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Planar Metamaterials and Strong Coupling
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Substrate

MM resonators create strong optical fields that
lead to strong coupling
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Optical Phonons: Nano Letters 11, 2104 (2011)
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Intersubband Transitions: Nature Communications 4, (2013)

Epsilon Near Zero modes: Nano Letters 13, 5391 (2013)
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& ,
e Outline

e Epsilon Near Zero and Berreman Modes
— Fundamentals
— Berreman modes: Thermal emission
— ENZ modes: coupling to metamaterial resonators
e Epsilon Near Zero modes coupled to both, metamaterials
and dipole transitions
— Optical Phonons
— Intersubband transitions
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Plasmon Modes of a Thin Film

Dielectric - &, Lung-Range SP-

weak surface confinement, low loss

Dielectric - &,
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Short-Range SP:
strong surface confinement, high lbss
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in-plane wavevector

Econoumou, 1969
Burke 1986
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(courtesy, Dept. of Physics, Hanyang Univ.)
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Plasmon Modes of a Thin Film: “ENZ mode”
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“Epsilon Near Zero” vs Berreman Modes

Berreman “ ”
Light line ENZ
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e Berreman mode (leaky mode),
ST« ENZmode (bound mode)
e ENZ mode is a special type of a plasmon polariton
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S. Vassant et al., Phys. Rev. Lett. 109, 237401 (2012)
S. Vassant et al., Opt. Express 20, 23971 (2012) 6
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Berreman Modes

“Berreman

Modes!
Light line
n+ InAs, N_ =1e19 em>
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Leaky modes: can couple from free space
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P-pol

Thin (<<A) layer —
where € crosses

0 (Drude,

phonon, etc)

Example: “Drude” layer
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Berreman, Physical Review 130 (6), 2193 (1963).
McAlister and Stern, Physical Review 132, 1599 (1963).

Transmission

Berreman Modes

Transmission vs angle (p-pol):
A sharp dip is observed in
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Thermal Emission: Berreman Modes

(@) Spectrally selective thermal emission
from an unpatterned film

Ultra-thin ENZ layer
(doped semiconductor)
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Kirchhoff's law of thermal radiation: the absorptivity of an object should be
equal to its emissivity (A = €)
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N, = 1.1x10'9 cm?

Np = 5.6x10'8 cm™

Bare GaAs

sorptivity
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absorptivity measurements
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AR

@ Angle-resolved, polarization-dependent
emissivity measurements (140°C)
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N/
A ENZ Modes

Light line “ENZ”

n+ INAS, ND =1e19 cm™
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To the right hand side of the light line: cannot couple from free space
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1: Substrate
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MM Resonators Provide k-vectors to h
Excite ENZ Modes

Superimpose dipole emission spectra on

the ENZ dispersion
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Strong Coupling to ENZ Mode: h) e,
Theory vs. Experiment

Young Chul Numerical simulation (FDTD) FTIR transmission measurement
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Nano Letters 13, 5391 (2013)
14



Sandia
m National
Laboratories

Electrically Tuning the Coupling to the
ENZ Mode

VB581, Scale 2.2

VB581, Scale 2.4
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Fundamentally different than tuning just by changing a local permittivity!
Removal of carriers -> removal of ENZ mode

Nano Letters 13, 5391 (2013)
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Inverted Dogbone + ENZ

Tunable Passband Filter

Transmission
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- Outline

e Epsilon Near Zero modes coupled to both, metamaterials
and dipole transitions

— Optical Phonons
— Intersubband transitions
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ENZ Layer With an Optical Phonon ) i,
Resonance
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Simulations

Transmission
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Let’s Separate the ENZ Layer and the
Dipole Resonance Layer

3 Interacting Systems

MM
Resonators

& | ENZ Mode
(Drude layer)
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Case 1: Different Frequencies for Dipole @Ez.
Transition and EN

p—
S

[S=Y
S S

W
—_ — ]
> » <

)
=
4

Relative permittivity ENZ layer

%)
(e)

(e}

Relative permittivity ISTs in Q

400 600 800 1000 1200 400 600 800 1000 1200
-1 -1
Frequency (cm ') Frequency (cm ")
(simulations)

o
o0

1100

1000
"g 900
300
700
600
500
400

2 Different 500 600 700 800 900 1000 400 600 800 1000 1200

Polariton Branches Bare cavity resonance (cm-l) Frequency (cm 1)

21

¢ o
o)

\\

|

VA

Transmittance
(e}
AN

_— //
//j — —
=
> >
_
<>
QD
AN

Frequency (cm

O
(\9)
N _—
\
| S=—
P
N
N T~




1100
0.6

1000 1000
§ 900 05 §
2 800 04 %
5 700 | 5
3 \ 03 2
£ 600 | k

500 1 &

400 0.1

Relative permittivity ENZ layer

foN
=)

8

=)

[\
S

&

(simulations)

07 0&8 09 1 11

Sealing factor

40 600 800 1000 1200

-1
Frequency (cm ')

1100

12 13 0.7 08 09 1

Case 2: Same Frequencies for Dipole h
Transition and

ENZ

QWs
S o 8

Sa

Relative permittivity ISTs in

(e}

900 '
&)
&00 .
700
00 L —
500 '
400 0.1

1.1 12131415

Scaling factor

070809 1 1112131415
Scaling factor

Only 1 Polariton, larger Rabi Splitting!
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Experimental Verification:
MMs+ENZ+Dipole Transition
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Anisotropic Dipole

i\
Al escalabe (far IR to near
IR), Mature, Versatile

Opt. Express 20, 6584 (2012),
APL 98, 203103 (2011)

8xxz‘gyy'—"‘:gzz

Z Inter-subband Transitions in Quantum Wells:
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From

Mid-IR to Near IR

(L

GaN QWs (near IR)

InGaAs QWs (mid IR)
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Nature Communications 4, (2013)
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Experimental Verification of Combined ) .

Strong Coupling:
(ENZ layer + dipole transition in QWs)
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Rabi splitting versus geometry

ENZ layer + dipole transition in QWs @& =N
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Strong coupling structure

The structures comprising QW+ENZ exhibit the largest Rabi
splittings for a given ENZ thickness



Combining ENZ Modes and Intersubband @ =
Transitions for Stronger Coupling

e Field decays exponentially with
distance from MM resonators

e An ENZ thin layer acts as a
“transducer” and potential
“amplifier” of Ez field

|H|? |Ez|?

The addition of an ENZ layer enhances the coupling -> larger Rabi splitting
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Summary

Metafilms

 Metamaterial resonators + semiconductors offer a
nice platform for tunable spectral behavior and
variable coupling

R

>

* Applications: low-voltage tunable “filters” (or modulators) in the IR M
>
A

 Fundamentals: |
* Very high ratio of Rabi splitting to carrier frequency (beyond the strong
coupling model)
* Combining different excitations (phonons, plasmons, ISTs) in unexpected ways
* Next: Purcell, emission, nonlinearities....
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