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Battery Introduction h

= Batteries convert stored chemical energy into electrical energy
= Lithium is stored in the anode at high chemical potential
= Molten salt batteries use an electrolyte that is solid at room temperature

= Battery electrodes are particle composites which form bicontinuous
percolated network
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High Power Limited by lon Transport L

= Voltage drops caused by battery internal resistance
= Reaction rate limitations
= Transport limitations — concentration gradjents
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= Part of a larger effort at Sandia to develop predictive model for battery
performance

= Electrochemical, mechanical, and thermal dependence




Molten Salt Battery Basics ) e,

Commercial AA Cell Battery Molten Salt Battery
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« 2-3 year shelf life « 20+ years shelf life
* Low voltage/low current » High voltage/high current
« Liquid electrolyte dispersed in a « Solid electrolyte dispersed a separator —
separator support material electrolyte must be melted for battery to work
By quenching a molten salt battery, we can analyze the
electrolyte & ion distributions as a function of active time




Outline ) eons
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= Goal: Understand ion transport in an active battery

Quenching of single cell molten salt batteries

Scanning Electron Microscopy with Energy Dispersive Spectroscopy -
qualitative imaging of distribution

Electron Probe Microanalyzer - quantitative concentration mapping
Mechanisms of electrolyte movement

Meso-scale modeling of transport in lithium battery electrodes




New Approach for Electrolyte Transport ()=,

= Goal: Understand movement of electrolyte in molten salt battery
= Use bromine tracer to track electrolyte transport through thermal battery

= Scanning Electron Microscopy Energy Dispersive Spectroscopy
qualitative imaging of distribution

= Electron Probe MicroAnalyzer - quantitative concentration mapping

Bromine electrolyte Regular electrolyte Single Cell
50wt% KBr 45wt% LiCl —
36wt% LiBr 55wt% KCI E
12wt% LiCl T.,=352°C Anode 23| Cathode
T,=310°C 33
b4
Anode Separator Cathode 33
LiSi MgO binder + FeS, Separator
Dry electrolyte + separator
+ Li,O




Quenching of Single Cell ) i,

= Single cells are tested at 500°C under 12psi force
= Temperature monitored by a thermocouple on top of the cell
= Cooled cells were mounted & cross-sectioned for analysis
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What’s Inside a Molten Salt Battery? (M) i

= Scanning Electron Microscopy with Energy Dispersive Spectroscopy can
qualitatively map distributions of various elements
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Tracking Electrolyte from the Cathode

On activation,

= separator get thinner

Bromine diffuses from cathode across the cell.

Map data
MAG: 60 x HV: 25.0 kW WD: 13.8 mm

Map data
MAG: 62% HW: 25.0 kW WD:13.1 mm
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Tracking Electrolyte from the Separator (@) &=,

= Energy dispersive spectroscopy images of
electrolyte transport out of separator
t=2s (not melted)




Electron Probe Microanalyzer (EPMA) rih) it
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| X-rays em |tted by asam ple u nd er Schematic of an Electron Microprobe with a
Wavelength Dispersive Spectrometer '
electron bombardment . 8
Electron gun Y/~ nettea

= Spectral analysis allows element Anode
detection

= Comparison to elemental standard of
known concentration

Condenser lenses

Optical
microscope
& CCD camera

= Quantitative Chemical Analysis
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Meso-scale Structure of Electrode rh) s,

¥ Digitize Image and Beam Deflection | Image Min = 0, Image Max = 255] [E=E R
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= Heterogeneous structure of battery =
complicates chemical analysis
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F’”\POint-wise measurements in cathode rh)
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Microprobe for Quantitative Chemical Imaging() &=,

= Even isolating the electrolyte rich regions, bromine concentration
data is very noisy

= Using element ratio with potassium gives cleaner, quantitative

data
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Bromine Diffusion into Cathode ) setors
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= Bromine diffusion between separator and cathode is complete within
120 seconds

