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Planar Metamaterials and Strong Coupling

MM resonators create strong optical fields that 
lead to strong coupling

Optical Phonons: Nano Letters 11, 2104 (2011)
Intersubband Transitions: Nature Communications 4, (2013) 
Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
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Outline

• Epsilon Near Zero and Berreman Modes

– Fundamentals

– Berreman modes: Thermal emission

– ENZ modes: coupling to metamaterial resonators

•Epsilon Near Zero modes coupled to both, metamaterials 
and dipole transitions

– Optical Phonons

– Intersubband transitions
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Plasmon Modes of a Thin Film
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(courtesy, Dept. of Physics, Hanyang Univ.)

Econoumou, 1969
Burke 1986
etc



Plasmon Modes of a Thin Film: “ENZ mode”
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This mode is the surface 
plasmon polariton

The red mode is the ENZ 
mode

The smaller the 
thickness, the larger Ez



• Berreman mode (leaky mode), 

• ENZ mode (bound mode)

• ENZ mode is a special type of a plasmon polariton

“Epsilon Near Zero” vs Berreman Modes

t = 30 nm

t = 60 nm

t = 200 nm

Light line
Berreman “ENZ”

tDrude

Substr.

Air

S. Vassant et al., Phys. Rev. Lett. 109, 237401 (2012)
S. Vassant et al., Opt. Express 20, 23971 (2012) 6

Young Chul



Berreman Modes
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t = 30 nm

t = 60 nm

t = 200 nm

Light line

“Berreman
Modes”

Leaky modes: can couple from free space
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Transmission vs angle (p-pol):
A sharp dip is observed in 
transmission, where ~0

Berreman, Physical Review 130 (6), 2193 (1963).
McAlister and Stern, Physical Review 132, 1599 (1963).

(“Berreman” dip)

Berreman Modes

Example: “Drude” layer



Thermal Emission: Berreman Modes
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Kirchhoff’s law of thermal radiation:  the absorptivity of an object should be 
equal to its emissivity (A = є) 

APL, in press

Young Chul



Angle-resolved, polarization-dependent 
absorptivity measurements 
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ND = 1.1x1019 cm-3

ND = 5.6x1018 cm-3

60nm InAs

Hyperhemispherical
Directional 
Reflectometer

A = 1 – R – T

Bare GaAs



Angle-resolved, polarization-dependent 
emissivity measurements (140°C)
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• Unpatterned semiconductor thin 
films generate spectrally selective 
thermal emission near the ENZ 
frequencies.

• Wavelength determined purely by 
doping densities

• An ENZ film works as a “leaky 
wave antenna”

APL, in press



ENZ Modes
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t = 30 nm

t = 60 nm

t = 200 nm

Light line “ENZ”

To the right hand side of the light line: cannot couple from free space



MM Resonators Provide k-vectors to 
Excite ENZ Modes
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Superimpose dipole emission spectra on 
the ENZ dispersion

ENZ dispersion



Strong Coupling to ENZ Mode: 
Theory vs. Experiment

Numerical simulation (FDTD)

Scale 1.2

Scale 1.4

Scale 1.6

Scale 1.8

Scale 2.0

FTIR transmission measurement
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Young Chul



ND = 2e18 cm-3

Electrically Tuning the Coupling to the 
ENZ Mode

Fundamentally different than tuning just by changing a local permittivity!
Removal of carriers -> removal of ENZ mode

15
Nano Letters 13, 5391 (2013)



Inverted Dogbone + ENZ
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Outline

• Epsilon Near Zero and Berreman Modes

– Fundamentals

– Berreman modes: Thermal emission

– ENZ modes: coupling to metamaterial resonators

•Epsilon Near Zero modes coupled to both, metamaterials 
and dipole transitions

– Optical Phonons

– Intersubband transitions
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ENZ Layer With an Optical Phonon 
Resonance
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Optical Phonon
Sheng



Strong Coupling: 2 Polariton Branches
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Let’s Separate the ENZ Layer and the 
Dipole Resonance Layer
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ENZ Mode
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Dipole Transition 

3 Interacting SystemsSalvo



Case 1: Different Frequencies for Dipole 
Transition and ENZ
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Case 2: Same Frequencies for Dipole 
Transition and ENZ
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Experimental Verification:
MMs+ENZ+Dipole Transition
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Inter-subband Transitions in Quantum Wells:
Anisotropic Dipole
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•Scalabe (far IR to near
IR), Mature, Versatile

24

z
Opt. Express 20, 6584 (2012), 

APL 98, 203103 (2011)
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From Mid-IR to Near IR

25Nature Communications 4, (2013)

InGaAs QWs (mid IR)
GaN QWs (near IR)

ACS Photonics (in press)



Experimental Verification of Combined 
Strong Coupling:

(ENZ layer + dipole transition in QWs)
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QW only ENZ only QW+ENZ
100

150

200

250

300

350

Strong coupling structure

R
ab

i 
sp

li
tt

in
g

 (
cm

-1
)

Empty symbols: Theory
Full symbols: Experiment

651 nm

30 nm

100 nm

200 nm

651 nm (QW)

30 nm (circles)

100 nm (triangles)

200 nm (squares)
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Combining ENZ Modes and Intersubband 
Transitions for Stronger Coupling

•Field decays exponentially with 
distance from MM resonators

• An ENZ thin layer acts as a 
“transducer” and potential 
“amplifier” of Ez field
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Summary
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• Applications:  low-voltage tunable “filters” (or modulators) in the IR

• Fundamentals:
• Very high ratio of Rabi splitting to carrier frequency (beyond the strong 

coupling model)
• Combining different excitations (phonons, plasmons, ISTs) in unexpected ways
• Next: Purcell, emission, nonlinearities….

Metafilms

Semiconductor 
heterostructures

Phonons, Plasmons, Electronic Transitions

• Metamaterial resonators + semiconductors offer a 
nice platform for tunable spectral behavior and 
variable coupling
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