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Motivation/History of SLS on GaSb for IR Photodetection 
• Need for size and performance scaling 
• History and background 

 

How Material Parameters Affect Photodetection 
• Dark current and minority carrier lifetime 
• Responsivity and diffusion length, absorptivity 

 

Material Properties 
• InAs/GaSb SL,  InAs/GaInSb SL 
• InAs/InAsSb SL,  InAsSb/InAsSb SL 
 

Conclusion 
 

Outline 
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Needs: 
• Larger FPAs 
• Better operability 
• Higher sensitivity 
• Higher operating T 
 
Problems: 
• MCT is hard to manufacture 

• Performance & cost penalty 
• Substrates are limited in size and quality 
 
Solutions: 
• III-V materials: higher pixel density, better uniformity, large (domestic) 
substrates 

• T2SL: lower dark current, higher operating T 

8k x 8k 
12μm 

4k x 4k 
15μm 

2k x 2k 
18μm 

640x512 
20μm 

92mm 
Background / Motivation 
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Absorber Material Choices 

10 µm 

3 µm InAs/GaSb SL 
InAs/GaInSb SL 
InAs/InAsSb SL 

InAsSb/InAsSb SL 

SWIR MWIR LWIR 

1.7 µm 
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History of T2SL 
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Landmarks in the Development of InAs/Ga(In)Sb Type-II SL PDs 

1975 1980 1985 1995 1990 2015 

IBM 
Sai-Halasz 

InAs/GaSb SL 
calculated 

bandstructure 

IBM 
InAs/GaSb SL 

measured 
absorption spectrum 

U of IL/U of HI 
InAs/GaSb SL 

calculated 
absorption spectrum 

LANL/Xerox 
InAs/GaInSb SL 
proposed, with 

calculations 

HRL/Caltech 
InAs/GaInSb SL 

measured 
photoconductive 

spectrum 

HRL/Caltech 
InAs/GaInSb SL 

measured photovoltaic 
response 

Harvard 
InAs/GaInSb SL 

calculated 
Auger rates 

NRL/HRL 
InAs/GaInSb SL 

measured 
Auger rates 

IBM/Caltech 
InAs/GaSb SL  

STM identification 
of interface 
asymmetry 

Fraunhofer 
InAs/GaInSb SL 

control of residual 
doping 

Northwestern/
AFRL 

InAs/GaSb SL 
> 25 µm cutoff 

AIM-AEG 
/Fraunhofer 

InAs/GaInSb SL 
256×256 FPA 

Fraunhofer 
InAs/GaInSb SL 

epitaxial 
passivation 

NRL/SFA/Rockwell 
W SL, graded-gap depletion region 

Fraunhofer 
InAs/GaSb SL, dual-color FPA 

U of NM 
InAs/GaInSb SL  
bias-switched 

dual band 

JPL 
InAs/GaSb SL 

complementary 
barrier design 

U of IA 
calculated SL defect 
electronic structure 

JPL 
InAs/GaSb SL 

1024×1024 FPA 

2000 2005 2010 
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Development of In(As)(Sb)/InAsSb T2SL Detectors  

Imperial C., 
Heriot-Watt U 
magneto-abs: 

type-IIa 

SNL 
InSb/InAsSb SL 
photovoltaic 

detectors 

1980 1985 1995 1990 2015 

NC State U 
InSb/InAsSb SL 

grown 

GA Tech, AZ State U, U of IL 
12.5 um photoconductive detectors 

AZ State U, ARL, IQE, 
U of Dayton  

400 ns lifetime at 8 um 

2000 2005 2010 

SNL 
InAsSb/InAsSb SL 
tensile-strained 

detector proposed 

U of IA, U of IL, Harvard  
calculated Auger rates 

SNL 
magneto-PL: type-I 

Imperial College 
LT PL to 11 um 

type-IIa (?) 
HRL 

3.4 um lasers 
asserts type-IIb 

InAs/InAsSb SLs 

Nat. Taiwan U, 
Lancaster U 
4.4 um LT PL 

Simon Fraser U 
strain-balanced  

10 um LT PL 
type-IIb 

Simon Fraser U, U of NM 
7 um photovoltaic detector 

U of IA, SNL 
9 us lifetime at 5 um 

AZ State U 
13 um barrier detector 

U of NM 
20% QE at 4 um 

Northwestern U 
46% QE at 13 um 
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How Material Parameters 

Affect Photodetection 
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n-type absorber 

G
-R

 c
ur

re
nt

 

Dark Current Mechanisms 

Long τ is key to all major performance parameters. 

