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Building a science-based understanding of
hydrogen (and helium) behavior in materials

= High pressure hydrogen storage for
Gas Transfer Systems and
hydrogen / fuel cell industry E

- Embrittlement, permeation, trapping,
microstructural effects, corrosion,
Codes and Standards (H? safety)

m Metal hydride studies for hydrogen
storage —_—

- He trapping from T decay, film
adhesion, aging, new materials -
Bonding in

m Tritium production (TPBAR) n-tube films

+ T migration in a complex materials Tritium Producing Burnable Absorber Rods

environment \
= | ]

Plasma-surface interactions (PSlI)
studies needed for magnetic fusion

Zircoloy liner :

ener
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R&D efforts span a number of Cladding |

applied programs at SNL-CA
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Magnetic fusion energy research

US research focused Power and particle loading of the
Plasma . g
on the tokamak Facing plasma facing components will limit
confinement scheme | | g, face fusion performance
] (PFC)

i il

DIlI-D Tokamak at General Atomics

Greenwald report, ReNeW study, and OFES all agree on importance of PSI/PFC
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SNL-CA PSI Science Center Research (FY10-14)

Fundamental surface science of
H effects in ARIES
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The PSI SC efforts are heavily leveraged with our base program funding
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SNL-CA base program (Technology & DIiI-D)
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Erosion/Redeposition Experiments mi:al
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Other fusion research at SNL-CA
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Sandia lon Beam Laboratory (NM)

DIMES experiments on DIII-D
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Deuterium trapping studies on
damaged tungsten in PISCES

19% redeposited locally
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US fusion program has a major focus studying

plasma-material interactions (including erosion)

= DIII-D

- DIMES (divertor) and MiMES (first wall)
experiments provide erosion /
redeposition data for plasma-material
interaction model validation (REDEP/
WBC-ITMC code)

Alcator C-Mod
I e e

= Alcator C-Mod
. High Z erosion and redeposition studied -

using a dedicated ion beam facility e

. AIMS: Accelerator-based In-situ reiton
Materials Surveillance (compact RFQ  .J n J 77—
LinAc injects 0.9 MeV D+) AN e

' Reentrant
"iibe
. NSTX-U 0.4 06 R("(‘)).B 1.0

- MAPP: Material Analysis and Particle

Probe (sample exposure with in-situ
TDS, XPS, LEISS, DRS)
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Prompt redeposition in the magnetized sheath of
the divertor is expected to reduce net erosion

-----

= If the ionization mean free A°, path B
: ! ®
is comparable or less than the ion
Larmor radius p,,, sputtered
impurity ions return to the surface

during the first gyro-orbit T
m Fast redeposition also occurs due > /"/ RSP A —

to the strong E-field in the target Lps =O(psy)

magnetic pre-sheath (MPS) and . d

friction with fast flow, when L5 >

Lyips ZO(,DDTJ '/'

AOIZ -’ o .
. . ;%lonlzatlon
= Demonstrated on DIMES with - . impurity
tungsten and moly surfaces (in 7 sputtered\
u n 'l H t '0~
agreement with modeling) 7 mpurity \
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For tungsten, prompt deposition should be effective in

DT devices via both strong MPS forces and large p,,
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ITER case withn_=102" m-3,B=5T

Courtesy of P. Stangeby
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Prompt deposition is not expected at the first wall

= Much lower far scrape off layer (SOL) plasma density (~ x10-3) will result in
longer ionization mean free path A°,

- Sputtered wall neutrals will penetrate into the far SOL and experience migration
towards the divertor

= The sputtering can be due to either plasma ions or charge exchange (c-x)
neutrals

= While several efforts to characterize the first wall c-x flux occurred during the
80’s / 90’s, no current investigations exist on US tokamaks

- LENA (Low Energy Neutral Analyzer): PLT, ASDEX, Alcator C-Mod (installed only)
- CRP (Carbon Resistance Probe): TMX-U, PLT, ASDEX, TFTR
- Pd-MOS H-sensors (Palladium Metal-Oxide-Semiconductor)

+ Diode type: ZT-40M and TFTR

+ Capacitance type: DIII-D, NSTX

= Is the flux of c-x neutrals important in FW erosion? What is the poloidal and
toroidal distribution of the c-x flux? How will c-x induced erosion scale in future
devices?

= Simple estimate on next viewgraph: physical sputtering of T using E=300 eV
(Eckstein 2002), normal incidence yield doubled to account for surface

roughness, no sputtering by other plasma or wall species, P_, = 0.05 P, .,
(~Kukushkin for ITER) @
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Rough estimate of c-x induced FW erosion

For300eV (P, . |annual |beryllium | boron carbon | tungsten
T° ¢c-x IM run time | net wall net wall | net wall | net wall
sputtering | W] [s/year]| | erosion erosion | erosion |erosion
of walls rate rate rate rate
[kg/yr] [kg/yr] | [kg/yr] | [kg/yr]
DIII-D 20 104 0.13 0.11 0.08 0.16
JT-60SA 34 104 0.22 0.19 0.15 0.27
EAST 24 10° 1.6 1.2 0.82 1.8
ITER 100 |10¢ 77 [297] 64 44 [537] |92 [417]
Vulcan 20 107 120 100 70 150
FDF 100 | 107 610 500 340 740
Reactor 400 |2.5x107 | 6500 5300 3700 7900
[5000%*]

