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Permeation Experiments at Sandia California

m Deuterium gas driven permeation
capabilities in use at SNL

- 1st generation (150 < T <500 °C) used
stainless steel construction (VCR seals),
evacuated quartz outer tube to reduce
D, bypass, and low flow to prevent .
surface contamination - e =)

- 2nd generation (50 < T <1150 °C) uses ""’E‘Eﬁ;”; €I
Al,O, construction and soft, pressure owssng® gy R
loaded seals for brittle specimens
(funded by “Work For Others” program to
measure SiC permeation barriers for

fusion blankets)
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Gas Permeation of 4130X Steel (fully ferritic)

= 4130X permeation measured in the low temperature permeation system
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Gas Permeation of Austenitic Steel (and welds)

= Example of influence of ferrite on permeation (21-6-9 steel)
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Gas Permeation in Tungsten

= Permeation in tungsten foil in good agreement with literature values. SNL
experiments performed to lower temperatures and in two systems.
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ITER Grade Tungsten & VPS-Tungsten

= Experiments in August and September 2013 were challenging due to brittle
samples (grain structure elongated through the foils)

- JA: 3x 50 ym thick ITER grade W (sized for use in HiFIT)
- JA: 1x 730 ym thick ITER grade W
- US: 2x 500 ym thick ITER grade W
m Mounting of three samples in the low temperature (LT) system (Cu gaskets)
- 50 um (2-side polish) fractured during pump down
- 500 um (upstream polish) fractured along the copper gaskets
- 500 ym (not polished) would not pump down
= Mounting of two samples in the high temperature (HT) system (Grafoil gaskets)
- 50 um (2-side polish) fractured during pump down
- 730 um (2-side polish) mounted and used for permeation calibration
= Equipment issues identified
- Downstream rough pump on the LT system repaired

- Leaking o-ring on the butterfly valve found (used to control downstream pressure
on the LT system)

- Gas bottle leak found on the LT system (repaired)
- Deuterium bottle pressure regulator replaced (HT system)
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ITER Grade Tungsten & VPS-Tungsten

Experiments in August and September 2013 were challenging due to brittle
samples (grain structure elongated through the foils)
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ITER Grade Tungsten / VPS-Tungsten

= US FY14 fusion funding delay was compounded by several issues in 2014

- While our lab moves in 2013 didn’t directly affect the permeation equipment, the
relocation of laboratories forced a complete revision of our safety documentation
(along with a new layer of engineered safety).

- Funding for non-fusion permeation work was also delayed (January — June)

- Problem with facility power led to 3 outages; difficult to plan for multi-week permeation
experiments

= Additional samples were fabricated

- JA: 2x 500 um thick VPS-W on 500 um thick F82H

- US: 7x 500 ym thick ITER grade W

- US: 4% 500 pm thick VPS-W on 500 um thick F82H (being polished)
= Mounting of seven samples in the high temperature (HT) system (new centering)

- 500 ym VPS-W / 500 um F82H (2-side polish) fractured under loading

- 730 um (2-side polish) fractured under loading (previously ok)

- 430 um (2-side polish) fractured under loading

- 1 mm (upstream polish) fractured (loading & o-ring / alumina tube change)

- 500 um (upstream polish) fractured after system baking and T ramp to 500 °C

- 500 um (upstream polish) with fresh Grafoil fractured after T ramp to 550 °C
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Leak rate change with increasing temperature

Leak Around Sample Compared to Tungsten Foil Permeation
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= Estimate of thermal expansion in hot zone = 0.054 inch expansion. Grafoil
gaskets are 0.030 inch thick each must compress due to rigid loading structure

= Presently a 960 um sample (2-side polish) is mounted and will be T ramped
without loading
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Tritium Plasma Permeation Measurements e

= Initial experiments using a high temperature tritium retention stage are in
progress on TPE (using deuterium)

- Stable operation at 800 °C for 1 hour (1000 °C for shorter times)
- Feedback control of He flow to be implemented to reduce thermal ramp up time
(now ~ 30 minutes)

= Experience on this stage and from gas permeation experiments at SNL-CA
aided in the design of a permeation membrane holder
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T=1000 °C
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Design of Tritium Permeation Experiment e

= New permeation membrane holder is Membrane Holder Photos
ready for integration in TPE Spring loaded
He carrier gas to capture permeating D/T Y. . screw drive

between cooling fins and sample

- Membrane sealing has been
demonstrated to 1000 °C

High pressure bellows controls axial S L
— - - ) ooling fluid v+ ' Helium carrier
position of spiral cooling fin inlet gas outlet
I . i Helium carrier .
Modeling: He carrier gas flow shows low . @w/
p drop; thermal transport through He gas | ¢
up to maximum TPE flux

Head N Membrane Cap

carrier gas
channel

End on
Cross Section View 1cm View
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Expanded View of Sample Region "'s"”:c'i

To ion chamber
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Design Considerations .

