
Replacing	
 Discon.nuous	
 Func.ons	

in	
 Limiters	
 with	
 Smooth	
 Ones	
 	

Bill	
 Rider,	
 Ed	
 Love,	
 and	
 Tim	
 Wildey	

Sandia	
 Na.onal	
 Laboratories,	

Albuquerque	

SAND2014-18010PE

	

“Study	
 the	
 past	
 if	
 you	
 would	
 define	
 the	

future.”	
 	

―	
 Confucius	

Narra.ve	

There	
 is	
 a	
 big	
 difference	
 between	
 wri.ng	
 down	
 an	
 algorithm	
 in	
 a	
 mathema.cal	
 form,	
 implemen.ng	
 simply,	

and	
 implemen.ng	
 for	
 robust	
 use	
 in	
 a	
 produc.on	
 environment.	
 	
 Along	
 this	
 path,	
 the	
 actual	
 algorithm	
 gets	

messier,	
 and	
 more	
 tricks	
 are	
 applied	
 to	
 make	
 things	
 work.	
 Limiters	
 are	
 an	
 essen.al	
 aspect	
 of	
 solving	
 the	

hyperbolic	
 por.on	
 of	
 systems	
 of	
 differen.al	
 equa.ons.	
 	
 Most	
 limiters	
 use	
 discon.nuous	
 func.ons	
 in	
 their	

implementa.on,	
 which	
 can	
 cause	
 subtle,	
 but	
 significant	
 difficul.es	
 for	
 their	
 codes.	
 	
 These	
 issues	
 may	
 arise	
 in	

tes.ng	
 for	
 verifica.on,	
 use	
 in	
 nonlinear	
 solves,	
 symmetry	
 preserva.on,	
 and	
 increased	
 sensi.vity	
 to	
 small	

perturba.ons.	
 	
 We	
 explore	
 the	
 removal	
 of	
 these	
 discon.nui.es	
 through	
 replacing	
 key	
 func.ons	
 with	

con.nuously	
 differen.able	
 forms.	
 	
 Care	
 must	
 be	
 taken	
 in	
 determining	
 the	
 proper	
 form	
 for	
 these	
 func.ons	
 as	

not	
 to	
 disturb	
 the	
 fundamental	
 proper.es	
 of	
 the	
 limiters	
 and	
 the	
 methods	
 they	
 serve.	
 	
 In	
 the	
 same	
 vein,	

similar	
 func.ons	
 are	
 used	
 pervausively	
 in	
 Riemann	
 solvers	
 and	
 other	
 dissipa.on	
 mechanisms	
 such	
 as	

ar.ficial	
 viscosity.	

	

First,	
 let	
 us	
 provide	
 simple,	
 yet	
 explanatory	
 example.	
 	
 The	
 sign	
 func.on	
 is	
 commonly	
 used	
 in	
 both	
 limiters	

and	
 dissipa.on,	
 and	
 is	
 discon.nuous	
 at	
 zero.	
 Several	
 func.ons	
 can	
 serve	
 to	
 provide	
 the	
 same	
 asympto.c	

behavior	
 as	
 the	
 sign	
 func.on	
 while	
 provide	
 a	
 con.nuously	
 differen.able	
 func.ons	
 such	
 as	
 tanh(a	
 x)	
 or	
 erf(a	

x).	
 	
 The	
 argument	
 in	
 a	
 in	
 tanh(a	
 x)	
 	
 or	
 erf(a	
 x)	
 can	
 adjust	
 the	
 magnitude	
 of	
 the	
 smoothing.	
 	
 Another	
 closely	

related	
 example	
 of	
 a	
 common	
 func.on	
 that	
 can	
 cause	
 problems	
 would	
 be	
 the	
 absolute	
 value	
 func.on	
 near	

zero.	
 If	
 we	
 replace	
 the	
 standard	
 absolute	
 value	
 func.on	
 with	
 the	
 hyperbolic	
 tangent	
 mul.plied	
 by	
 its	

argument,	
 we	
 receive	
 the	
 same	
 behavior	
 as	
 quan.ty	
 examined	
 is	
 significantly	
 away	
 from	
 zero.	
 	