= Calculated equilibrium bromine ratio based on initial electrolyte
concentrations
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Transport mechanisms

= 3 Potential transport mechanisms
= Capillary wicking
= Diffusion

= Pressure driven flow
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Better Predictions of Battery Performance (i)

Laboratories

= Good models need high fidelity experiments
= Determine parameters
= Validate the predictions

Axial Strain

= Most of our multi-physics battery models are 009
based on continuum assumptions :SjSZE

-0.06

= Coupled thermal, mechanical
deformation & porous flow model
of molten salt battery

/Temperature K] Electrolyte Saturation
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0.00

= New effort: Microstructure of
battery electrodes

= |onic conduction

= Electronic conduction




Representation of electrode microstructure (i),

conformal

decomposition finite
element method
(CDFEM)

Dream3D

surface mesh

(STL)

Dream3D
reconstructlon

& |

2D image stack Background mesh

Hutzenlaub et al (2012) Electro Chem Solid State Let., Lechman et al. (2012) Int. J Numerical Methods in Fluids
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Physics models: Electrochemistry L

In the particle — In the electrolyte

=  Current conservation

- [F (s~ )] =

= Nernst-Planck fluxes

= Ohm’s Law
V- (oVaos) =0

®» |ntercalated Li conservation
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At the interface = Li+ conservation
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= Butler-Volmer reaction rate T +V-J+ =40
J-n =7 [exp ((YaF (Ob _fl?l _ (beq)) = Electroneutrality
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— exp
RT
= Plus, a few other boundary conditions 19

Roberts et al. (2014) J Electrochemical Society



Lithium Concentration During Discharge ()&,
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Roberts et al. (2014) J Electrochemical Society




Conclusions ) e,
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= New method to analyze ion transport in batteries
= Molten salt batteries allow quenching during operation
= Bromine allows visualization of movement and mixing of electrolyte
= Electron Probe Microanalyzer gives quantitative chemical analysis
= Two mechanisms
= Fast wicking into dry anode
= Slower diffusion between layers
= Beginning to probe the impact of electrode microstructure

= Develop a better understanding of battery performance
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Department of Energy: Energy Efficiency & Renewable Energy program & Vehicle
Technology Office initiatives, EERE Report of Energy Storage Research Needs:

“A fundamental understanding of the relationships between structure and
function of energy storage materials ... can move capacity, power and lifetime
improvements to electrical energy storage devices beyond the incremental to the

transformational — a result with the potential to dramatically change the energy
landscape of the United States.”
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Molten Salt Battery Basics ) i

Laboratories

= Batteries convert stored chemical energy into electrical energy

Commercial D Cell Battery

Collector

Separator +
electrolyte

Cathode

Collector

« 2-3 year shelf life

* Low voltage/low current

« Liquid electrolyte dispersed in a
separator support material

Molten Salt Battery
Collector

Gathods

Collector

Fuse Strips
(heat paper)

20+ years shelf life

High voltage/high current

Solid electrolyte dispersed a separator support material —
electrolyte must be first melted in order for battery to work




Molten Salt Battery Activation

Demonstration of side-fired pyrotechnic activation

Requirements

e Thermal management: Rise time, life time, avoid thermal decomposition
e Electrochemical: Steady voltage through variable current loads

_° Mechanical: Stable performance under environments
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Electrochemistry Reaction Cascade ) i,

= Reaction pathways, especially for the cathode, are stoichiometrically
complicated.

