
On Next-Generation Systems

Albany/Kokkos Integration:
• Irina Demeshko, Carter Edwards, Mike Heroux,

Roger Pawlowski, Eric Phipps, Andy Salinger
Albany Project Leads:
• Andy Salinger, Glen Hansen, Jake Ostien,

Irina Kalashnikova
Kokkos Developers:
• Carter Edwards, Dan Sunderland, Christian Trott
Humble Speaker:
• Karen Devine

Sandia National Laboratories is a multi-program laboratory managed and operated by ���
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the ���

U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000	

SAND2014-18203PE

 is a finite element code
built primarily from Trilinos components

Data Structures

Direct Solvers

Linear Solvers

Preconditioners

Iterative Solvers

Eigen Solver

Partitioning
Load Balancing

Mesh Tools

UQ Algorithms

Nonlinear Solver
Time Integration

Optimization
Stability Analysis

Analysis Tools

Regression Testing
Version Control

Software Quality

Continuous Integration

Build System
Verification Tests

Multi-Level Algs

Ice Sheets	

Computational Mechanics	

Quantum Devices	

Remeshing
Adaptivity

Grid Transfers

Atmosphere Dynamics	

Incompressible Flow	

What is the relationship between
Albany and FASTMath?

1 0.8 0.6 0.4 0.2 0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000
Mode 1

range of

sa

m
pl

es

Albany ó PUMI: collaboration
is producing unstructured-grid
adaptivity workflow	

FASTMath ó PISCEES:	

Albany hosts unstructured
grid Ice Sheet model
collaboration	

Albany demonstrates, matures, and drives new algorithm development
under FASTMath (Trilinos, PUMI):	

•  Adaptivity (PUMI, PAALS)	

•  Multilevel preconditioners for thin domains (ML)	

•  Anderson acceleration (NOX)	

•  Adjoint-based gradients for inversion (NOX, Sacado)	

•  New software stack for 64-bit ints (Trilinos)	

•  New software stack for NextGen architectures (Kokkos)	

FASTMath ó QUEST	

All interactions in MidTerm
report occurred in Albany	

What algorithms need to perform
well on new architectures?

Finite Element Integration
and Assembly:

•  Nested loops over
elements, nodes,
quadrature points,
dimensions, …

•  Loading into linear
algebra data structures

Linear Solver:
•  GMRES/CG

o  MatVec
o  Orthogonalization

•  Preconditioners
o  ILU
o  Multi-level

~50% CPU time	

 ~50% CPU time	

Work In Progress	

(see next 3 slides)	

Biggest Research	

Need	

What is our plan?
Kokkos programming model for

performance portability
• Kokkos is not funded by FASTMath
• Uses standard C++ template meta-programming

to represent device types
– Single code can be run on many architectures

• Multidimensional arrays support device-specific
memory layout and access (Kokkos::View)
– a[i][j][k] on CPU
– a[k][j][i] on GPU

• Abstraction layer for node-based parallelism
– Kokkos::parallel_for; Kokkos::parallel_reduce

Applica'on	
 and/or	
 Domain	
 Specific	
 Library	
 Layer	

Back-­‐ends:	
 OpenMP,	
 pthreads,	
 Cuda,	
 vendor	
 libraries	
 ...	

Kokkos	
 Sparse	
 Linear	
 Algebra	

Kokkos	
 Containers	

Kokkos	
 Core	

 } are both accessed with a(i,j,k)

Refactoring follows a simple recipe:
•  Outer loop moved to parallel_for(int)
•  Inner kernel moved to operator(int) functor
•  Arrays a[i][j] converted to Kokkos::Views a(i,j)

Converting a finite-element kernel to
Kokkos for portable node-level parallelism

template<typename EvalT>!
void CoordGrad<EvalT>::evaluateFields()!
{!
 // Outer loop over a Workset of Elements!
 Kokkos::parallel_for (NumCells, *this);!
}!
**!
template<typename EvalT>!
KOKKOS_INLINE_FUNCTION!
void CoordGrad<EvalT>:: operator ()!
 (const int cell) const!
{!
 for(int qp = 0; qp < numQPs; qp++) {!
 for(int row = 0; row < numDims; row++){!
 for(int col = 0; col < numDims; col++){!
 for(int nd = 0; nd < numNodes; nd++){!
 coordGrad(cell, qp, row, col) +=  
 coordVec(cell, nd, row)  
 * basisGrads(nd, qp, col);!
 }!
 }!
 }!
 }!
}!

template<typename EvalT>!
void CoordGrad<EvalT>::evaluateFields()!
{!
// Outer loop over a Workset ofElements!
for(int cell = 0; cell < NumCells; cell++) {!
 for(int qp = 0; qp < numQPs; qp++) {!
 for(int row = 0; row < numDims; row++){!
 for(int col = 0; col < numDims; col++){!
 for(int nd = 0; nd < numNodes; nd++){!
 coordGrad[cell][qp][row][col] +=  
 coordVec[cell][nd][row]  
 * basisGrads[nd][qp][col];!
 }!
 }!
 }!
 }!
} // cell loop!
}!

Finite Element Assembly
on Four architectures

using a Single implementation

Timings are for residual vector assembly for Ice Sheet equations, ���
moved from Albany to a stand alone mini-app.	

0

0.5

1

1.5

2

2.5

3

10 100 1000 10000

tim
e

(s
ec

)

of elements per workset

Time to process 10,000 elements, as a function of
workset size (available concurrency)

Serial
OpenMP (8 threads)
CUDA
Intel Phi (224 threads)

Current and Future Efforts

• Move Kokkos versions of Ice Sheet kernels from mini-
app back into Albany (debugging)
– Minimum Cuda version not yet installed on Titan

• Accommodate automatic differentiation data types
through the stack
– Currently works, but needs performance evaluation

• Propagate Kokkos data structures through all
underlying Trilinos libraries
–  E.g., the Intrepid FE library

• Make Albany/Trilinos build system flexible to handle
CUDA

• Linear Algebra:
– Albany developers punting this to Trilinos developers