 Another	

complementary	
 defini.on	
 of	
 the	
 absolu.on	
 value	
 is	
 the	
 an.-­‐deriva.ve	
 of	
 the	
 sign	
 func.on.	
 	
 For	
 the	

con.nuously	
 differen.able	
 versions	
 of	
 the	
 sign	
 func.on,	
 the	
 complementary	
 absolute	
 value	
 func.ons	
 differ	

in	
 defini.on.	
 Most	
 of	
 the	
 rest	
 of	
 our	
 effort	
 will	
 focus	
 on	
 parameterizing	
 the	
 smoothing	
 through	
 the	
 selec.on	

of	
 the	
 parameter	
 “a”.	
 	
 In	
 a	
 nutshell	
 we	
 make	
 the	
 choice	
 using	
 two	
 principles,	
 the	
 product	
 “a	
 x”	
 should	
 be	

non-­‐dimensional,	
 and	
 the	
 magnitude	
 of	
 the	
 free	
 constant	
 is	
 chosen	
 to	
 be	
 large	
 enough	
 that	
 the	
 func.on	

does	
 not	
 deviate	
 from	
 the	
 original	
 sign	
 func.on	
 we	
 are	
 replacing.	

Narra.ve	

Recently,	
 a	
 blog	
 point	
 hit	
 upon	
 this	
 issue	
 as	
 related	
 to	
 sta.s.cal	
 applica.ons,	
 the	
 Endeavor,	
 by	
 John	
 Cook	

[1,2].	
 	
 	
 The	
 stated	
 purpose	
 in	
 that	
 context	
 was	
 op.miza.on	
 where	
 smoothness	
 of	
 the	
 func.onal	

representa.on	
 would	
 impact	
 the	
 convergence	
 of	
 solu.ons.	
 	
 This	
 is	
 not	
 unlike	
 the	
 reasons	
 for	
 our	
 use	
 of	

similar	
 func.ons.	
 	
 As	
 we	
 will	
 demonstrate	
 there	
 are	
 several	
 ways	
 to	
 achieve	
 the	
 same	
 end	
 product	
 and	

principles	
 that	
 ca	
 be	
 used	
 to	
 determine	
 the	
 proper	
 level	
 of	
 smoothing.	
 	
 This	
 resonated	
 with	
 us	
 because	
 as	

described	
 above	
 we	
 regularly	
 use	
 techniques	
 like	
 this	
 in	
 code	
 development	
 to	
 remove	
 non-­‐differen.able	

behavior	
 from	
 the	
 code.	
 	
 We	
 do	
 this	
 for	
 many	
 reasons	
 that	
 span	
 issues	
 from	
 so\ware	
 development	
 to	

numerical	
 performance.	
 	
 Our	
 earliest	
 use	
 was	
 to	
 change	
 the	
 sign	
 func.on	
 near	
 zero	
 as	
 not	
 to	
 perturb	

symmetries	
 in	
 fluid	
 dynamics	
 problems.	
 	
 Likewise,	
 this	
 behavior	
 can	
 make	
 it	
 difficult	
 to	
 pass	
 regression	
 tests	

for	
 a	
 large	
 code	
 that	
 I	
 develop.	
 A	
 deeper	
 issue	
 to	
 discuss	
 is	
 why	
 I	
 would	
 do	
 such	
 things,	
 robustness	
 of	
 results	

	
 	

As	
 noted	
 above,	
 one	
 form	
 of	
 robustness	
 is	
 removing	
 different	
 behavior	
 under	
 common	
 varia.ons	
 in	

compu.ng	
 environment.	
 	
 These	
 varia.ons	
 include	
 different	
 compilers,	
 or	
 compiler	
 op.ons	
 and	
 different	

computers.	
 	
 Almost	
 any	
 significant	
 code	
 development	
 ac.vity	
 uses	
 regression	
 tes.ng	
 to	
 maintain	
 quality	

and	
 stability	
 within	
 the	
 code.	
 	
 O\en	
 the	
 regression	
 test	
 simply	
 looks	
 for	
 a	
 difference	
 in	
 a	
 solu.on	
 over	
 .me.	
 	

These	
 differences	
 are	
 used	
 to	
 flag	
 changes	
 in	
 the	
 code	
 that	
 are	
 uninten.onal	
 and	
 poten.ally	
 associated	
 with	

the	
 introduc.on	
 of	
 a	
 bug.	
 	
