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Biology utilizes the fluidity and defined architecture of
the lipid membrane to build complex functional systems
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Synthetic lipid bilayers provides a molecularly dynamic
matrix to study cell membrane-mimetic processes
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Curvature inducing pathways in cellular
membranes
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» Chemical recognition enables site specificity of bending events
 Curvature is facilitated through pulling forces, steric interactions, and templates



Tail structure



Chemical recognition on lipid membranes induces
structural and functional transformation

Iminodiacetic acid lipids

His-tag affinity sites
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Control over membrane domain formation, bending
rigidity, ligand affinity, spontaneous curvature




Microdomain formation driven by metal ion
recognition
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Miscible lipid system Metal ion-induced phase separation

» Microdomains (1 - 2 uM dia.) exhibit mobility rates consistent with gel phase structure
* Formation rate of domains diffusion limited, while domain architecture stable with time
» System is completely reversible with addn. of EDTA (~ 10 yM)






Domains bind his-tagged proteins reversibly
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Domains can localize lipid-protein binding
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Localized protein binding bends lipid membranes
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Localized protein binding bends lipid membranes
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Protein crowding bends membranes

Tubule formation increases
with protein concentration
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Electric Field Orientation of Lipid Domains
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Domain orientation directs
nanotube orientation

Zendejas, F. J.; Meagher, R. J.; Stachowiak, J. C.; Hayden, C. C.; Sasaki, D. Y. ChemComm 2011, 47(26), 7320 — 7322.



Liquid ordered and liquid disordered domains can be
prepared with Cu-IDA lipids
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Domain phase and size tailored by membrane
composition and processing condition

ANANANANNNNG 0

A~OH

ojvowowow\ N

\-o

DPIDA @)

WWW\/Y LO O\A&’Me

DPPC

:K/O .0 +
\(\/\(\/\(\/W ~“NMe,
DPhPC
Cholesterol

fluid domains

)
=
©
£
O
©
S
©
)

tiny domains

Protein selective domains in liquid ordered

and gel phases

lipid dye protein

Scale bars — 10 ym

Stachowiak, J. C.; Hayden, C. C.; Sanchez, M. A. A.; Wang, J.; Bunker, B. C.; Voigt, J. A,; Sasaki, D. Y. Langmuir 2011, 27, 1457.



Nanotube structure controlled by the bending energy
and size of the host domain

Stiff Nanotubes

o

Gel domains

Fluid domains

L, domains composed of 20% DPIDA/13% DPPC/67% cholesterol

Stachowiak, J. C.; Hayden, C. C.; Sanchez, M. A. A.; Wang, J.; Bunker, B. C.; Voigt, J. A,; Sasaki, D. Y. Langmuir 2011, 27, 1457.



Liquid disordered domains with affinity for his-
tagged proteins prepared with DOIDA
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FRET measurements determine protein
coverage on domain to understand
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Low membrane coverage of proteins to
membrane tubulation suggests interfacial

ke e e e e e = d

~50% tubes
_ 90% tubes

20 40 60 80
Percentage of membrane
coverage

Low bending rigidity of L, domain allows multiple tubules to form

Stachowiak, J. C.; Schmid, E. M.; et al. Nature Cell Biology 2012,



Conical shape of diphytanyl lipid with IDA headgroup to
impart negative curvature
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* Inthe presence of his-GFP, GUVs of 10% DPhIDA/POPC appear structurally frustrated with
a series of vesicle opening and closing events

* Resultant stable structures are flat membrane sheets adhered on edge to substrate



Membrane curvature induced by binding of cholera
toxin to GM1 loaded vesicles
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e Curvature induced in liquid ordered domains of DOPC/sphingomyelin/cholesterol GUVs
upon binding of CTxB dependent

* However, curvature sign was dependent upon sterol structure and chemistry



Headgroup



Lipid tail structure is important but headgroup also
plays a decisive role in phase partitioning
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Biotin-streptavidin interaction - labeling and
functionalization of membranes

Biotin
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Biotinylated lipids
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DPPE-cap-biotin partitions selectively to L
phase in GUV solution phase studies

FITC-labeled streptavidin binds to L, phase of membrane —
suggests preferential partitioning of biotin lipid to L, phase



Membrane phase partitioning of biotinylated lipids in
GUV-surface binding study (Sarmento, et al.)
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Spacer



PEG spacer decouples headgroup-membrane
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PEG spacer improves phase selectivity for lipid rafts
of biotinylated lipid
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Phase selectivity of DPPE-PEG(2000)-biotin
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Biotinylated lipids with oligoethylene glycol
spacer — spacer length and chemistry
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Phase selectivity of DP-EG3-biotin
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Phase selectivity of DP-EGS5-biotin
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Headgroup and spacer disrupts lipid packing
interactions: biotin and cap spacer membrane insertion
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Summary

* Spatial confinement enables control over the structure and
mechanics of membrane assemblies

* Tubulation/budding results from steric pressure of bound
proteins as well as lipid aggregation with his-tag binding

* Through tailoring of lipid structure we hope to understand role
of line tension and how to control membrane asymmetry
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