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is a finite element code

built primarily from Trilinos components

Quantum Devices Atmosphere Dynamics

Ice Sheets g
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Nonlinear Solver Version Control

Partitioning Iterative Solvers
Load Balancing Direct Solvers Time Integration Regression Testing
Adaptivity Eigen Solver Stability Analysis Build System
Remeshing Preconditioners Optimization Verification Tests
Grid Transfers Multi-Level Algs UQ Algorithms Continuous Integration

Data Structures




What is the relationship between o
Albany and FASTMath?

Albany <> PUMI: collaboration
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Acaptivity woriog grid Ice Sheet model ;3*
collaboration

FASTMath & QUEST
All interactions in MidTerm -
report occurred in Albany

Albany demonstrates, matures, and drives new algorithm development
under FASTMath (Trilinos, PUMI):

e Adaptivity (PUMI, PAALS)

e Multilevel preconditioners for thin domains (ML)

e Anderson acceleration (NOX)

* Adjoint-based gradients for inversion (NOX, Sacado)

* New software stack for 64-bit ints (Trilinos)

* New software stack for NextGen architectures (Kokkos)




@Saqdia
National
Laboratories
What algorithms need to perform

well on new architectures?

~50% CPU time ~50% CPU time
and Assembly: . GMRES/CG
"+ Nested loops over o MatVec
elements, nodes, o Orthogonalization
quadrature points, * Preconditioners
_dimensions, ... o ILU
* Loading into linear o Multi-level
algebra data structures
Work In Progress giggdest Research
(see next 3 slides) ce




P~ What is our plan? () i
? Kokkos programming model for
performance portability

* Kokkos is not funded by FASTMath

* Uses standard C++ template meta-programming
to represent device types

— Single code can be run on many architectures

Application and/or Domain Specific Library Layer

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core
Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

* Multidimensional arrays support device-specific
memory layout and access (Kokkos::View)

—a[il[jlk P
_ :{E]D[}][[i} 22 gptj, } are both accessed with a(i,j,k)

» Abstraction layer for node-based parallelism
— Kokkos::parallel_for; Kokkos::parallel reduce
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onverting a finite-element kernel to
Kokkos for portable node-level parallelism

template<typename EvalT>
void CoordGrad<EvalT>::evaluateFields()
{
// Outer loop over a Workset ofElements
for(int cell = 0; cell < NumCells; cell++) {
for(int gp = 0; gp < numQPs; gp++) {
for(int row = 0; row < numDims; row++)/{
for(int col = 0; col < numDims; col++){
for(int nd = 0; nd < numNodes; nd++)/{
coordGrad[cell][gp][row][col] +=
coordVec[cell][nd][row]
* basisGrads[nd][gp][col];
}
}
}
}
} // cell loop

}

Refactoring follows a simple recipe:
* Outer loop moved to parallel for (int)

template<typename EvalT>

void CoordGrad<EvalT>::evaluateFields()

{
// Outer loop over a Workset of Elements
Kokkos::parallel for (NumCells, *this);

}
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template<typename EvalT>
KOKKOS INLINE FUNCTION
void CoordGrad<EvalT>::
(const int cell) const

operator ()

{
for(int gp = 0; gp < numQPs; gp++) {
for(int row = 0; row < numDims; row++){
for(int col = 0; col < numDims; col++){
for(int nd = 0; nd < numNodes; nd++){
coordGrad(cell, gp, row, col) +=
coordVec(cell, nd, row)
* basisGrads(nd, gp, col);

* Inner kernel moved to operator (int) functor
* Arrays a[i] [j] converted to Kokkos: :Views a(i,J)




Finite Element Assembly () s
on Four architectures
using a Single implementation

Time to process 10,000 elements, as a function of
workset size (available concurrency)
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Timings are for residual vector assembly for Ice Sheet equations,
moved from Albany to a stand alone mini-app.
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Current and Future Efforts

* Move Kokkos versions of Ice Sheet kernels from mini-
app back into Albany (debugging)

— Minimum Cuda version not yet installed on Titan

« Accommodate automatic differentiation data types
through the stack

— Currently works, but needs performance evaluation

* Propagate Kokkos data structures through all
underlying Trilinos libraries

— E.g., the Intrepid FE library

* Make Albany/Trilinos build system flexible to handle
CUDA

* Linear Algebra:
— Albany developers punting this to Trilinos developers