 	

	

Limiters	
 and	
 other	
 dissipa.on	
 mechanisms	
 have	
 consistency	
 condi.ons	
 to	
 meet	
 in	
 order	
 to	
 provide	
 proper	

approxima.ons	
 to	
 the	
 differen.al	
 equa.ons.	
 	
 These	
 condi.ons	
 can	
 be	
 used	
 to	
 select	
 and	
 constrain	
 the	

smoothing	
 parameteriza.on	
 used.	
 	
 Once	
 the	
 smooth	
 func.ons	
 are	
 selected	
 we	
 can	
 demonstrate	
 the	
 u.lity	

of	
 this	
 approach	
 and	
 the	
 lack	
 of	
 nega.ve	
 consequences	
 from	
 the	
 change	
 away	
 from	
 classical	
 func.ons.	
 	

	
 	

Narra.ve	

Most	
 limiters	
 and	
 dissipa.on	
 mechanisms	
 use	
 a	
 combina.on	
 of	
 the	
 sign,	
 absolu.on	
 value,	
 min	
 and	
 max	

func.ons	
 all	
 of	
 which	
 are	
 discon.nuous	
 and	
 can	
 be	
 replaced.	
 	
 A	
 prime	
 example	
 is	
 the	
 “minmod”	
 limiter,	

which	
 uses	
 all	
 four,	
 	
 minmod(x,y)	
 =	
 sign(x)	
 max(0,min(abs(x),sign(x)y)).	
 	
 	
 One	
 key	
 property	
 that	
 results	
 from	

approxima.on	
 accuracy	
 is	
 minmod(1,1)	
 =	
 1	
 [Sweby].	
 	
 The	
 ability	
 to	
 achieve	
 this	
 is	
 related	
 to	
 the	
 form	
 of	
 the	

smoothing	
 func.on.	
 	
 	
 For	
 example	
 Cook’s	
 min/max	
 pair	
 does	
 not	
 provide	
 this,	
 but	
 an	
 alterna.ve	
 min/max	

construc.on	
 does	
 trivially,	
 min(x,y)	
 =	
 ½(x+y)-­‐abs(x-­‐y),	
 max(x,y)	
 =	
 ½(x+y)+abs(x-­‐y).	
 Unfortunately	
 this	

produces	
 a	
 non-­‐convex	
 min/max.	
 	
 In	
 the	
 convex	
 case	
 the	
 ability	
 to	
 achieve	
 accuracy	
 is	
 more	
 subtle,	
 and	

connected	
 to	
 the	
 smoothing	
 parameter.	
 	
 A	
 Taylor	
 series	
 analysis	
 can	
 produce	
 the	
 impact	
 and	
 connect	
 the	

form	
 of	
 the	
 smoothing	
 parameter	
 to	
 the	
 ability	
 to	
 produce	
 approxima.on	
 of	
 the	
 requisite	
 accuracy.	

	

When	
 tested	
 with	
 limiters	
 we	
 find	
 that	
 the	
 smooth	
 func.ons	
 have	
 liele	
 problem	
 reproducing	
 the	
 results	
 of	

the	
 discon.nuous	
 func.ons	
 with	
 a	
 sufficiently	
 large	
 regulariza.on	
 parameter.	
 	
 In	
 addi.on,	
 the	
 regularized	

func.ons	
 produce	
 recognizable	
 benefits	
 with	
 the	
 advec.on	
 of	
 smooth	
 waveforms	
 with	
 tangible	
 reduc.ons	

in	
 the	
 level	
 of	
 error.	
 Overall	
 we	
 believe	
 that	
 this	
 approach	
 may	
 produce	
 a	
 number	
 of	
 real	
 improvements	
 in	

codes	
 relying	
 on	
 limiters.	

REFERENCES	

John	
 D.	
 Cook,	
 The	
 Endeavor,	
 hep://www.johndcook.com/blog/.	
 	
 	
 “So\	
 Maximum,”	

hep://www.johndcook.com/blog/2010/01/13/so\-­‐maximum/,	
 2010.	

