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               is a finite element code  
built primarily from Trilinos components 
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What is the relationship between 
Albany and FASTMath? 
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Albany ó PUMI: collaboration 
is producing unstructured-grid 
adaptivity workflow	



FASTMath ó PISCEES:	


Albany hosts unstructured 
grid Ice Sheet model  
collaboration	



Albany demonstrates, matures, and drives new algorithm development 
under FASTMath (Trilinos, PUMI):	



•  Adaptivity (PUMI, PAALS)	


•  Multilevel preconditioners for thin domains (ML)	


•  Anderson acceleration (NOX)	


•  Adjoint-based gradients for inversion (NOX, Sacado)	


•  New software stack for 64-bit ints (Trilinos)	


•  New software stack for NextGen architectures (Kokkos)	



FASTMath ó QUEST	


All interactions in MidTerm 
report occurred in Albany	





What algorithms need to perform  
well on new architectures?  

Finite Element Integration 
and Assembly: 

•  Nested loops over 
elements, nodes, 
quadrature points, 
dimensions, … 

•  Loading into linear 
algebra data structures 

Linear Solver: 
•  GMRES/CG 

o  MatVec 
o  Orthogonalization 

•  Preconditioners 
o  ILU 
o  Multi-level 

~50% CPU time	

 ~50% CPU time	



Work In Progress	


(see next 3 slides)	



Biggest Research	


Need	





What is our plan?   
Kokkos programming model for  

performance portability 
• Kokkos is not funded by FASTMath 
• Uses standard C++ template meta-programming 

to represent device types 
– Single code can be run on many architectures 

 
 

• Multidimensional arrays support device-specific 
memory layout and access (Kokkos::View) 
– a[i][j][k] on CPU   
– a[k][j][i] on GPU     

• Abstraction layer for node-based parallelism 
– Kokkos::parallel_for;  Kokkos::parallel_reduce 

Applica'on	
  and/or	
  Domain	
  Specific	
  Library	
  Layer	
  

Back-­‐ends:	
  OpenMP,	
  pthreads,	
  Cuda,	
  vendor	
  libraries	
  ...	
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  Linear	
  Algebra	
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 } are both accessed with a(i,j,k) 



Refactoring follows a simple recipe: 
•  Outer loop moved to parallel_for(int) 
•  Inner kernel moved to operator(int) functor 
•  Arrays a[i][j] converted to Kokkos::Views a(i,j) 

Converting a finite-element kernel to  
Kokkos for portable node-level parallelism 

template<typename EvalT>!
void CoordGrad<EvalT>::evaluateFields()!
{!
  // Outer loop over a Workset of Elements!
  Kokkos::parallel_for (NumCells, *this);!
}!
**********************************************!
template<typename EvalT>!
KOKKOS_INLINE_FUNCTION!
void CoordGrad<EvalT>:: operator ()!
  (const int cell) const!
{!
  for(int qp = 0; qp < numQPs; qp++) {!
    for(int row = 0; row < numDims; row++){!
      for(int col = 0; col < numDims; col++){!
        for(int nd = 0; nd < numNodes; nd++){!
          coordGrad(cell, qp, row, col) +=          
             coordVec(cell, nd, row)                                             
             * basisGrads(nd, qp, col);!
        }!
      }!
    }!
  }!
}!

template<typename EvalT>!
void CoordGrad<EvalT>::evaluateFields()!
{!
// Outer loop over a Workset ofElements!
for(int cell = 0; cell < NumCells; cell++) {!
 for(int qp = 0; qp < numQPs; qp++) {!
    for(int row = 0; row < numDims; row++){!
      for(int col = 0; col < numDims; col++){!
        for(int nd = 0; nd < numNodes; nd++){!
          coordGrad[cell][qp][row][col] +=          
             coordVec[cell][nd][row]                                             
             * basisGrads[nd][qp][col];!
        }!
      }!
    }!
  }!
} // cell loop!
}!



Finite Element Assembly 
on Four architectures  

using a Single implementation 

Timings are for residual vector assembly for Ice Sheet equations, ���
moved from Albany to a stand alone mini-app.	
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Time to process 10,000 elements, as a function of 
workset size (available concurrency) 

Serial 
OpenMP (8 threads) 
CUDA 
Intel Phi (224 threads) 



Current and Future Efforts 

• Move Kokkos versions of Ice Sheet kernels from mini-
app back into Albany (debugging) 
– Minimum Cuda version not yet installed on Titan 

• Accommodate automatic differentiation data types 
through the stack  
– Currently works, but needs performance evaluation 

• Propagate Kokkos data structures through all 
underlying Trilinos libraries 
–  E.g., the Intrepid FE library 

• Make Albany/Trilinos build system flexible to handle 
CUDA 

• Linear Algebra:  
– Albany developers punting this to Trilinos developers 


