SAND2014- 18010PE

Replacing Discontinuous Functions
in Limiters with Smooth Ones

Bill Rider, Ed Love, and Tim Wildey

Sandia National Laboratories,
Albuquerque

“Study the past if you would define the

future.”
— Confucius

Narrative

There is a big difference between writing down an algorithm in a mathematical form, implementing simply,
and implementing for robust use in a production environment. Along this path, the actual algorithm gets
messier, and more tricks are applied to make things work. Limiters are an essential aspect of solving the
hyperbolic portion of systems of differential equations. Most limiters use discontinuous functions in their
implementation, which can cause subtle, but significant difficulties for their codes. These issues may arise in
testing for verification, use in nonlinear solves, symmetry preservation, and increased sensitivity to small
perturbations. We explore the removal of these discontinuities through replacing key functions with
continuously differentiable forms. Care must be taken in determining the proper form for these functions as
not to disturb the fundamental properties of the limiters and the methods they serve. In the same vein,
similar functions are used pervausively in Riemann solvers and other dissipation mechanisms such as
artificial viscosity.

First, let us provide simple, yet explanatory example. The sign function is commonly used in both limiters
and dissipation, and is discontinuous at zero. Several functions can serve to provide the same asymptotic
behavior as the sign function while provide a continuously differentiable functions such as tanh(a x) or erf(a
X). The argument in a in tanh(a x) or erf(a x) can adjust the magnitude of the smoothing. Another closely
related example of a common function that can cause problems would be the absolute value function near
zero. If we replace the standard absolute value function with the hyperbolic tangent multiplied by its
argument, we receive the same behavior as quantity examined is significantly away from zero. Another
complementary definition of the absolution value is the anti-derivative of the sign function. For the
continuously differentiable versions of the sign function, the complementary absolute value functions differ
in definition. Most of the rest of our effort will focus on parameterizing the smoothing through the selection
of the parameter “a”. In a nutshell we make the choice using two principles, the product “a x” should be
non-dimensional, and the magnitude of the free constant is chosen to be large enough that the function
does not deviate from the original sign function we are replacing.

Narrative

Recently, a blog point hit upon this issue as related to statistical applications, the Endeavor, by John Cook
[1,2]. The stated purpose in that context was optimization where smoothness of the functional
representation would impact the convergence of solutions. This is not unlike the reasons for our use of
similar functions. As we will demonstrate there are several ways to achieve the same end product and
principles that ca be used to determine the proper level of smoothing. This resonated with us because as
described above we regularly use techniques like this in code development to remove non-differentiable
behavior from the code. We do this for many reasons that span issues from software development to
numerical performance. Our earliest use was to change the sign function near zero as not to perturb
symmetries in fluid dynamics problems. Likewise, this behavior can make it difficult to pass regression tests
for a large code that | develop. A deeper issue to discuss is why | would do such things, robustness of results

As noted above, one form of robustness is removing different behavior under common variations in
computing environment. These variations include different compilers, or compiler options and different
computers. Almost any significant code development activity uses regression testing to maintain quality
and stability within the code. Often the regression test simply looks for a difference in a solution over time.
These differences are used to flag changes in the code that are unintentional and potentially associated with
the introduction of a bug.

Limiters and other dissipation mechanisms have consistency conditions to meet in order to provide proper
approximations to the differential equations. These conditions can be used to select and constrain the
smoothing parameterization used. Once the smooth functions are selected we can demonstrate the utility
of this approach and the lack of negative consequences from the change away from classical functions.

Narrative

Most limiters and dissipation mechanisms use a combination of the sign, absolution value, min and max
functions all of which are discontinuous and can be replaced. A prime example is the “minmod” limiter,
which uses all four, minmod(x,y) = sign(x) max(0,min(abs(x),sign(x)y)). One key property that results from
approximation accuracy is minmod(1,1) = 1 [Sweby]. The ability to achieve this is related to the form of the
smoothing function. For example Cook’s min/max pair does not provide this, but an alternative min/max
construction does trivially, min(x,y) = %2(x+y)-abs(x-y), max(x,y) = %2(x+y)+abs(x-y). Unfortunately this
produces a non-convex min/max. In the convex case the ability to achieve accuracy is more subtle, and
connected to the smoothing parameter. A Taylor series analysis can produce the impact and connect the
form of the smoothing parameter to the ability to produce approximation of the requisite accuracy.

