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Remember these? )

Knowing structure is POWER...because you can relate it to function!
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What is a Metal-Organic Framework?

Crystalline (therefore ordered), nanoporous structure

Organic

Metal linker

“Node”

Zn*2(NOy), +




MOFs are a subset of a growing category of ()%
self-assembled, nanoporous materials
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How big are the pores?

Amino acids MOE-74-X|

P . Most are stable to > 200 °C MOF-74-VII .
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Let’s think about the surface area of MOF pores

Surface area of a sphere = 4mr?
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Surface area of tennis ball = 140 cm? = 0.01 m?



What’s the surface area of 1 cm3 of a MOF
(approximately)?
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MOF pore diametersare ~1—3 nm

-2 r(pore) =1 nm=10"m

Pore volume = (4/3) nir3 = 4x102%’ m3=4 nm?3
Surface area = 4nr? = 10t m?

How many pores in 1 cm3?

1cm3 = (10’ nm)3 =10% nm3
10t nm3/(4 nm3/pore) = 2.5x10%° pores
Total surface area = (2.5x10%° pores)x(10-1” m?/pore)
= 2,500 m%/cm?3
If density = 0.5 g/cm3, then 5,000 m?/g!
(the tennis ball is ~ 0.0002 m?/g)




1 football field = 5,351 m?2 rh)




MOFs attractive for gas storage, catalysis,

m ﬁaalrligﬁal
separations, ionic conductors
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Thin film growth for MOF device applications
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MOF films make sensitive, selective gas ) e
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MOFs guide Ag nanowire growth rh)
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Chemical Science

Houk, Jacobs, Allendorf, Talin et al.
Nano Lett., 9 3413, (2009)
Chemical Science 2, 411, (2011);
Chemistry 17, 11372 (2011).
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Non-porous CPs have been used for 7 i
centuries (i. e. Prussian blue)
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“The Great Wave of Kanagawa” by
Hokusali

A. Agrawal, C. Susut, G. Stafford, U.
Bertocci, B. McMorran, H. Lezec, A. A. Talin,
Nano Lett. 11, 2774, 2011.




The PB red absorption band due to IVCT ) .
(Intervalence Charge Transfer)
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Prussian blue is a ‘class II’ system according LU
to donor-bridge acceptor model
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Reaction Coordinate
B. S. Brunschwig, C. Creutz and N. Sutin,

Chemical Society Reviews, 2002, 31, 168




Hopping conduction in oxidized or reduced 7l
PB consistent with intermediate coupling
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Can guest molecules induce electrical 7
conductivity in an insulating MOF?
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MOF growth

Molecule infiltration

Two theta (deg.)




Cu-TCNQ is a well-known conducting CP =~

144 Inorg. Chem. 1999, 38, 144—156

New Insight into the Nature of Cu(ITCNQ): Solution Routes to Two Distinct Polymorphs
and Their Relationship to Crystalline Films That Display Bistable Switching Behavior

Robert A. Heintz, Hanhua Zhao," Xiang Ouyang,” Giulio Grandinetti," Jerry Cowen,* and
Kim R. Dunbar=*
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TCNQ@Cu,(BTC), leads to color change ()&,

before

Cu,(BTC),*(H,0),
— TCNQ@Cu,4(BTC),
m— HA4-TCNQ@Cu,4(BTC),
+ TCNQ/CH,CI, (sol'n)
H4-TCNQ/CH,CI, (sol'n)
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... and >10° increase in conductivity, air kD
aboratories
stable > 1 year
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IR shift of -C=N indicates charge transfer @& .

z=(v,—v)/44cm™
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Raman also shows shift of -C=EN
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C=N stretch splitting observed only inside ()&=,

dark colored, conducting region Laser
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Peak splitting indicates 2 inequivalent -C=EN s
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DFT: Cu dimers linked by TCNQ ) .

BE = Etotar — (ETCNQ + EMOF) = 84 KkJ/mol




Guest aromaticity, electronegativity affect

conductivity
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Increased coupling between neighboring Cu @i
dimers lowers barrier to charge transfer
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Solvent, precursor likely responsible for ) e
conductivity in as deposited Cu,;(BTC)..

4x10° 4

40::195—/ ——
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As deposited: Low but measurable
conductivity, ionic/electronic?

Activated, exposed to ambient: No
measurable conductivity at 10V (<1012A)

Infiltrated MOF: s~0.1S/cm, ~108 increase
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What about the carrier type (electron or hole? ) .
Seebeck effect is one way to find out...

