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“Study	
  the	
  past	
  if	
  you	
  would	
  define	
  the	
  
future.”	
  	
  
―	
  Confucius	
  



Narra.ve	
  
There	
  is	
  a	
  big	
  difference	
  between	
  wri.ng	
  down	
  an	
  algorithm	
  in	
  a	
  mathema.cal	
  form,	
  implemen.ng	
  simply,	
  
and	
  implemen.ng	
  for	
  robust	
  use	
  in	
  a	
  produc.on	
  environment.	
  	
  Along	
  this	
  path,	
  the	
  actual	
  algorithm	
  gets	
  
messier,	
  and	
  more	
  tricks	
  are	
  applied	
  to	
  make	
  things	
  work.	
  Limiters	
  are	
  an	
  essen.al	
  aspect	
  of	
  solving	
  the	
  
hyperbolic	
  por.on	
  of	
  systems	
  of	
  differen.al	
  equa.ons.	
  	
  Most	
  limiters	
  use	
  discon.nuous	
  func.ons	
  in	
  their	
  
implementa.on,	
  which	
  can	
  cause	
  subtle,	
  but	
  significant	
  difficul.es	
  for	
  their	
  codes.	
  	
  These	
  issues	
  may	
  arise	
  in	
  
tes.ng	
  for	
  verifica.on,	
  use	
  in	
  nonlinear	
  solves,	
  symmetry	
  preserva.on,	
  and	
  increased	
  sensi.vity	
  to	
  small	
  
perturba.ons.	
  	
  We	
  explore	
  the	
  removal	
  of	
  these	
  discon.nui.es	
  through	
  replacing	
  key	
  func.ons	
  with	
  
con.nuously	
  differen.able	
  forms.	
  	
  Care	
  must	
  be	
  taken	
  in	
  determining	
  the	
  proper	
  form	
  for	
  these	
  func.ons	
  as	
  
not	
  to	
  disturb	
  the	
  fundamental	
  proper.es	
  of	
  the	
  limiters	
  and	
  the	
  methods	
  they	
  serve.	
  	
  In	
  the	
  same	
  vein,	
  
similar	
  func.ons	
  are	
  used	
  pervausively	
  in	
  Riemann	
  solvers	
  and	
  other	
  dissipa.on	
  mechanisms	
  such	
  as	
  
ar.ficial	
  viscosity.	
  
	
  
First,	
  let	
  us	
  provide	
  simple,	
  yet	
  explanatory	
  example.	
  	
  The	
  sign	
  func.on	
  is	
  commonly	
  used	
  in	
  both	
  limiters	
  
and	
  dissipa.on,	
  and	
  is	
  discon.nuous	
  at	
  zero.	
  Several	
  func.ons	
  can	
  serve	
  to	
  provide	
  the	
  same	
  asympto.c	
  
behavior	
  as	
  the	
  sign	
  func.on	
  while	
  provide	
  a	
  con.nuously	
  differen.able	
  func.ons	
  such	
  as	
  tanh(a	
  x)	
  or	
  erf(a	
  
x).	
  	
  The	
  argument	
  in	
  a	
  in	
  tanh(a	
  x)	
  	
  or	
  erf(a	
  x)	
  can	
  adjust	
  the	
  magnitude	
  of	
  the	
  smoothing.	
  	
  Another	
  closely	
  
related	
  example	
  of	
  a	
  common	
  func.on	
  that	
  can	
  cause	
  problems	
  would	
  be	
  the	
  absolute	
  value	
  func.on	
  near	
  
zero.	
  If	
  we	
  replace	
  the	
  standard	
  absolute	
  value	
  func.on	
  with	
  the	
  hyperbolic	
  tangent	
  mul.plied	
  by	
  its	
  
argument,	
  we	
  receive	
  the	
  same	
  behavior	
  as	
  quan.ty	
  examined	
  is	
  significantly	
  away	
  from	
  zero.	
  	
  Another	
  
complementary	
  defini.on	
  of	
  the	
  absolu.on	
  value	
  is	
  the	
  an.-­‐deriva.ve	
  of	
  the	
  sign	
  func.on.	
  	