When tested with limiters we find that the smooth functions have little problem reproducing the results of
the discontinuous functions with a sufficiently large regularization parameter. In addition, the regularized

functions produce recognizable benefits with the advection of smooth waveforms with tangible reductions
in the level of error. Overall we believe that this approach may produce a number of real improvements in
codes relying on limiters.

REFERENCES

John D. Cook, The Endeavor, http://www.johndcook.com/blog/. “Soft Maximum,”
http://www.johndcook.com/blog/2010/01/13/soft-maximum/, 2010.

John D. Cook, The Endeavor, http://www.johndcook.com/blog/. “How to compute the soft maximum,”
http://www.johndcook.com/blog/2010/01/20/how-to-compute-the-soft-maximum/, 2010.

John D. Cook, “Basic properties of the soft maximum,” UT MD Anderson Cancer Center Department of
Biostatistics Working Paper Series. Working Paper 70, 2011.

Peter Sweby, “High Resolution Schemes Using Flux Limiters for Hyperbolic Conservation Law ” SIAM Journal
of Numerical Analysis, Vol. 21(5), pp. 995-1011, 1984.

"If the answer is highly sensitive to
perturbations, you have probably

asked the wrong question."- Nick
Trefethen

Intrinsic functions are everywhere in
code and implement many algorithms

 We use built in intrinsic functions without a
second thought such as sin(x), cos(y), exp(z)

 What about min(a,b), max(b,c), abs(d),
sign(e)?

* Each of the second set of functions is
discontinuous in some way.

Discontinuous functions can create problems in
calculations worth relieving ourselves of.

* |n getting verification results the impact can
be seen when errors become small or parts of
the problem are near zero

* These effects can break symmetry, seen in
simple Rayleigh-Taylor tests (single mode to
late time)

e Getting clean regression tests across multiple
platforms (especially if you have a lot of tests)

Branching is a key example where this
plays out

* One can implement certain functions via functions
(like) max as branching tests (i.e., if tests)
* Consider an if test version of upwind differencing,

if (velocity > 0) then
upwind=data left
else
upwind=data_right
endif

Branching is a key example where this
plays out (continued)

* That is terrible, let’s change it to something better
if (velocity > 0) then
upwind=data left
else if (velocity < 0) then
upwind=data_right
else
upwind=0.5*(data_left+data_right)
endif

We can improve this to make it
resilient to roundoff (continued)

* That is terrible, let’s change it to something better
if (velocity > small_velocity) then
upwind=data left
else if (velocity < small velocity) then
upwind=data_right
else
upwind=0.5*(data_left+data_right)
endif

This branching can be better written

functionally
* One can use the sign function or the absolute
value to achieve this without the if statements
sign_velocity = sign(velocity)

upwind=0.5*(sign velocity +1.0)*data left+
(sign_velocity -1.0)*data_right

The functional branching is discontinuous, so we
are back to square one

* Here is the key idea, rewrite the sign as a
continuous function, the hyperbolic tangent
comes in handy

,ollified_sign=tanh(velocity/small_velocity)
sign_velocity = mollified_sign(velocity)

upwind=0.5*(sign_velocity +1.0)*data_left+
(sign_velocity -1.0)*data_right

“Algorithms don't do a good job of

detecting their own flaws.”—Clay Shirky

Many intrinsic functions can be
rewritten to allow for analysis

* This was originally done to allow the analysis
of numerical methods using the method of
modified equations.

* This made the method differentiable and
amenable to Taylor series expansions.

* These functions are fundamental to limiters,
artificial viscosity or even ad hoc tests for
positivity

In the same manner modified equation
analysis can apply to nonlinear schemes.

* To really work with this some intrinsic functions
that are used greatly need to be redefined.

