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Polymer semiconductor • Flexible
• Tunable w/ chemistry
• Low cost fabrication
• Poor mobility
• Instability
• Low free carrier densities

• High mobility
• Stability
• High cost
• Non-flexible
• Limited tailorability
• Radiation damage

Crystalline inorganic semiconductors

Disordered organic semiconductors

Inorganic vs. organic conducting materials: the best and the 
worst of two worlds
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• Structurally flexible
• Tunable w/ chemistry
• Scalable to nanometers
• Low cost fabrication
• Reconfigurable electronics
• Rad-hard
• Novel electronic material

Crystalline inorganic semiconductor

Disordered organic 
semiconductor

Crystalline MOF semiconductor

Can the high performance of inorganic semiconductors with the 
tailorability of organic materials be achieved using MOFs?

n n

MOFs combine features of inorganic and organic materials



Electrically conducting porous MOFs are rare

Y. Kobayashi et al. 
Chem. Mater. 2010, 22, 4120

• p-type Cu-Ni Dithiolene MOF

• MET-3 (Fe-triazolate MOF)

• Mn(thiophenol) MOF: (−Mn−S−)∞ chains

• Metal-Organic Graphene analogues 
(MOGs) 

Gándara et al.
Chem. Eur. J. 2012, 

18, 10595

Mn(thiophenol) MOF
L. Sun et al.

J. Am. Chem. Soc. 
2013, 135, 8185

Ni3(HITP)2 MOG
D. Sheberla et al. 
JACS 2014 ASAP



Cu-TCNQ is a well-known conducting 
coordination polymer
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MOF-74-VII
MOF-74-XI

Guest molecule + MOF  ordered, tunable
platform for controlling interactions at the nanoscale
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Guest@MOF: Emergent properties by infiltrating 
with guest molecules?

Cu2(BTC)3

(HKUST-1) 

TCNQ

TCNQ loading: ~ 1 molecule/large pore



TCNQ Cu2(BTC)3 leads to color change…

MOF film grown by layer-by-
layer method

MOF film on SiOx with Pt
electrodes

MOF film + TCNQ



… and >107 increase in conductivity, air stable > 1 year

Ea=41±1 meV

Percolation 
model

Hopping conduction

E

x



C≡N stretch spli�ng in Raman spectrum observed 
only inside dark colored, conducting region
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TCNQ@Cu2(BTC)3 exhibits strong new absorption bands

Cu(II) d-d transitions
(weak)

CuBTC
film

Charge transfer transitions

CuBTC
film

TCNQ

TCNQ@CuBTC
film

BTC 
linker

H2O@Cu2(BTC)3 TCNQ@Cu2(BTC)3



DFT: Cu(II) dimers linked by TCNQ

Continuous TCNQ@CuBTC pathway is achievable with 4 TCNQs 
Experimental loading = 8 TCNQs/unit cell  two continuous pathways are possible 



Guest aromaticity, electronegativity affect conductivity
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Cu-BTC band alignments: DFT/PBEsol calculations
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Computed by Constrained DFT:

H4-TCNQ < F4-TCNQ < TCNQ 

HAB = 0.19 eV < 1.03 eV < 2.32 

eV

TBCNQ increases coupling between neighboring Cu dimers 
 lowers barrier to charge transfer

Three-site model: 
Donor-Bridge Acceptor

HAB-Electronic coupling matrix element 

BAAB HH 

TCNQ
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Cu2(OAc)4

(donor)
Cu2(OAc)4

(acceptor)



What about the carrier type (electron or hole?) Seebeck
effect is one way to find out…

http://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/



Thermoelectric measurements of TCNQ@Cu3(BTC)2

• Majority carrier: holes

• High Seebeck coefficient 

~400 μV/K vs.

170 μV/K for Bi2Te3

 promising material for 

thermoelectrics
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MOF SBU ground state
(~ D4h)

-2J = ~ 340 cm-1

= 0.042 eV
(same as Ea measured for 
conductivity)a1(z2) a1(z2)

b2(xy) b2(xy)

e(xz,yz) e(xz,yz)

b1(x2-y2) b1(x2-y2)

S = 1 (3A2u)

S = 0 (1A1g)

-2 J

Cu(II) d 
orbitals (C4v)

TCNQ HOMO

TCNQ LUMO

Electronic structure of TCNQ@Cu3(btc)2



Conclusions

• MOFs are hybrid materials with ordered, chemically tunable porosity

• MOF thin films can be grown layer-by-layer from solution

• Conductivity of Cu3(BTC)2 tunable 10-8 10-1 S/cm with TCNQ

• UV-Vis, IR indicate partial charge transfer

• Opportunities for tuning properties w/ molecule@MOF expanding 
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A schematic representation of the alignment of the HOMO/LUMO 
orbitals and bandgaps of H2O@CuBTC, TCNQ, F4-TCNQ, and H4-
TCNQ determined at the UB3LYP/VTZP level of theory.



Solvent, precursor likely responsible for conductivity in as 
deposited Cu3(BTC)2

As deposited: Low but measurable 
conductivity, ionic/electronic?

Activated, exposed to ambient: No 
measurable conductivity at 10 V (<10-12 A)

Infiltrated MOF (trace water): s~0.1 S/cm, 
~108 increase



Vibrational spectra show shift of -C≡N 
indicates charge transfer

  144/  cmz o 

-C≡N

e43.0

Raman peak splitting indicates 2 inequivalent CN groups
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+

Crystalline (therefore ordered), nanoporous structure

Metal 
“Node”

Organic 
“linker”

Zn+2(NO3)2 +

-

What is a Metal-Organic Framework?



MOFs are a subset of a growing category of 
self-assembled, nanoporous materials



MOFs are attractive for gas storage, catalysis, 
separations, ionic conductors

Wu, Hu, 
Zhang, Lin 
JACS 127, 
8940, 2005

NaAlH4

Bhakta, Allendorf et al., JACS 131, 13198, 2009

H2 storage

Bureekaew et al., 
Nat. Mat. 8, 831, 
2009

Fast H+

transport

CO2 sequestration

Catalysis

Nugent et al., Nature 495, 
83 2013
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Guest 1

Guest 2

Guest 3

Vision for Molecule@MOF ICs, nanodevices
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Sensors

Supercaps

c

Electronics • Chemically tunable
• Low cost, low-T deposition
• Scalable down to ~1nm (?)

• Ultrahigh surface area
• Redox active centers

• Multi-axis response 
• Chemical specificity
• High surface area

• Ultrahigh surface area
• Redox active centers

Thermoelectrics
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Bridging TCNQ molecules create new charge transfer states

DFT/PBEsol calculations

CuBTC@H2OH2O@CuBTC TCNQ@CuBTC



V. Stavlia et al. Chem. Sci. 3 (2012), 1531–1540

Thin film growth for MOF device applications



230 µm

100 µm

Piezoresistors

Au connection

Microcantilevers (fg sensitivity)

Piezoresistive
substrate

MOF

Allendorf, Talin, Hesketh, et al., J. Amer. 
Chem. Soc. 130, 14404 (2008)

MOF films make sensitive, selective gas sensors