* Kukushkin B2-EIRENE calculation

Courtesy of P. Stangeby **|_ackner
ia Nati i i ***Behrisch
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Techniques for measuring c-x flux

= LENA (Low Energy Neutral Analyzer)
- Pros: provides good time and energy resolution
- Cons: Available at only a few locations (usually one) due to size and complexity

m CRP (Carbon Resistance Probe)

- Pros: compact and low power device, energy discrimination by array with
varying overlayers, good time resolution

- Cons: device saturates permanently at 2 x 107° H/cm?

= Pd-MOS H-sensors (Palladium Metal-Oxide-Semiconductor)

- Pros: compact and low power device, energy discrimination by array
with varying overlayers, in-situ reset through heating of device

- Cons: dosimetric (shot by shot), lifetime limited by charge trapping

Each device can play a role towards quantifying c-x flux in existing experiments
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Pd-MOS sensor use in confinement experiments

= First use on ZT-40M Work by Bob Bastasz and Bob Hughes | £ G e
. - é 100} (4) 7
demonstrated dosemetric D &
effect of sensors | g "
R. Bastasz, J. Nucl. Mater. 162-164 (1989) 587. | T ; T el L 20
E g 1.8 N-MOSS"g_I’OgE"szIGNAL
= An array sensor was used on
————— 5]
TFTR to demonstrate energy | 55
resolving c-x measurement >
R. Bastasz, J. Nucl. Mater. 176-177 (1990) 1038. _ -
g [ URSEE
= Switched to capacitance type 3
detectors for easy of "
H H 1.6 MA Plasmas TFTR Shots 36272 - 36287 2 n' s
fabrication } ., LN
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RS i 14 MW MW MW | g PR 0SS, oL
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not successful ‘B Lo L o B
- Likely cause: charge 2 " so. o O ° 1 ettt |
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due to x-rays or high energy [ g &%° :
0 — —

charged particles 270 270 262 208
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Pd-MOS Schottky diode type H-sensors

= Diode type detectors will limit charge production due to thin tunnel oxide while
a thicker Pd coating can protect from high energy particles

= Hydrogen entering the palladium metal diffuses rapidly, filling surface sites at
the Pd-tunnel oxide interface, and changing the barrier height of the diode

- Simple model of current under reverse bias
I = AT exp|-¢, /kT| ¢, =¢ —x

- Ais a factor depending on the device size and applied voltage, T is the
temperature, and ¢, is the barrier height. ¢, is the metal work function and x is
the electron affinity of the silicon. Hydrogen at the interface changes ¢, giving a
large change in reversed current.

o

Detector
J/ Surface ( ( Sio,
Pd Pd n-Si
QO——nk
| — —
2 nm 0.5V

e 50 NN e
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Initial attempts to fabricate rugged Pd-MOS H-sensors

m Wafers were stripped and 2 nm tunnel oxide
grown in the MESAfab (silicon fab at SNL-NM)

= Pd films and titanium adhesion grids were
deposited at SNL-CA (summer of 2010)

- Ti used to improve adhesion in the
semiconductor industry

m Each wafer produced many sensors (3.6 mm

square) 10 keV dual e-beam evaporator used to deposit
. Pd, Ti, and Au under high vacuum (10-° Torr).
m Sensors were evaluated using a mass and Typical deposition rates are 50 Als.
energy filtered ion beam (SNL-CA)

i 1)
' Energy 100 - 3000 eV
Current 10-100 nA

200 A thick Ti posts at 200 dots/inch
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200 A thick posts at 200 dots/inch (76% active area) and 2000 Ad

-a~) Sandia
m National _
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Ti posts unsuccessful, but diode-type H-sensors
did exhibit similar behavior to previous detectors

20 nm Ti post array was too reactive and Hydrogen SBZ?;; ;400 eV/H)
shorted the Pd metal-oxide interface co
P p S

Bare Pd sensors exhibited good
response and reproducibility. Energy
sensitivity needs further study.

400 |
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Exploring other options which will exploit 0 |
extensive processing capabilities at the oo |
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Summary

= Unlike the divertor, the first wall of tokamaks will not experience prompt
redeposition of sputtered material. Thus net erosion will be ~ gross erosion.

= Simple estimates and more complete simulations indicate that charge-
exchange sputtering will result in large migration of first wall material in future

devices. 080 S5 harcware
/ alumina spacer
o alumina spacer

= The development of Pd-MOS diode O
H-sensors would provide a tool that
could quantify the poloidal and toroidal 55 spacer

heater power

charge-exchange flux.

alumina tubes

= Combined with the high energy and time Gu sensor moun
resolution of a LENA, arrays of Pd-MOS sensor chip
devices could provide critical data for edge O sensorcontacts
plasma — neutral model validation.

Pd-MQOS H-sensor DIMES head

Continued interest at DIlI-D and NSTX to evaluate Pd-MOS H-sensors
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