* Minmod is key to limiters introduced by Boris for
FCT, returns the smallest argument in absolute

valuellf they have the same sign, zero otherwise
‘a‘ \/7 sgn(a) = ‘a‘/a

min(a,b) = ; —(a+b)- —‘a b‘
max(a,b) = ;(a+ b) + s ‘a b minmod(a,b) = sgn(a)max[O min(|a|,sgn(a)b)]

minmod (a,b) = i(mgn(a) + 31gn(b))(|a+b| —|a- b|)

mineno(a,b) = %(sign(a +b))(|Ja+b|—|a - b|)

Following this same path we can rewrite the same
intrinsic functions for smoothness

 We can do the same sort of thing if our objective
is smoothness

 We already made the first substitution, the tanh
for the sign.

mollified _abs(x)=x * tanh(x/small_x)

Examples of the rewrite.

* Once the sign and absolute value is defined
we can build other functions like min, max,
minmod, mineno, etc...

 The median(a,b,c) is a useful function that
returns the argument bounded by the other
two

median(a,b,c) =a+minmod(b-a,c-a)

Some functions can then be composed to
provide the basis of some algorithms

 We could also base some of the algorithms on the
softmin, softmax ideas of Cook and extending them

softmax(a,b)=log(exp(n*a)+exp(n*b))/n

e We can rewrite this for better behavior in finite
arithmetic,

softmax(a,b)=max(a,b)+log(1+exp(n*min(a,b)-
n*max(a,b)))/n

softmax(a,b)=min(a,b)-log(1+exp(n*min(a,b)-
n*max(a,b)))/n

softabs(a)=softmax(0,a)-softmin(a,0)
Softsign(a)=a/softabs(a)

The Basic Idea of High Resolution Methods

s Make the methods nonlinear - adaptive stencil,
decide how to blend 2 or more methods based on
the local solution

¢ Upwind, Lax-Wendroff and 2nd-order upwind using

a TVD limiter
n+l _ n n o n up +uy =0
l/l] = j—ﬂt(uj—uj_l)

—0j1(uf — o)| 2 Ay
¢(a,b) = max(0,min(a,b))

We can test these ideas in a relatively
simple setting.

* Use these functions to implement a simple
test version of a high resolution scheme.

Standard Mollified (small=1/20)

1.0[

06

04l

0.2 -

100
08
06

04l

:

0.2 -

s

200

| I
150

We can test these ideas in a relatively
simple setting.

 The mollified functions have a positive influence on accuracy

in the case of smooth initial conditions.
Cells Error Order Cells Error Order

100 5.79 100 5.93

200 2.36 1.29 200 2.13 1.48
400 0.73 1.69 400 0.60 1.82
Standard ~ Mollified (small=1/20)

0.010 -
0.008 -
0.006 -

0.004 -

0.002 -

400

This can impact the verification testing
of the method

* Hyperviscosity example using the mollified
sign function to turn the viscosity off in

expansion.

Table 1

A summary of the code verification results using the periodic breaking wave
problem’s density solution for four different artificial viscosity options. Without
viscosity, with the limiter, and with the limiter and hyperviscosity in tandem produce
second-order results. With the standard artificial viscosity alone, the results become
first-order accurate.

Method h Ly Error Order
No viscosity 0.00078 1.442 x 107° 1.999
c1=0,=0,c3=0 0.00156 5.763 x 107° 2.001

0.00312 2307 x 10°% 2.009
0.00625 9.286 x 1078
Standard viscosity 0.00078 3.934 x 1077 0.968
c1=1,=4/3,c3=0 0.00156 7.696 x 1077 0.945

Required replacing
sign(Div u) with
tanh(h Div u/c)

0.00312 1.482 x10°® 0.911
0.00625 2.786 x 107
Limited viscosity 0.00078 1.987 x 107° 2.008
c1=1,=4/3,3=0 0.00156 7.994 x 10°° 1.994
0.00312 3.182 x10°® 1.992

0.00625 1.264 x 1077
Limited viscosity with hyperviscosity 0.00078 1.661 x 107° 2.016

0.00156 6.717 x10™° 2.018

c1=1c=4[3c3=1 0.00312 2.721 x 1078 2.030

0.00625 1.112 x 1077

Summary

 The basic idea is to replace functions with
sharp (discontinuous) changes in value with
continuous functions having controllable
smoothing length.

* This will allow codes to be differentiable and
remove extreme sensitivity to small changes
in floating point values (or roundoff)

* This choice can help a number of areas
including advanced numerical methods,
regression, symmetry preservation and...

“Predictability is not how things will go,

but how they can go.”
— Raheel Farooqg

