. 2014 17 / 17