John	
 D.	
 Cook,	
 The	
 Endeavor,	
 hep://www.johndcook.com/blog/.	
 “How	
 to	
 compute	
 the	
 so\	
 maximum,”	
 	

hep://www.johndcook.com/blog/2010/01/20/how-­‐to-­‐compute-­‐the-­‐so\-­‐maximum/,	
 2010.	

John	
 D.	
 Cook,	
 “Basic	
 proper.es	
 of	
 the	
 so\	
 maximum,”	
 UT	
 MD	
 Anderson	
 Cancer	
 Center	
 Department	
 of	

Biosta.s.cs	
 Working	
 Paper	
 Series.	
 Working	
 Paper	
 70,	
 2011.	
 	

Peter	
 Sweby,	
 “High	
 Resolu.on	
 Schemes	
 Using	
 Flux	
 Limiters	
 for	
 Hyperbolic	
 Conserva.on	
 Law	
 ”	
 SIAM	
 Journal	

of	
 Numerical	
 Analysis,	
 Vol.	
 21(5),	
 pp.	
 995-­‐1011,	
 1984.	

	

"If	
 the	
 answer	
 is	
 highly	
 sensi.ve	
 to	

perturba.ons,	
 you	
 have	
 probably	

asked	
 the	
 wrong	
 ques.on."-­‐	
 Nick	

Trefethen	

Intrinsic	
 func.ons	
 are	
 everywhere	
 in	

code	
 and	
 implement	
 many	
 algorithms	

•  We	
 use	
 built	
 in	
 intrinsic	
 func.ons	
 without	
 a	

second	
 thought	
 such	
 as	
 sin(x),	
 cos(y),	
 exp(z)	

•  What	
 about	
 min(a,b),	
 max(b,c),	
 abs(d),	

sign(e)?	

•  Each	
 of	
 the	
 second	
 set	
 of	
 func.ons	
 is	

discon.nuous	
 in	
 some	
 way.	

Discon.nuous	
 func.ons	
 can	
 create	
 problems	
 in	

calcula.ons	
 worth	
 relieving	
 ourselves	
 of.	

•  In	
 gerng	
 verifica.on	
 results	
 the	
 impact	
 can	

be	
 seen	
 when	
 errors	
 become	
 small	
 or	
 parts	
 of	

the	
 problem	
 are	
 near	
 zero	

•  These	
 effects	
 can	
 break	
 symmetry,	
 seen	
 in	

simple	
 Rayleigh-­‐Taylor	
 tests	
 (single	
 mode	
 to	

late	
 .me)	

•  Gerng	
 clean	
 regression	
 tests	
 across	
 mul.ple	

platorms	
 (especially	
 if	
 you	
 have	
 a	
 lot	
 of	
 tests)	

Branching	
 is	
 a	
 key	
 example	
 where	
 this	

plays	
 out	

•  One	
 can	
 implement	
 certain	
 func.ons	
 via	
 func.ons	

(like)	
 max	
 as	
 branching	
 tests	
 (i.e.,	
 if	
 tests)	

•  Consider	
 an	
 if	
 test	
 version	
 of	
 upwind	
 differencing,	

	

if	
 (velocity	
 >	
 0)	
 then	

	
 upwind=data_le\	

else	

	
 upwind=data_right	

endif	

Branching	
 is	
 a	
 key	
 example	
 where	
 this	

plays	
 out	
 (con.nued)	

•  That	
 is	
 terrible,	
 let’s	
 change	
 it	
 to	
 something	
 beeer	

if	
 (velocity	
 >	
 0)	
 then	

	
 upwind=data_le\	

else	
 if	
 (velocity	
 <	
 0)	
 then	

	
 upwind=data_right	

else	

	
 	
 upwind=0.5*(data_le\+data_right)	

endif	

We	
 can	
 improve	
 this	
 to	
 make	
 it	

resilient	
 to	
 roundoff	
 (con.nued)	