  For	
  the	
  
con.nuously	
  differen.able	
  versions	
  of	
  the	
  sign	
  func.on,	
  the	
  complementary	
  absolute	
  value	
  func.ons	
  differ	
  
in	
  defini.on.	
  Most	
  of	
  the	
  rest	
  of	
  our	
  effort	
  will	
  focus	
  on	
  parameterizing	
  the	
  smoothing	
  through	
  the	
  selec.on	
  
of	
  the	
  parameter	
  “a”.	
  	
  In	
  a	
  nutshell	
  we	
  make	
  the	
  choice	
  using	
  two	
  principles,	
  the	
  product	
  “a	
  x”	
  should	
  be	
  
non-­‐dimensional,	
  and	
  the	
  magnitude	
  of	
  the	
  free	
  constant	
  is	
  chosen	
  to	
  be	
  large	
  enough	
  that	
  the	
  func.on	
  
does	
  not	
  deviate	
  from	
  the	
  original	
  sign	
  func.on	
  we	
  are	
  replacing.	
  



Narra.ve	
  
Recently,	
  a	
  blog	
  point	
  hit	
  upon	
  this	
  issue	
  as	
  related	
  to	
  sta.s.cal	
  applica.ons,	
  the	
  Endeavor,	
  by	
  John	
  Cook	
  
[1,2].	
  	
  	
  The	
  stated	
  purpose	
  in	
  that	
  context	
  was	
  op.miza.on	
  where	
  smoothness	
  of	
  the	
  func.onal	
  
representa.on	
  would	
  impact	
  the	
  convergence	
  of	
  solu.ons.	
  	
  This	
  is	
  not	
  unlike	
  the	
  reasons	
  for	
  our	
  use	
  of	
  
similar	
  func.ons.	
  	
  As	
  we	
  will	
  demonstrate	
  there	
  are	
  several	
  ways	
  to	
  achieve	
  the	
  same	
  end	
  product	
  and	
  
principles	
  that	
  ca	
  be	
  used	
  to	
  determine	
  the	
  proper	
  level	
  of	
  smoothing.	
  	
  This	
  resonated	
  with	
  us	
  because	
  as	
  
described	
  above	
  we	
  regularly	
  use	
  techniques	
  like	
  this	
  in	
  code	
  development	
  to	
  remove	
  non-­‐differen.able	
  
behavior	
  from	
  the	
  code.	
  	
  We	
  do	
  this	
  for	
  many	
  reasons	
  that	
  span	
  issues	
  from	
  so\ware	
  development	
  to	
  
numerical	
  performance.	
  	
  Our	
  earliest	
  use	
  was	
  to	
  change	
  the	
  sign	
  func.on	
  near	
  zero	
  as	
  not	
  to	
  perturb	
  
symmetries	
  in	
  fluid	
  dynamics	
  problems.	
  	
  Likewise,	
  this	
  behavior	
  can	
  make	
  it	
  difficult	
  to	
  pass	
  regression	
  tests	
  
for	
  a	
  large	
  code	
  that	
  I	
  develop.	
  A	
  deeper	
  issue	
  to	
  discuss	
  is	
  why	
  I	
  would	
  do	
  such	
  things,	
  robustness	
  of	
  results	
  
	
  	
  
As	
  noted	
  above,	
  one	
  form	
  of	
  robustness	
  is	
  removing	
  different	
  behavior	
  under	
  common	
  varia.ons	
  in	
  
compu.ng	
  environment.	
  	
  These	
  varia.ons	
  include	
  different	
  compilers,	
  or	
  compiler	
  op.ons	
  and	
  different	
  
computers.	
  	
  Almost	
  any	
  significant	
  code	
  development	
  ac.vity	
  uses	
  regression	
  tes.ng	
  to	
  maintain	
  quality	
  
and	
  stability	
  within	
  the	
  code.	
  	
  O\en	
  the	
  regression	
  test	
  simply	
  looks	
  for	
  a	
  difference	
  in	
  a	
  solu.on	
  over	
  .me.	
  	