Electric Field
nnnnnn High densny
of electro
Electric Field

oooooo High density
f ho I of holes

http://www.mn.uio.no/fysikk/english/research/pr
ojects/bate/thermoelectricity/
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Example from recent work with CNT films )

National
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X. He, N. Fujimura, J. M. Lloyd, K. J. Erickson, A. A. Talin, Q. Zhang, W. Gao, Q.Jiang, Y. oretones
Kawano,R. H. Hauge, F.Léonard, J. Kono, CNT THz detectors, Nano Lett., just accepted
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High, positive Seebeck coeff. (i.e Fermi
level in VB)

Seebeck
coeff.~400

4001
& 3501

=
S 300t

MOF+TCNQ+water; periodic system, GGA+U, n=1 meV

——DOS proj. on Cu

=——DOS proj.on N [|

~ 0.5 " total DOS
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Semiconducting Metal Organic Graphene )
Analogues (SMOGSs) e 2 by

NH,
H,N

OO 6 HCI + NiCl,
NS
Hy
HATP  NH,

NH,OH
air, 65 °C
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[:(If W ]i:[i D. Sheberla, L. Sun, M. A. Blood-Forsythe, S. Er, C. R. Wade,
NN C.K. Brozek, A. Aspuru-Guzik, M. Dincd, JACS ASAP
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Visions for Molecule@MOF ICs, nanodevices )

>
Guest 1

Guest 2

Guest 3
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Conclusions

 MOFs are hybrid materials with ordered, chemically tunable
porosity
 |deal for gas storage, separations, catalysis, sensors,
templates for nanomaterial synthesis
* MOF thin films can be grown LBL in solution
 Conductivity of Cu,(BTC), tunable 108 101 S/cm with TCNQ
« UV-Vis, IR indicate partial charge transfer
« Extended © network essential for conductivity
« Opportunities for tuning properties w/ molecule @MOF
expanding
A. A. Talin, A. Centrone, M. E. Foster, V. Stavila, P. Haney, R. A. Kinney, V. Szalai,
F. El Gabaly, H. P. Yoon, F. Léonard, M. D. Allendorf, Science 343, 66 (2014);

V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 10.1039/c4cs00096;j
(ASAP)
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http://www.sc.doe.gov/bes/BES.html
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A schematic representation of the alignment of the HOMO/LUMO
orbitals and bandgaps of H,O@CuBTC, TCNQ, F4-TCNQ, and H4-
TCNQ determined at the UB3LYP/VTZP level of theory.
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Van der Waals forces govern the interaction of

m ﬁaa?igi:al
molecules such as H,, He, and CH,, with surfaces
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strong repulsive Lennard Jones
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How does surface area affect gas storage? 1.

— 100

®
i

60

Propane-Uptake [gc,/ Lgystem

Pressure [bar]

Compression of propane into gas container with and without MOF-filling (MOF-5 tablets in
lecture bottles, room temperature) — U. Mueller et al. J. Mater. Chem., 2006, 16, 626—636




The demise of Moore’s Law?
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Microprocessor Transistor Counts 1971-2011 & Moore’s Law
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Could polymer or molecule-based electronics
be the answer?
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Organic semiconductors: Molecular electronics: the
cheap, tunable properties, ultimate in tunability and
mechanically flexible, but... scalability, but...

Disordered structure leads to chain-
to-chain hopping’ causing: Extremely difficult fabrication

= Poor mobility stalls advances

= Low free carrier lifetime

“" ”
= Chemical & thermal Instability At these length scales, “bottom-up

fabrication beats “top down”...




New device concept based on Guest@MOF materials: )
Reconfigurable Electronics
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E. Biemmi, C. Scherb, T. Bein, J. AM.
CHEM. SOC. 2007, 129, 8054



Electrically conducting porous MOFs are rare ) e

e p-type Cu-Ni Dithiolene MOF
- First semiconducting, porous MOF
- Conductivity increases with oxidative doping
- Original Cu-Cu version is not porous
(Inorg. Chem. 2009, 48, 9048)

N 2

CIOCT)
|
NS Vs SN
e
1-
OO
1
NS s SN

e Other examples
-  MET-3 (Fe-triazolate MOF) Y. Kobayashi et al. Chem. Mater. 2010, 22, 4120
- Mn(thiophenol) MOF: (-Mn—-S-)«= Chains

* Strategies for conducting MOFs: o yoF e

- Charge delocalization . %

- 2nd- and 3 row transition metals 5. &

- Redox-active ligands (e.g., TCNQ) . ‘V

- Soft ligands (e.g. S-containing molecules) 82 28

MET-3 (Fe)
Gandara et al. L. Sun et al.
Chem. Eur. J. 2012, J. Am. Chem. Soc.
18, 10595 2013, 135, 81843