•  That	
 is	
 terrible,	
 let’s	
 change	
 it	
 to	
 something	
 beeer	

if	
 (velocity	
 >	
 small_velocity)	
 then	

	
 upwind=data_le\	

else	
 if	
 (velocity	
 <	
 small_velocity)	
 then	

	
 upwind=data_right	

else	

	
 	
 upwind=0.5*(data_le\+data_right)	

endif	

This	
 branching	
 can	
 be	
 beeer	
 wrieen	

func.onally	

•  One	
 can	
 use	
 the	
 sign	
 func.on	
 or	
 the	
 absolute	

value	
 to	
 achieve	
 this	
 without	
 the	
 if	
 statements	

sign_velocity	
 =	
 sign(velocity)	

upwind=0.5*(sign_velocity	
 +1.0)*data_le\+
(sign_velocity	
 -­‐1.0)*data_right	

The	
 func.onal	
 branching	
 is	
 discon.nuous,	
 so	
 we	

are	
 back	
 to	
 square	
 one	

•  Here	
 is	
 the	
 key	
 idea,	
 rewrite	
 the	
 sign	
 as	
 a	

con.nuous	
 func.on,	
 the	
 hyperbolic	
 tangent	

comes	
 in	
 handy	

,ollified_sign=tanh(velocity/small_velocity)	

sign_velocity	
 =	
 mollified_sign(velocity)	

upwind=0.5*(sign_velocity	
 +1.0)*data_le\+
(sign_velocity	
 -­‐1.0)*data_right	

“Algorithms	
 don't	
 do	
 a	
 good	
 job	
 of	

detec.ng	
 their	
 own	
 flaws.”–Clay	
 Shirky	

Many	
 intrinsic	
 func.ons	
 can	
 be	

rewrieen	
 to	
 allow	
 for	
 analysis	

•  This	
 was	
 originally	
 done	
 to	
 allow	
 the	
 analysis	

of	
 numerical	
 methods	
 using	
 the	
 method	
 of	

modified	
 equa.ons.	

•  This	
 made	
 the	
 method	
 differen.able	
 and	

amenable	
 to	
 Taylor	
 series	
 expansions.	

•  These	
 func.ons	
 are	
 fundamental	
 to	
 limiters,	
 	

ar.ficial	
 viscosity	
 or	
 even	
 ad	
 hoc	
 tests	
 for	

posi.vity	

In	
 the	
 same	
 manner	
 modified	
 equa.on	

analysis	
 can	
 apply	
 to	
 nonlinear	
 schemes.	

•  To	
 really	
 work	
 with	
 this	
 some	
 intrinsic	
 func.ons	

that	
 are	
 used	
 greatly	
 need	
 to	
 be	
 redefined.	

•  Minmod	
 is	
 key	
 to	
 limiters	
 introduced	
 by	
 Boris	
 for	

FCT,	
 returns	
 the	
 smallest	
 argument	
 in	
 absolute	

value	
 if	
 they	
 have	
 the	
 same	
 sign,	
 zero	
 otherwise	
 	
 	

�

minmod(a,b) = sgn(a)max 0,min a,sgn a()b()[]

�

a = a2 ;sgn(a) = a /a

�

min a,b() = 1
2
a + b() − 1

2
a − b

�

max a,b() = 1
2
a + b() + 1

2
a − b

minmod a,b() = 1
4
sign a()+ sign(b)() a+b − a − b()

mineno a,b() = 1
2
sign a + b()() a+b − a − b()

Following	
 this	
 same	
 path	
 we	
 can	
 rewrite	
 the	
 same	

intrinsic	
 func.ons	
 for	
 smoothness	

•  We	
 can	
 do	
 the	
 same	
 sort	
 of	
 thing	
 if	
 our	
 objec.ve	

is	
 smoothness	

•  We	
 already	
 made	
 the	
 first	
 subs.tu.on,	
 the	
 tanh	

for	
 the	
 sign.	

mollified_abs(x)=x	
 *	
 tanh(x/small_x)	

Examples	
 of	
 the	
 rewrite.	