  
These	
  differences	
  are	
  used	
  to	
  flag	
  changes	
  in	
  the	
  code	
  that	
  are	
  uninten.onal	
  and	
  poten.ally	
  associated	
  with	
  
the	
  introduc.on	
  of	
  a	
  bug.	
  	
  	
  
	
  
Limiters	
  and	
  other	
  dissipa.on	
  mechanisms	
  have	
  consistency	
  condi.ons	
  to	
  meet	
  in	
  order	
  to	
  provide	
  proper	
  
approxima.ons	
  to	
  the	
  differen.al	
  equa.ons.	
  	
  These	
  condi.ons	
  can	
  be	
  used	
  to	
  select	
  and	
  constrain	
  the	
  
smoothing	
  parameteriza.on	
  used.	
  	
  Once	
  the	
  smooth	
  func.ons	
  are	
  selected	
  we	
  can	
  demonstrate	
  the	
  u.lity	
  
of	
  this	
  approach	
  and	
  the	
  lack	
  of	
  nega.ve	
  consequences	
  from	
  the	
  change	
  away	
  from	
  classical	
  func.ons.	
  	
  
	
  	
  



Narra.ve	
  
Most	
  limiters	
  and	
  dissipa.on	
  mechanisms	
  use	
  a	
  combina.on	
  of	
  the	
  sign,	
  absolu.on	
  value,	
  min	
  and	
  max	
  
func.ons	
  all	
  of	
  which	
  are	
  discon.nuous	
  and	
  can	
  be	
  replaced.	
  	
  A	
  prime	
  example	
  is	
  the	
  “minmod”	
  limiter,	
  
which	
  uses	
  all	
  four,	
  	
  minmod(x,y)	
  =	
  sign(x)	
  max(0,min(abs(x),sign(x)y)).	
  	
  	
  One	
  key	
  property	
  that	
  results	
  from	
  
approxima.on	
  accuracy	
  is	
  minmod(1,1)	
  =	
  1	
  [Sweby].	
  	
  The	
  ability	
  to	
  achieve	
  this	
  is	
  related	
  to	
  the	
  form	
  of	
  the	
  
smoothing	
  func.on.	
  	
  	
  For	
  example	
  Cook’s	
  min/max	
  pair	
  does	
  not	
  provide	
  this,	
  but	
  an	
  alterna.ve	
  min/max	
  
construc.on	
  does	
  trivially,	
  min(x,y)	
  =	
  ½(x+y)-­‐abs(x-­‐y),	
  max(x,y)	
  =	
  ½(x+y)+abs(x-­‐y).	
  Unfortunately	
  this	
  
produces	
  a	
  non-­‐convex	
  min/max.	
  	
  In	
  the	
  convex	
  case	
  the	
  ability	
  to	
  achieve	
  accuracy	
  is	
  more	
  subtle,	
  and	
  
connected	
  to	
  the	
  smoothing	
  parameter.	
  	
  A	
  Taylor	
  series	
  analysis	
  can	
  produce	
  the	
  impact	
  and	
  connect	
  the	
  
form	
  of	
  the	
  smoothing	
  parameter	
  to	
  the	
  ability	
  to	
  produce	
  approxima.on	
  of	
  the	
  requisite	
  accuracy.	
  
	
  
When	
  tested	
  with	
  limiters	
  we	
  find	
  that	
  the	
  smooth	
  func.ons	
  have	
  liele	
  problem	
  reproducing	
  the	
  results	
  of	
  
the	
  discon.nuous	
  func.ons	
  with	
  a	
  sufficiently	
  large	
  regulariza.on	
  parameter.	
  	