Photocurrent: Ldiff ∝ τ½  

Diffusion Dark Current ∝ 1/NDτ 

Pixel perimeter current 

holes 

Interface 
parasitic 
current 
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InAsSb Photodetector Dark Current Components 
Current Density at 140 K Current Density vs. T 

Diffusion Current ∝ T3 exp(Eg/kT) 
 GSRH = ni

2 / (τp_SRH n) 
GRad = 0 

GAug = Cn ni
2 n 

G-R Current ∝ T3/2 exp(Eg/2kT) 
GSRH = ni / (τp_SRH + τn_SRH ) 

GRad = 0 
GAug = 0 

Photocurrent 

Jdark @ -0.1V 
T3exp(-Eg/kT) 
Jdark @ -0.45V 
T3/2exp(-Eg/2kT) 

-0
.4

5V
 

-0
.1

V
 

>95% Max Ratio of SRH and Auger 
lifetimes affects the 

crossing point. 

Required Idark is 
dictated by 

background noise. 
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𝐽𝐷𝑖𝑖𝑖 =  𝑊𝐴𝑏𝑏 𝑞 (𝐺𝑆𝑆𝑆 +  𝐺𝑅𝑅𝑅 +  𝐺𝐴𝐴𝐴) 

noise floor 

InAsSb PD Predicted and Measured Dark Currents 

𝐽𝑑𝑑𝑑𝑑 = 𝑁𝑐𝑁𝑣exp −
𝐸𝐸
𝑘𝑘

𝑞𝑞𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝑁𝑑𝜏

  

Minority Carrier Lifetime 
reliably predicts Idark 
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Other Material Parameters of Interest in Photodetectors 

Prof. Weimer 

• Minority carrier lifetime: dark current 
• Minority carrier diffusion length: QE       sensitivity (NEI, NEdT), operating T 
• Absorptivity: spectral response 
• Diffusivity asymmetry: pixel crosstalk (MTF) 

100K 

Sandia grown 
InAs/InAsSb 

TuA1-6: Monolayer–by–Monolayer 
Compositional Analysis of InAs / InAsSb 
Superlattices with Cross–Sectional STM 
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Material Properties 
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Superlattices initially proposed by Sai-Halasz, Tsu, and Esaki:  Appl. Phys. Lett. 30, 651 (1977) 
Features and comparisons 

• Common to all 6.1Å type-II superlattice family: 
o Binary (GaSb) substrates with good commercial availability 
o Electron effective mass > HgCdTe, should reduce tunneling current 
o Surface passivation problematic 

• Broken-gap type-II alignment allows arbitrarily long cutoff wavelength 
• Notionally simple binary-binary materials 
• Lattice matching achieved by control of interface bonding (GaAs/InSb) 

Limitations 
• No common anions/cations in constituent layers 

o Characteristics significantly affected by interface nonidealities 
• Short SRH lifetimes (~ 100 ns or less) observed 

Adoption 
• First-conceived; dominated type-II development 1995 to recently  

Characteristics of InAs/GaSb Superlattices  
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Features and comparisons 
• Adding In to GaSb reduces bandgap, allowing use of thinner SL layers than InAs/GaSb 
• Thinner layers increase electron/hole overlap and absorption 

o Absorption coefficient similar to HgCdTe near threshold 
• Calculated Auger-7 lifetimes >> HgCdTe 

Limitations 
• Indium content is constrained by lattice matching to GaSb 
• Short SRH lifetimes observed 

Adoption 
• Intensively studied ~1990-2005, largely given way to InAs/GaSb 

Characteristics of InAs/Ga1-xInxSb Superlattices  
Initially proposed for IR detectors by Smith and Mailhot, J. Appl. Phys. 62, 2545 (1987) 

