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Inorganic vs. organic conducting materials: the best and the ) R,
Laboratories
worst of two worlds

Crystalline inorganic semiconductors

* High mobility
e Stability

* High cost

* Non-flexible
* Limited tailorability
e Radiation damage

Disordered organic semiconductors

Polymer semicciiductor

Flexible ﬁﬁ\
Tunable w/ chemistry  JEF= =200 8
Low cost fabrication | ‘
Poor mobility

* Instability

Low free carrier densities




Can the high performance of inorganic semiconductors with the- ...

National

tailorability of organic materials be achieved using MOFs? lbortois

Crystalline inorganic semiconductor

High mobility
Stability

High cost
Non-flexible
Radiation damage

Disordered organic +
semiconductor

Flexible

Tunable w/ chemistry
Low cost fabrication
Poor mobility
Instability

Low free carrier densities

MOF semiconductor

Crystalline MOF semiconductor
«  Structurally flexible

« Tunable w/ chemistry

« Scalable to nanometers

* Low cost fabrication

* Reconfigurable electronics

* Rad-hard

* Novel electronic material




Electrically conducting porous MOFs are rare h) s

* p-type Cu-Ni Dithiolene MOF ;:: Yl
* MET-3 (Fe-triazolate MOF)
|resal Mvv-2 oo oAl Ni,(HITP), MOG
Y. Kobayashi et al. D. Sheberla et al.

Mn(thiophenol) MOF: (-Mn-S-)ee chains ... riater 2010, 22, 4120 JACS 2014 ASAP

Metal-Organic Graphene analogues
(MOGs)

VA _
MET-3 (Fe) Mn(thiophenol) MOF
Gandara et al. L. Sun et al.
Chem. Eur. J. 2012, J. Am. Chem. Soc.
18, 10595 2013, 135, 8185




Cu-TCNQ is a well-known conducting
coordination polymer
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144 Inorg. Chem. 1999, 38, 144—156

New Insight into the Nature of Cu(TCNQ): Solution Routes to Two Distinct Polymorphs
and Their Relationship to Crystalline Films That Display Bistable Switching Behavior

Robert A. Heintz," Hanhua Zhao,” Xiang Ouyang,* Giulio Grandinetti,” Jerry Cowen,* and
Kim R. Dunbar**

[Cu™(TCNQ )], = 3 Cu—y

[Cu’], + [TCNQ'], + [Cu™(TCNQ)] . (1) C I
“ON” state c)=<:>_(0

4 TN I a1 11, S8

“OFF" state




Guest molecule + MOF - ordered, tunable
platform for controlling interactions at the nanoscale

Amino acids MOF-74-XI
Exciton Diffusion Distance
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Guest@MOF: Emergent properties by infiltrating ) e,
with guest molecules? o
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TCNQ@Cu,(BTC), (thin film)
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Cu,(BTC);
(HKUST-1)

TCNQ loading: ~ 1 molecule/large pore




TCNQ-> Cu,(BTC), leads to color change... h
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MOF growth

Molecule infiltration

MOF film grown by layer-by-

before

layer method ‘ electrodes

!

MOF film + TCNQ

MOF film on SiO, with Pt



... and >107 increase in conductivity, air stable > 1 year rh) Natons
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C=N stretch splitting in Raman spectrum observed
only inside dark colored, conducting region
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Conductivity Raman spectrum

Patterned substrate
immersed in TCNQ
solution

— Region A A
—— Region B ‘
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TCNQ@Cu,(BTC); exhibits strong new absorption bands i) it

H,0@Cu,(BTC); TCNQ@Cu,(BTC),
Cu(ll) d-d transitions -' Charge transfer transitions

(weak)

E-DIIII|IIIIIIII|IIIIIIII|IIIIIIII|IIII

4OX’|O_3||||||||||||||||||||

Ligand Field region
—— CuBTC_abs (film)

157 TCNQ@CUBTC
film
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DFT: Cu(ll) dimers linked by TCNQ () i,

Continuous TCNQ@ CuBTC pathway is achievable with 4 TCNQs
Experimental loading = 8 TCNQs/unit cell 2 two continuous pathways are possible