  In	
  addi.on,	
  the	
  regularized	
  
func.ons	
  produce	
  recognizable	
  benefits	
  with	
  the	
  advec.on	
  of	
  smooth	
  waveforms	
  with	
  tangible	
  reduc.ons	
  
in	
  the	
  level	
  of	
  error.	
  Overall	
  we	
  believe	
  that	
  this	
  approach	
  may	
  produce	
  a	
  number	
  of	
  real	
  improvements	
  in	
  
codes	
  relying	
  on	
  limiters.	
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"If	
  the	
  answer	
  is	
  highly	
  sensi.ve	
  to	
  
perturba.ons,	
  you	
  have	
  probably	
  
asked	
  the	
  wrong	
  ques.on."-­‐	
  Nick	
  
Trefethen	
  



Intrinsic	
  func.ons	
  are	
  everywhere	
  in	
  
code	
  and	
  implement	
  many	
  algorithms	
  
•  We	
  use	
  built	
  in	
  intrinsic	
  func.ons	
  without	
  a	
  
second	
  thought	
  such	
  as	
  sin(x),	
  cos(y),	
  exp(z)	
  

•  What	
  about	
  min(a,b),	
  max(b,c),	
  abs(d),	
  
sign(e)?	
  

•  Each	
  of	
  the	
  second	
  set	
  of	
  func.ons	
  is	
  
discon.nuous	
  in	
  some	
  way.	
  



Discon.nuous	
  func.ons	
  can	
  create	
  problems	
  in	
  
calcula.ons	
  worth	
  relieving	
  ourselves	
  of.	
  

•  In	
  gerng	
  verifica.on	
  results	
  the	
  impact	
  can	
  
be	
  seen	
  when	
  errors	
  become	
  small	
  or	
  parts	
  of	
  
the	
  problem	
  are	
  near	
  zero	
  

•  These	
  effects	
  can	
  break	
  symmetry,	
  seen	
  in	
  
simple	
  Rayleigh-­‐Taylor	
  tests	
  (single	
  mode	
  to	
  
late	
  .me)	
  

•  Gerng	
  clean	
  regression	
  tests	
  across	
  mul.ple	
  
platorms	
  (especially	
  if	
  you	
  have	
  a	
  lot	
  of	
  tests)	
  



Branching	
  is	
  a	
  key	
  example	
  where	
  this	
  
plays	
  out	
  

•  One	
  can	
  implement	
  certain	
  func.ons	
  via	
  func.ons	
  
(like)	
  max	
  as	
  branching	
  tests	
  (i.e.,	
  if	
  tests)	
  

•  Consider	
  an	
  if	
  test	
  version	
  of	
  upwind	
  differencing,	
  
	
  
if	
  (velocity	
  >	
  0)	
  then	
  
	
  upwind=data_le\	
  

else	
  
	
  upwind=data_right	
  

endif	
  



Branching	
  is	
  a	
  key	
  example	
  where	
  this	
  
plays	
  out	
  (con.nued)	
  

•  That	
  is	
  terrible,	
  let’s	
  change	
  it	
  to	
  something	
  beeer	
  
if	
  (velocity	
  >	
  0)	
  then	
  
	
  upwind=data_le\	
  

else	
  if	
  (velocity	
  <	
  0)	
  then	
  
	
  upwind=data_right	
  

else	
  
	
   	
  upwind=0.5*(data_le\+data_right)	
  
endif	
  



We	
  can	
  improve	
  this	
  to	
  make	
  it	
  
resilient	
  to	
  roundoff	
  (con.nued)	
  

•  That	
  is	
  terrible,	
  let’s	
  change	
  it	
  to	
  something	
  beeer	
  
if	
  (velocity	
  >	
  small_velocity)	
  then	
  
	
  upwind=data_le\	
  

else	
  if	
  (velocity	
  <	
  small_velocity)	
  then	
  
	
  upwind=data_right	
  

else	
  
	
   	
  upwind=0.5*(data_le\+data_right)	
  
endif	
  



This	
  branching	
  can	
  be	
  beeer	
  wrieen	
  
func.onally	
  

•  One	
  can	
  use	
  the	
  sign	
  func.on	
  or	
  the	
  absolute	
  
value	
  to	
  achieve	
  this	
  without	
  the	
  if	
  statements	
  

sign_velocity	
  =	
  sign(velocity)	
  
upwind=0.5*(sign_velocity	
  +1.0)*data_le\+
(sign_velocity	
  -­‐1.0)*data_right	
  