Grein: J. App. 
Phys., Vol. 78, 
No. 12, 1995 
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Proposed to take advantage of small bandgap of InAsSb: Osbourn, J. Vac. Sci. Technol. B 2, 176 (1984) 
• InAsSb has smallest bandgap of conventional III-V ternaries 
• Tensile strain used to further reduce bandgap 

Features and comparisons 
• InAsSb with ~60% Sb content chosen for lowest possible bandgap 
• Composition-insensitive bandgap 

Limitations 
• Typically lattice-mismatched to available substrates 
• InSb-based incarnations (tensile) suffered from microcracking 

Adoption 
• Largely replaced by SLs with compressively-strained InAsSb by mid-1990s 

Characteristics of Sb-Rich InAsSb/InAsSb Superlattices 

Kurtz, Proc. IEDM, 1988 
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Type-II design initially demonstrated for laser active regions:  Zhang, Appl. Phys. Lett. 66, 118 (1995) 
Features and comparisons 

• May be strain-balanced for growth on GaSb substrates 
• Relatively simple growth 
• Long SRH lifetimes 
• Larger Auger coefficient (shorter Auger lifetime) than InAs/GaInSb 

Limitations 
• High Sb content (and strain) required for long-wavelength designs 
• Relatively small absorption coefficient 

Adoption 
• Eclipsed by InAs/(GaIn)Sb work in 1990s; recently rediscovered and rapidly advancing 

Characteristics of InAs/InAsSb Superlattices 
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SLS Comparison 

• Doping density affects minority carrier generation rates 

  
Carrier 
Density 
(cm-3) 

SRH 
Lifetime 

(μs) 

Rad 
Lifetime 

(μs) 

Auger 
Lifetime 

(μs) 

Rad 
Coeff 

(cm3/s) 

Auger 
Coeff 

(cm6/s) 
InAs/ 
GaSb 5x1015 0.1 0.57 400 3.5x10-10 1x10-28 

InAs/ 
InAsSb 4x1014 14 17.9 390 1.4x10-10 1.6x10-26 

InAsSb 1x1015 16 7.1 100 1.4x10-10 1.0x10-26 

HgCdTe 1.5x1015 > 100 31.8 18 2.1x10-11 2-3x10-26 

M
ea

su
re

m
en

ts
 

T2SL&InAsSb data from B. V. Olson et al., Appl. Phys. Lett. 103, 052106 (2013) 
HgCdTe data from W.E. Tennant, Prog. In Quant. Electron. 36, 273-292 (2012)  

• Auger lifetime of InAs/GaSb SL would be 63 ms if doping could be 
reduced to 4x1014 cm-3. 

• Auger lifetime of HgCdTe could be increased by reducing doping. 
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InAs/InAsSb SL Properties 
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T2SL Minority Carrier Lifetime 

T2SL carrier lifetime: 10μs, 100K-200K 

Limited by SRH (defects) 

NDτ ~ constant w/ doping 

Nd = 2 x 1014 cm-3 

Nd = 6 x 1015 cm-3 

Olson et al., Appl. Phys. Lett. 103, 052106 (2013) 
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−
𝜕∆𝑛
𝜕𝜕 = ∆𝑛 × 𝑅 =

𝑛𝑛 − 𝑛𝑜𝑝𝑜
𝜏𝑛𝑛 𝑝 + 𝑝1 + 𝜏𝑝𝑝 𝑛 + 𝑛1

+ 𝜑𝑃𝑃𝐵𝑟 𝑛𝑛 − 𝑛𝑜𝑝𝑜 + 𝐶𝑛 𝑛𝑛 − 𝑛𝑜𝑝𝑜 𝑛 + 𝐶𝑝 𝑛𝑛 − 𝑛𝑜𝑝𝑜 𝑝  

 

Experimentally Resolving Recombination Processes 

Includes 
photon 

recycling 

Nd 

J. Blakemore, Semiconductor Statistics (1962) 
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Si
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al
 (V

)

Time (ns)

 3630uW
 2010uW
 1255uW
 830uW
 560uW
 330uW
 135uW
 25uW

Time-Resolved Decays

  
 