= Estimate of permeation flux taken from HiFIT* (ion beam permeation)
- Observed 10"° D cm2s' to 103 D cm2s"
- Account for TPE membrane size (8x) and 4-10x thicker membranes
- Account for TPE 100x higher flux, but use of 1% T
- Implies TPE permeating current of 2.4x10-1° Ci/s to 2.4x10-" Ci/s

- For a 1000 sccm helium carrier gas flow and 1000 cm? ion chamber, this implies
1.5x10° Ci/m3 to 1.5x102 Ci/m?3 (60 s resonance time)

- Fits within the 4 decade range of a controller (1 uCi/m3 to 10000 wCi/m3)

m Sealing tests have been used to demonstrate acceptable leak He leak rate and
sequestration of He by the TPE pumping system

- Max leak < 0.5% of TPE D, fueling

- lonization of He: He*/D* ~ 6x10-° Grafoil Sealing Test . HeLeakRate Test (Grfol)

m Break through times can be
strongly affected by trapping ‘ '

= Brittle membranes require careful

design to protect the TPE pumping
system

Moly nut torque = 20 ft. Ibs. (2.8 Kg m)

Temperature (°C)
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*H.T. Lee, et. al., J. Nucl. Mater. 390-391 (2011) S696. @
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Modeling of Membrane Holder N

= Helium carrier gas flow and heat transfer were modeled using computational
fluid dynamics (STAR-CCM+)

= Low conductance of He inlet and spiral fin structure motivated flow

simulation

631 k polyhedral cells with 3 prism layers
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Minimal Pressure Drop Realized °

= Smooth flow pattern observed through the spiral fin (< 3 m/s)

1000 sccm He flow (3 mg/s) at RT

Pressure drop ~ 0.1 psi (< 700 Pa)
Mass balance (77) converged to within 10%

Pressure (Pa)
-6.7441 120.95 248.64 376.32 504.01 631.70
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Thermal Transport Modeling ®

= Reference case used is the highest TPE ion flux (2.5x10%2 D m-2s-') and
maximum sample bias (-200 V) & g” = 0.8 MW/m?

m Radiation is included from surfaces to a 300 K background
= Molybdenum cap

- Thread engagement area and 10-3 m?K/W contact resistance
= Membrane

- Membrane - cooling fin gap setto 75 um

- Membrane thickness = 1 mm
= Water cooling

- 1 63 k . '
0 gpm (0.63 kgs) Water cooling out «<—— ,
Water coolingin ——

Water coolingin ——>
Water cooling out <—
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Thermal Transport Modeling (continued)""""‘ﬁ"i

= End view of membrane shows asymmetry due to outer return channel for the
He carrier gas
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Water Cooling Effective for 0.8 MW/m2 "~ &

= Velocity distribution shows water velocity reaching 12-15 m/s with some
stagnation in corners

q” = 0.8 MW/m?

I Velocity: Magnitude (m/s)
0.00000 4, 1979 8.3958 12.594 16.792
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Thermal Modeling Showing He Temperature

m Heating of helium carrier gas is clearly visible in the CFD simulation

q” = 0.8 MW/m?

t Temperature (C)

PO A 26.819 197.26 367.71 538.15 708.59 879.04
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Membrane Temperature Scaling With q” e

m Scaling of the membrane temperature (200 um below the heated surface)
indicates significant margin for water cooled operation
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Summary

m Gas driven deuterium permeation experiments for PHENIX have been
challenging due to the microstructure of ITER grade tungsten.

m Several hardware issues were addressed and techniques to improve sealing
are in progress. Fallback: reproduce permeation results from previously
measured materials.

= We have designed and fabricated a novel tritium permeation membrane holder
for integration in TPE.

m Cooling can be controlled by varying fluid flow and positioning of a spiral fin
behind the membrane under test. Heating is solely from the incident plasma
flux.

m Sealing tests have demonstrated adequate helium leak rates up to
temperatures of 1000 °C.

= Flow modeling indicates a minimal helium pressure drop (< 700 Pa).

= Thermal modeling shows good heat removal even up to peak TPE ion fluxes
(membrane temperature ~ 1000 °C, with surface temperature variation of only
+/- 2%.

Integration into TPE will require updating safety documents
and interlocks for overpressure concerns

D Buchenauer, Sandia National Laboratories, PHENIX Task 3 Workshop- Idaho Falls 22Sept2014



D Buchenauer, Sandia National Laboratories, PHENIX Task 3 Workshop- Idaho Falls 22Sept2014

(&

Sandia
National _
Laboratories