The	
  func.onal	
  branching	
  is	
  discon.nuous,	
  so	
  we	
  
are	
  back	
  to	
  square	
  one	
  

•  Here	
  is	
  the	
  key	
  idea,	
  rewrite	
  the	
  sign	
  as	
  a	
  
con.nuous	
  func.on,	
  the	
  hyperbolic	
  tangent	
  
comes	
  in	
  handy	
  

,ollified_sign=tanh(velocity/small_velocity)	
  
sign_velocity	
  =	
  mollified_sign(velocity)	
  
upwind=0.5*(sign_velocity	
  +1.0)*data_le\+
(sign_velocity	
  -­‐1.0)*data_right	
  



“Algorithms	
  don't	
  do	
  a	
  good	
  job	
  of	
  
detec.ng	
  their	
  own	
  flaws.”–Clay	
  Shirky	
  



Many	
  intrinsic	
  func.ons	
  can	
  be	
  
rewrieen	
  to	
  allow	
  for	
  analysis	
  

•  This	
  was	
  originally	
  done	
  to	
  allow	
  the	
  analysis	
  
of	
  numerical	
  methods	
  using	
  the	
  method	
  of	
  
modified	
  equa.ons.	
  

•  This	
  made	
  the	
  method	
  differen.able	
  and	
  
amenable	
  to	
  Taylor	
  series	
  expansions.	
  

•  These	
  func.ons	
  are	
  fundamental	
  to	
  limiters,	
  	
  
ar.ficial	
  viscosity	
  or	
  even	
  ad	
  hoc	
  tests	
  for	
  
posi.vity	
  



In	
  the	
  same	
  manner	
  modified	
  equa.on	
  
analysis	
  can	
  apply	
  to	
  nonlinear	
  schemes.	
  

•  To	
  really	
  work	
  with	
  this	
  some	
  intrinsic	
  func.ons	
  
that	
  are	
  used	
  greatly	
  need	
  to	
  be	
  redefined.	
  

•  Minmod	
  is	
  key	
  to	
  limiters	
  introduced	
  by	
  Boris	
  for	
  
FCT,	
  returns	
  the	
  smallest	
  argument	
  in	
  absolute	
  
value	
  if	
  they	
  have	
  the	
  same	
  sign,	
  zero	
  otherwise	
  	
  	
  

� 

minmod(a,b) = sgn(a)max 0,min a,sgn a( )b( )[ ]

� 

a = a2 ;sgn(a) = a /a

� 

min a,b( ) = 1
2
a + b( ) − 1

2
a − b

� 

max a,b( ) = 1
2
a + b( ) + 1

2
a − b

minmod a,b( ) = 1
4
sign a( )+ sign(b)( ) a+b − a − b( )

mineno a,b( ) = 1
2
sign a + b( )( ) a+b − a − b( )



Following	
  this	
  same	
  path	
  we	
  can	
  rewrite	
  the	
  same	
  
intrinsic	
  func.ons	
  for	
  smoothness	
  

•  We	
  can	
  do	
  the	
  same	
  sort	
  of	
  thing	
  if	
  our	
  objec.ve	
  
is	
  smoothness	
  

•  We	
  already	
  made	
  the	
  first	
  subs.tu.on,	
  the	
  tanh	
  
for	
  the	
  sign.	
  

mollified_abs(x)=x	
  *	
  tanh(x/small_x)	
  



Examples	
  of	
  the	
  rewrite.	
  