•  Once	
 the	
 sign	
 and	
 absolute	
 value	
 is	
 defined	

we	
 can	
 build	
 other	
 func.ons	
 like	
 min,	
 max,	

minmod,	
 mineno,	
 etc…	

•  The	
 median(a,b,c)	
 is	
 a	
 useful	
 func.on	
 that	

returns	
 the	
 argument	
 bounded	
 by	
 the	
 other	

two	

median(a,b,c)	
 =a+minmod(b-­‐a,c-­‐a)	
 	

Some	
 func.ons	
 can	
 then	
 be	
 composed	
 to	

provide	
 the	
 basis	
 of	
 some	
 algorithms	

•  We	
 could	
 also	
 base	
 some	
 of	
 the	
 algorithms	
 on	
 the	

so\min,	
 so\max	
 ideas	
 of	
 Cook	
 and	
 extending	
 them	

so\max(a,b)=log(exp(n*a)+exp(n*b))/n	

•  We	
 can	
 rewrite	
 this	
 for	
 beeer	
 behavior	
 in	
 finite	

arithme.c,	

so\max(a,b)=max(a,b)+log(1+exp(n*min(a,b)-­‐
n*max(a,b)))/n	

so\max(a,b)=min(a,b)-­‐log(1+exp(n*min(a,b)-­‐
n*max(a,b)))/n	

so\abs(a)=so\max(0,a)-­‐so\min(a,0)	

So\sign(a)=a/so\abs(a)	

The Basic Idea of High Resolution Methods

■  Make the methods nonlinear - adaptive stencil,
decide how to blend 2 or more methods based on
the local solution
◆  Upwind, Lax-Wendroff and 2nd-order upwind using

a TVD limiter

�

uj
n+1 = uj

n − λ uj
n − uj−1

n()

�

ut + ux = 0

�

λ = Δt Δx

�

− λ
2 1− λ() φ j u j+1

n − uj
n ,uj

n − uj−1
n()[

�

−φ j−1 uj
n − uj−1

n ,uj−1
n − uj−2

n()]

�

φ a,b() = max 0,min a,b()()

We	
 can	
 test	
 these	
 ideas	
 in	
 a	
 rela.vely	

simple	
 serng.	

•  Use	
 these	
 func.ons	
 to	
 implement	
 a	
 simple	

test	
 version	
 of	
 a	
 high	
 resolu.on	
 scheme.	

50 100 150 200

0.2

0.4

0.6

0.8

1.0

Standard	
 Mollified	
 (small=1/20)	

50 100 150 200

0.2

0.4

0.6

0.8

1.0

We	
 can	
 test	
 these	
 ideas	
 in	
 a	
 rela.vely	

simple	
 serng.	

•  The	
 mollified	
 func.ons	
 have	
 a	
 posi.ve	
 influence	
 on	
 accuracy	

in	
 the	
 case	
 of	
 smooth	
 ini.al	
 condi.ons.	

Standard	
 Mollified	
 (small=1/20)	

100 200 300 400

0.002

0.004

0.006

0.008

0.010

100 200 300 400

0.002

0.004

0.006

0.008

0.010

Cells	
 Error	
 Order	

100	
 5.79	

200	
 2.36	
 1.29	

400	
 0.73	
 1.69	

Cells	
 Error	
 Order	

100	
 5.93	

200	
 2.13	
 1.48	

400	
 0.60	
 1.82	

This	
 can	
 impact	
 the	
 verifica.on	
 tes.ng	

of	
 the	
 method	

•  Hyperviscosity	
 example	
 using	
 the	
 mollified	

sign	
 func.on	
 to	
 turn	
 the	
 viscosity	
 off	
 in	

expansion.	

Required	
 replacing	

sign(Div	
 u)	
 with	
 	

tanh(h	
 Div	
 u/c)	

Summary	

•  The	
 basic	
 idea	
 is	
 to	
 replace	
 func.ons	
 with	

sharp	
 (discon.nuous)	
 changes	
 in	
 value	
 with	

con.nuous	
 func.ons	
 having	
 controllable	

smoothing	
 length.	

•  This	
 will	
 allow	
 codes	
 to	
 be	
 differen.able	
 and	

remove	
 extreme	
 sensi.vity	
 to	
 small	
 changes	

in	
 floa.ng	
 point	
 values	
 (or	
 roundoff)	

•  This	
 choice	
 can	
 help	
 a	
 number	
 of	
 areas	

including	
 advanced	
 numerical	
 methods,	

regression,	
 symmetry	
 preserva.on	
 and…	

	

“Predictability	
 is	
 not	
 how	
 things	
 will	
 go,	

but	
 how	
 they	
 can	
 go.”	
 	

―	
 Raheel	
 Farooq	

