' SAND2014- 18203PE
National
™~ b m Laboratories

. el fou ,,y

On Next-Generation Systems

Albany/Kokkos Integration:

* [rina Demeshko, Carter Edwards, Mike Heroux,
Roger Pawlowski, Eric Phipps, Andy Salinger

Albany Project Leads:

* Andy Salinger, Glen Hansen, Jake Ostien,
Irina Kalashnikova

Kokkos Developers:

» Carter Edwards, Dan Sunderland, Christian Trott
Humble Speaker:

« Karen Devine

Sandia National Laboratories is a multi-program laboratory managed and operated by
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94A1.85000

@ﬁg%gi:al
Laboratories
is a finite element code

built primarily from Trilinos components

Quantum Devices Atmosphere Dynamics

Ice Sheets g

%| Mesh Tools | | Linear Solvers | | Analysis Tools | Software Quality
Nonlinear Solver Version Control

Partitioning Iterative Solvers
Load Balancing Direct Solvers Time Integration Regression Testing
Adaptivity Eigen Solver Stability Analysis Build System
Remeshing Preconditioners Optimization Verification Tests
Grid Transfers Multi-Level Algs UQ Algorithms Continuous Integration

Data Structures

What is the relationship between o
Albany and FASTMath?

Albany <> PUMI: collaboration

:\'; ¥
:) : FASTMath < PISCEES: g I .
1s producing unstructured-grid B ,

daptivi kfl Albany hosts unstructured ‘ 7
Acaptivity woriog grid Ice Sheet model ;3*
collaboration

FASTMath & QUEST
All interactions in MidTerm -
report occurred in Albany

Albany demonstrates, matures, and drives new algorithm development
under FASTMath (Trilinos, PUMI):

e Adaptivity (PUMI, PAALS)

e Multilevel preconditioners for thin domains (ML)

e Anderson acceleration (NOX)

* Adjoint-based gradients for inversion (NOX, Sacado)

* New software stack for 64-bit ints (Trilinos)

* New software stack for NextGen architectures (Kokkos)

@Saqdia
National
Laboratories
What algorithms need to perform

well on new architectures?

~50% CPU time ~50% CPU time
and Assembly: . GMRES/CG
"+ Nested loops over o MatVec
elements, nodes, o Orthogonalization
quadrature points, * Preconditioners
_dimensions, ... o ILU
* Loading into linear o Multi-level
algebra data structures
Work In Progress giggdest Research
(see next 3 slides) ce

P~ What is our plan? () i
? Kokkos programming model for
performance portability

* Kokkos is not funded by FASTMath

* Uses standard C++ template meta-programming
to represent device types

— Single code can be run on many architectures

Application and/or Domain Specific Library Layer

Kokkos Sparse Linear Algebra
Kokkos Containers
Kokkos Core
Back-ends: OpenMP, pthreads, Cuda, vendor libraries ...

* Multidimensional arrays support device-specific
memory layout and access (Kokkos::View)

—a[il[jlk P
_ :{E]D[}][[i} 22 gptj, } are both accessed with a(i,j,k)

» Abstraction layer for node-based parallelism
— Kokkos::parallel_for; Kokkos::parallel reduce

Sandia
National
Laboratories

onverting a finite-element kernel to
Kokkos for portable node-level parallelism

template<typename EvalT>
void CoordGrad<EvalT>::evaluateFields()
{
// Outer loop over a Workset ofElements
for(int cell = 0; cell < NumCells; cell++) {
for(int gp = 0; gp < numQPs; gp++) {
for(int row = 0; row < numDims; row++)/{
for(int col = 0; col < numDims; col++){
for(int nd = 0; nd < numNodes; nd++)/{
coordGrad[cell][gp][row][col] +=
coordVec[cell][nd][row]
* basisGrads[nd][gp][col];
}
}
}
}
} // cell loop

}

Refactoring follows a simple recipe:
* Outer loop moved to parallel for (int)

template<typename EvalT>

void CoordGrad<EvalT>::evaluateFields()

{
// Outer loop over a Workset of Elements
Kokkos::parallel for (NumCells, *this);

}

EOR R S S I b R S S S S I I I R S S S S S I I S R I R I
template<typename EvalT>
KOKKOS INLINE FUNCTION
void CoordGrad<EvalT>::
(const int cell) const

operator ()

{
for(int gp = 0; gp < numQPs; gp++) {
for(int row = 0; row < numDims; row++){
for(int col = 0; col < numDims; col++){
for(int nd = 0; nd < numNodes; nd++){
coordGrad(cell, gp, row, col) +=
coordVec(cell, nd, row)
* basisGrads(nd, gp, col);

* Inner kernel moved to operator (int) functor
* Arrays a[i] [j] converted to Kokkos: :Views a(i,J)

Finite Element Assembly () s
on Four architectures
using a Single implementation

Time to process 10,000 elements, as a function of
workset size (available concurrency)

w

N
N O
Z8

\\ =t=Serial
\\ ===OpenMP (8 threads)

=s=CUDA
=>©Intel Phi (224 threads)

time (sec)
6]

—_—

0.5

10 100 1000 10000
of elements per workset

Timings are for residual vector assembly for Ice Sheet equations,
moved from Albany to a stand alone mini-app.

Sandia
National
Laboratories

e
Current and Future Efforts

* Move Kokkos versions of Ice Sheet kernels from mini-
app back into Albany (debugging)

— Minimum Cuda version not yet installed on Titan

« Accommodate automatic differentiation data types
through the stack

— Currently works, but needs performance evaluation

* Propagate Kokkos data structures through all
underlying Trilinos libraries

— E.g., the Intrepid FE library

* Make Albany/Trilinos build system flexible to handle
CUDA

* Linear Algebra:
— Albany developers punting this to Trilinos developers