Cathode: FeS, = Li;Fe,S, = Liy,Fe,S, + Fe, S Li,FeS,= Li,S + Fe

Anode: Li,;Si, = Li,Si,= 4 Si

SULFUR 20

THIS REGION NOT
INVESTIGATED

Volts: Fe52 vs. LiSi

— Open Circuit
* 0.001 Alem?
0.002 Alem? L.
%571+ 0.005 Arem? - Shrinking Core Model
* 0.01 Alcm? .
LITHIUM 2 IRON * 0.02 Alem® " MUltlple pIateaus
A-L = DISCHARGE PATH OF FeS, ELECTRODE 00 0.5 1 15 2 25 8 95 can react
F=LiyFe,S, Extent relative to Fe82 (LixFeS2) . | |
C-D-E=Li,, Fe, .S, simultaneously
H-M= DISCHARGE PATH OF FeS ELECTRODE = Diffusional losses

with transport




Molten Salt Battery Activation ) e,

= Melting of electrolyte activates a molten salt battery
Porous separator layer is l oreload

O 65wt% solid electrolyte and
@ 35wt% MgO binder

S anode
On battery activation,

electrolyte melts separator
initiating current cathode
Pellet compacts until heat
remaining force is pellet
supported by binder

= Freezing the electrolyte halts ion transport

= By quenching the battery, we can analyze the ion distribution as a
function of active time




Demonstration of Thermo-Mechanics Model () i

= Pyrotechnic Thermal models, Mechanical Deformation, & Porous Flow of Electrolyte

Insulation |

Separator

densities, viscosity of
(

molten salt, contact angle, Predict the transient temperature,

particle size distribution, air height, final porosity, electrolyte

distribution and internal resistance of
the single cell

N

\AII are critical to battery performancelj
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Coupled physics single cell demonstration ) b,
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Coupled physics single cell demonstration W=
Time = 0.106 s Axial Strain
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Calibrating the mechanical properties h) S

= Mechanical model parameters calibrated to experiments of C. Roberts
= Single separator loaded between two metal platens
= Constant axial stress applied
= Temperature ramped up to above melting temperature
= Axial displacement measured as a function of applied stress
=  Simulation includes fully-coupled thermo-poro-mechanical physics

6h’ ed
(None)

-0.000118

-0.3 . . : .
0 2 4 6 8 10
Snapshot of one of the —> Pressure (psi)
demonstration simulations, showing Plot of model calibration compared



Two-phase porous flow model ) i,

= Electrolyte and gas form two immiscible phases upon melting

w
0 S k g .
2n0%) _ g (p, —K - (Vpn —png) | +Qn €
ot Mp, — o .
. . 10
= Saturation and capillary pressure related to — 2o
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Estimating porous flow properties ) i,

VEYCIEL Prop Cathode Reference & Notes

Permeability (mD) 2000 2000 No reliable data. Separator and anode estimated from Bauer (SNL
memo, 2011) experiments on unconsolidated powders; Cathode
reduction based on Bromine diffusion study.

Porosity 0.807 0.25 0.25 Volumetrics based on manufacturing process specs (S. Roberts,
tech. notes)

Relative permeability Cubic functions of phase saturations

1
Capillary pressure Van Genuchtenmodel p = p (S% _1)%5

Entry pressure (kPa) 15 15 15 Estimated from p =ccos@/r Surface tension, 5=0.138 N/m?
(Mondy, 2012); entry pore radius estimated from PSD in Mondy
(2012) & Waldrip SNL presentation; contact angle from Waldrip
SNL presentation; Estimated 8 < Pcgy, < 16 kPa.

Initial electrolyte 0.695 0.05 0.2 Volumetrics based on manufacturing process specs (S. Roberts,
saturations tech. notes)

Fluid Properties _ Reference & Notes

Liquid phase (Electrolyte)
Density (kg/m3) 1650 Mondy (snl memo 1/2012)

Viscosity (Pa-s) 0.003 Mondy (snl memo 1/2012; based on Janz et
al.; 1975; Leuth et al., SNL memo)

Gas phase (Air at 600 K)

33
-
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Sulfur in the separator ) e,

= See small but consistent rise in sulfur concentration to ~0.15wt%
= Saturation of separator occurs when Li,S inclusions begin to appear

Separator average wt% S
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Representation of microstructure
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