•  Once	
  the	
  sign	
  and	
  absolute	
  value	
  is	
  defined	
  
we	
  can	
  build	
  other	
  func.ons	
  like	
  min,	
  max,	
  
minmod,	
  mineno,	
  etc…	
  

•  The	
  median(a,b,c)	
  is	
  a	
  useful	
  func.on	
  that	
  
returns	
  the	
  argument	
  bounded	
  by	
  the	
  other	
  
two	
  

median(a,b,c)	
  =a+minmod(b-­‐a,c-­‐a)	
  	
  



Some	
  func.ons	
  can	
  then	
  be	
  composed	
  to	
  
provide	
  the	
  basis	
  of	
  some	
  algorithms	
  

•  We	
  could	
  also	
  base	
  some	
  of	
  the	
  algorithms	
  on	
  the	
  
so\min,	
  so\max	
  ideas	
  of	
  Cook	
  and	
  extending	
  them	
  

so\max(a,b)=log(exp(n*a)+exp(n*b))/n	
  
•  We	
  can	
  rewrite	
  this	
  for	
  beeer	
  behavior	
  in	
  finite	
  
arithme.c,	
  

so\max(a,b)=max(a,b)+log(1+exp(n*min(a,b)-­‐
n*max(a,b)))/n	
  
so\max(a,b)=min(a,b)-­‐log(1+exp(n*min(a,b)-­‐
n*max(a,b)))/n	
  
so\abs(a)=so\max(0,a)-­‐so\min(a,0)	
  
So\sign(a)=a/so\abs(a)	
  



The Basic Idea of High Resolution Methods 

■   Make the methods nonlinear - adaptive stencil, 
decide how to blend 2 or more methods based on 
the local solution 
◆   Upwind, Lax-Wendroff and 2nd-order upwind using 

a TVD limiter 

� 

uj
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n − λ uj
n − uj−1

n( )

� 

ut + ux = 0
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λ = Δt Δx
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− λ
2 1− λ( ) φ j u j+1

n − uj
n ,uj

n − uj−1
n( )[
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−φ j−1 uj
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n ,uj−1
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n( )]

� 

φ a,b( ) = max 0,min a,b( )( )



We	
  can	
  test	
  these	
  ideas	
  in	
  a	
  rela.vely	
  
simple	
  serng.	
  

•  Use	
  these	
  func.ons	
  to	
  implement	
  a	
  simple	
  
test	
  version	
  of	
  a	
  high	
  resolu.on	
  scheme.	
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We	
  can	
  test	
  these	
  ideas	
  in	
  a	
  rela.vely	
  
simple	
  serng.	
  

•  The	
  mollified	
  func.ons	
  have	
  a	
  posi.ve	
  influence	
  on	
  accuracy	
  
in	
  the	
  case	
  of	
  smooth	
  ini.al	
  condi.ons.	
  

Standard	
   Mollified	
  (small=1/20)	
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   Order	
  
100	
   5.79	
  
200	
   2.36	
   1.29	
  
400	
   0.73	
   1.69	
  

Cells	
   Error	
   Order	
  
100	
   5.93	
  
200	
   2.13	
   1.48	
  
400	
   0.60	
   1.82	
  



This	
  can	
  impact	
  the	
  verifica.on	
  tes.ng	
  
of	
  the	
  method	
  

•  Hyperviscosity	
  example	
  using	
  the	
  mollified	
  
sign	
  func.on	
  to	
  turn	
  the	
  viscosity	
  off	
  in	
  
expansion.	
  

Required	
  replacing	
  
sign(Div	
  u)	
  with	
  	
  
tanh(h	
  Div	
  u/c)	
  



Summary	
  

•  The	
  basic	
  idea	
  is	
  to	
  replace	
  func.ons	
  with	
  
sharp	
  (discon.nuous)	
  changes	
  in	
  value	
  with	
  
con.nuous	
  func.ons	
  having	
  controllable	
  
smoothing	
  length.	
  

•  This	
  will	
  allow	
  codes	
  to	
  be	
  differen.able	
  and	
  
remove	
  extreme	
  sensi.vity	
  to	
  small	
  changes	
  
in	
  floa.ng	
  point	
  values	
  (or	
  roundoff)	
  

•  This	
  choice	
  can	
  help	
  a	
  number	
  of	
  areas	
  
including	
  advanced	
  numerical	
  methods,	
  
regression,	
  symmetry	
  preserva.on	
  and…	
  



	
  
“Predictability	
  is	
  not	
  how	
  things	
  will	
  go,	
  
but	
  how	
  they	
  can	
  go.”	
  	
  
―	
  Raheel	
  Farooq	
  