            

Δn << no 

Δn ≈ no 

Experimentally Resolving Recombination Processes 

Carrier Density Probe Techniques 
Photoluminescence 

Pump-Probe 
Microwave reflectance 

Lifetimes Resolving Techniques 

Time-resolved decays 

CW frequency response 

Typical lifetime measurement error with microwave system is < 300 ns. 
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Determining Trap Energy Level(s) 

 Measured data fit with SRH and Auger-1 theory 
 Important fitting parameters are trap energy, ET, capture cross section*trap 

density, σNT,  and Auger overlap function, |F1F2| 
 SRH model converges for 2 different trap energies: ET and ẼT  where one is 

relative to SL CB edge and the other to the SL VB edge 
 Radiative lifetime not included as data showed long radiative lifetimes 

 𝜏𝑡𝑡𝑡𝑡𝑡−1 = 𝜏𝑆𝑆𝑆−1 + 𝜏𝑎𝑎𝑎𝑎𝑎−1  
 

 𝜏𝑆𝑆𝑆 = 𝜏𝑝𝑝 𝑛𝑜+𝑛1 +𝜏𝑛𝑛 𝑝𝑜+𝑝1
𝑛𝑜+𝑝𝑜

 
 

 𝜏𝑎𝑎𝑎𝑎𝑎 = 2𝑛𝑖
2

𝑛𝑜2+𝑛𝑜𝑝𝑜
𝜏𝐴𝐴𝑖  

 

InAs/InAsSb 

Also refer to Aytac et al., Appl. Phys. Lett. 105, 022107 (2014) 

J. Blakemore, Semiconductor Statistics (1962) 
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MWIR T2SL Lifetime/Defects Study 

Collaboration with Professors Boggess, Flatte, & Grein 
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MWIR T2SL Lifetime/Defects Study 

x 

x x 
x 

x 

Collaboration with Professors Boggess, Flatte, & Grein 
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MWIR T2SL Lifetime/Defects Study 

x x x x x 

Collaboration with Professors Boggess, Flatte, & Grein 
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InAs/InAsSb Hole Lifetimes 

Sb: 25% 
Sb: 31% 
Sb: 34% 
Sb: 40% 
Sb: 48% 

Also refer to Aytac et al., Appl. Phys. Lett. 105, 022107 (2014) 

M
in

or
ity
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ar
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r l

ife
tim

e 
(n

s)
 

Temperature (K) 
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SRH Auger 

 Two distinct temperature regions 
• SRH for T<150K 
• Auger for T>225K 
• Mix of the two for 150-225K 

 38% Sb has best SRH lifetime 
 Auger lifetime increases with Sb 

concentration 

Minority Carrier (MC) Lifetime Trend 
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Auger Lifetime vs. Sb % 

extracted Cauger values 

Measured high temp MC lifetimes 

Calculated 125K Auger lifetimes 
for Nd = 1x1015 cm-3 

A
ug

er
 L

ife
tim

e 
(n

s)
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Extracted Trap Energy vs. Sb% 

 Trap energies have approximately 10 meV maximum change across the Sb range 
 Single trap state gives two energy levels (unresolvable), relative to CB or VB. 
 

ET 
ẼT 
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 The two potential trap levels do not follow the InAsSb band edges 
 CBSL has ~5meV shift, VBSL has ~30meV shift, trap energies ~10meV shift 
 Uncertainty in extracted trap energy greater than any observed trend 

 

ET 
ẼT 

Trap Energy Level Trend 
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Summary 
• III-V materials proving to be superior alternative to HgCdTe 

• Idark, responsivity, tunability, uniformity, affordability 
• InAs/Ga(In)Sb SL: short carrier lifetime, limited usefulness 
• InAs/InAsSb SL: longest carrier lifetime, low ND, most useful 
• InAs/InAsSb defects are mid-gap,  lifetime is SRH limited 
• Potential 10-100x improvements in minority carrier lifetime 
 

Suggested Future Work 
• Growth optimizations to further reduce defects in InAs/InAsSb 
• Identification of defects 
• Investigate effects of diffuse interfaces on lifetime, transport 

 

Conclusion 
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