Guest aromaticity, electronegativity affect conductivity i1
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Extended w network essential for conductivity
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Cu-BTC band alighments: DFT/PBEsol calculations
Effect of fluorination and hydrogenation of TCNQ
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TBCNQ increases coupling between neighboring Cu dimers
— lowers barrier to charge transfer
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Three-site model:
Donor-Bridge Acceptor

H ,5-Electronic coupling matrix element
H,, =(Y,|H|Y,)

Free Energy

Computed by Constrained DFT:

0 1 H,-TCNQ < F,-TCNQ < TCNQ
Reaction Coordinate Hy =0.19eV <1.03eV <2.32
Cuy(OAc); TCNQ Cu,(OAc), eV
(donor) (acceptor)




What about the carrier type (electron or hole?) Seebeck =) i
National
effect is one way to find out... Laboratoris

Electric Field

Low density High density
of electrons of electrons

Electric Field

Low density High density
of holes of holes

http://www.mn.uio.no/fysikk/english/research/projects/bate/thermoelectricity/
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Thermoelectric measurements of TCNQ@Cu,(BTC),

IR Camera b

W Probes

* Majority carrier: holes

* High Seebeck coefficient

~400 pV/K vs. 1500 o1 d
170 pV/K for Bi,Te, s N
& 1000 [ s E aonf
=> promising material for £ S
F sool © i E
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Electronic structure of TCNQ@Cus(btc),

—— TCNQ LUMO
MOF SBU d stat
) S=1(A,,) vl ground state
b, (x*-y? -2J b,(x>y2)[ -2/ =~340 cm?
S=0 (1A1g) =0.042 eV

(same as Ea measured for

cu(ll) d i a,(2?) H H a,(22) conductivity)
orbitals (C,,) b(xy) —H e bylxy)
e(xz,yz) = —+H- elxz,y2)

-+ TCNQ HOMO




Sandia
rI'| National
Laboratories

Conclusions

MOFs are hybrid materials with ordered, chemically tunable porosity
MOF thin films can be grown layer-by-layer from solution
Conductivity of Cu,(BTC), tunable 108 =>101S/cm with TCNQ

UV-Vis, IR indicate partial charge transfer

Opportunities for tuning properties w/ molecule@MOF expanding
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A schematic representation of the alignment of the HOMO/LUMO
orbitals and bandgaps of H,O@CuBTC, TCNQ, F4-TCNQ, and H4-
TCNQ determined at the UB3LYP/VTZP level of theory.




Solvent, precursor likely responsible for conductivity in as

deposited Cu,(BTC),

Sandia
i | Ntona
Laboratories

F S0 E—

As deposited: Low but measurable

conductivity, ionic/electronic?

Activated, exposed to ambient: No
measurable conductivity at 10 V (<10-12A)

Infiltrated MOF (trace water): s~0.1 S/cm,
~108 increase




Vibrational spectra show shift of -C=N ) i
indicates charge transfer
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Free Energy

Reaction Coordinate




What is a Metal-Organic Framework? ) e,

Crystalline (therefore ordered), nanoporous structure

Organic

Metal “linker”
“Node”

Zn*3(NO),




MOFs are a subset of a growing category of ()%
self-assembled, nanoporous materials
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MOFs are attractive for gas storage, catalysis,
separations, ionic conductors
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Vision for Molecule@MOF ICs, nanodevices M.

f) Guest 1

Guest 2

Guest 3
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Ele ctro n iC e Chemically tunable Plaal}f]orgglmes

* Low cost, low-T deposition
\ « Scalable down to ~1nm (?)

» Ultrahigh surface area
* Redox active centers

» Ultrahigh surface area
* Redox active centers

* Multi-axis response
* Chemical specificity
* High surface area




Cu-BTC band alighments: DFT/PBEsol calculations

Effect of fluorination and hydrogenation of TCNQ
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Bridging TCNQ molecules create new charge transfer states

HOMO

H,0@CuBTC S TCNQ@CuBTC

DFT/PBEsol calculations




Thin film growth for MOF device applications (i)
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MOF films make sensitive, selective gas sensors ) b
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Piezoresistors
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