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Graph Laplacian

We consider the combinatorial graph Laplacian,

L(G) = D −A,

where D is diagonal (the degrees) and A the adjacency matrix.

Solving linear systems with the normalized graph Laplacian is
equivalent (by symmetric scaling).

3 4

1 2 
2 −1 −1 0
−1 3 −1 −1
−1 −1 3 −1
0 −1 −1 2


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Solving Linear Systems

How to solve Lx = b?

Sparse direct methods require too much memory.

Iterations such as Jacobi or SGS converge but slowly.

PCG with algebraic preconditioners is viable in many cases.

A “piece of cake” for multigrid, right?

Multigrid/AMG optimal for meshes
Proofs need many assumptions
Irregular structure (scale-free, power-law) pose challenges

Much work in CS theory over last decade.

Goal: Develop linear-time solver for any graph Laplacian
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Combinatorial Preconditioners

Key idea: Use a sparser graph as a preconditioner.
We say H is a spectral sparsifier for G if H is sparser than G and
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xT L(H)x

xT x
≤ xT L(G)x

xT x
≤ β

xT L(H)x

xT x
∀x

for some constants α, β (near one).

We can use L(H) as a preconditioner to accelerate any Krylov
iterative method (eg. conjugate gradients).

Pick H so L(H) is “easy” to solve for. Example: spanning tree.

May need to use recursive preconditioning via a sequence of
sparsifiers.
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Brief History

Vaidya (’91): First proposed spanning tree preconditioners. Analysis
for planar and non-planar graphs. Introduced augmentation (add
select edges to tree). Not optimal, but good starting point.

Spielman & Teng (’04): Seminal work showed recursive graph
sparsification can give near-linear time solver. Very complicated.
Later split into three papers, over 100 pages in total. Last one
published SIMAX 2014.

Koutis, Miller & Peng (’13): Simpler subgraph preconditioning
using random sampling based on stretch to approximate effective
resistance. Also near-linear.

Note: Using stretch to measure the quality of spanning trees was first
proposed by Boman (2001), not published but later used by the authors
above.
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Breakthrough: Kelner et al.

Kelner et al. (2013) developed a new, simpler Laplacian solver that

converges in O
(
m log2 n log log n log(ε−1)

)
time,

is very simple (“proof fits on a single black-board”!),

does not build upon the ST or KMP methods (weird),

does not use preconditioning nor Krylov solvers,

can potentially be practical.
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Electrical Networks

The circuit is a graph, G. Find currents f on the edges and potentials
(voltages, v) on the vertices. Each edge (i, j) has conductance 1

rij
.

Ohm’s Law gives:
L(G)v = b

where b are the external demands. Kirchhoff’s laws useful, too.
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Approach

Solve for the current (flow), then derive the potentials (voltages).

Any valid flow satisfies f(e) = (vi − vj)/re for all edges e (Ohm).

The potentials around a cycle in the network sum to zero (Kirchhoff).
Thus, ∑

e∈C

f(e)re = 0

Wish to satisfy condition above for every (simple) cycle.
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Algorithm

Find a cycle basis for the graph (e.g. a spanning tree) and a
corresponding probability distribution over the cycles.

Repeat until converged:

Randomly sample a cycle C.

If
∑

e∈C f(e)re 6= 0, add multiple of C to f to make it zero.

Idea: Find a violated constraint, fix it locally. Mathematically, this is a
sequence of projections and corresponds to the randomized Kaczmarz
method.
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Kaczmarz’s Method

Row projection method for solving Ax = b (Kaczmarz, 1933). Let ai be
the ith row of A.

for k = 0, 1, 2, . . .

for i = 1, 2, . . . , n

xk+1 = xk + bi−(ai,x
k)

‖ai‖2 aT
i

Convergence guaranteed but may be slow. Sensitive to ordering of A.

Strohmer & Vershynin ’09: Pick rows randomly with probability
proportional to ‖ai‖. Then

E‖xk − x‖2 ≤
(

1− 1

κ(A)2

)k

‖x0 − x‖2

The proof of Kelner’s method uses this result.
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Algebraic Interpretation

Let the voltages v be the primal variables and let the current flow f be the
dual variables. Let U denote the vertex-edge incident matrix. Then the
primal-dual system is (

R UT

U 0

) (
f
v

)
=

(
b
0

)
This is a saddle-point or equilibrium system, see Strang (SIREV 1988).
Usually no advantage solving a larger, indefinite system.
If we eliminate the dual variables, we get the primal system

Lv ≡ UR−1UT v = UR−1b ≡ b̂,

where L = UR−1UT is the graph Laplacian.
Hoewever, Kelner’s method uses a dual approach.
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Toledo’s Dual Interpretation

For simplicity, suppose R = I (no weights). We wish to solve

Lx = UUT x = b

Given U , construct a basis N for its null space, UNT = 0. Define

K =

(
U
N

)
which is square and full rank. Find a vector f such that

Kf =

(
U
N

)
f =

(
b
0

)
Find x such that UT x = f (easy). Since Uf = b, we have

Uf = UUT x = Lx = b

Kelner’s method is randomized Kaczmarz on K (for certain N).
Boman (Sandia) Fast Laplacian Solvers Sept. 2014 13 / 17



Practical Issues

To implement Kelner’s method one needs:

A cycle basis, typically given by a “nice” spanning tree.

Spanning tree makes it easy to find cycles. (Every non-tree edge
defines a cycle.)
Low-stretch spanning tree used by Kelner, but tricky to compute.
Other spanning trees will work, but analysis need be modified.

Data structures for fast cycle finding/updates.
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Work in Progress

Collaboration with J. Gilbert and K. Deweese (UCSB).

Have (inefficient) Matlab code. Hard to compare to other methods.

Alternative cycle bases:

No fundamental reason for tree-based cycles.
We don’t strictly need a basis: more cycles is OK.
Are there better cycle bases or generating sets? Empirically: Yes!

Parallel version:

Can update edge-disjoint cycles simultaneously.
Cycles from spanning trees tend to overlap; need other basis.
Greedy ”packing” of cycles problematic since probabilities will differ.
Asynchronous method possible, but changes convergence.
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Conclusions

The Kelner et al. solver is a novel and important method.

34 citations in 9 months! (Google Scholar)

Theoretically nearly-linear, but constants matter in practice . . .

Simple enough it can be implemented (even by non-experts?).

Lower barrier to entry into the field.

Lots of practical issues still to be investigated.

Opens up possibilities for follow-on work.
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