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Abstract 
 
 We are planning a new beam diagnostic based on 
Compressed Ultrafast Photography (CUP)1. A foil inserted 
in the beam path is used to generate a continuous optical 
image of the beam, which is the same technique used on 
the existing DARHT II beam imaging diagnostic. This 
existing diagnostic compresses the beam image with 
anamorphic lenses into four views that are streaked 
simultaneously on two streak cameras. In our new beam 
diagnostic design the anamorphic lenses are replaced with 
regular lenses and the beam image is stamped with a 
pseudo-random mask pattern. The full image is imaged 
onto a streak camera with its entrance slit expanded. 
Modifying the CUP technique, which uses a single 
streaked image, our design splits the image into four 
rotated copies and puts all four images on two streak 
cameras. A data cube of multiple image frames is 
reconstructed from the streak camera data through the use 
of the TwiST algorithm2 combined with total variation 
denoising3. The additional rotated images improve spatial 
resolution and reduce noise and image artifacts compared 
to using a single streaked image. In reconstructions of 
simulated data, fine detail in the beam profile can be seen 
and there is a remarkable absence of image artifacts 
compared to the existing DARHT II beam imaging 
diagnostic. Performance was evaluated using a pseudo-
MTF derived from a simulated wave pattern test object. 
 
 

I. INTRODUCTION 
 
 Beam diagnostics played a fundamental role in the 
commissioning and optimization of the Dual-Axis 
Radiographic Hydrodynamic Test (DARHT) facility 
linear induction accelerators at Los Alamos National 
Laboratory4,5. These flash x-ray radiographic machines 
provide single and multi-pulse radiographs of 
hydrodynamic experiments. In conjunction with beam-

positioning sensors and beam energy diagnostics, the 
beam imaging system6,7 on DARHT II has helped greatly 
with the tuning of this multi-pulse accelerator to meet 
stringent beam requirements. 
 This paper describes a proposed beam imaging 
diagnostic that combines the optical transition radiation 
(OTR) foil used on the existing DARHT II beam imaging 
diagnostic with a powerful new compressed sensing 
technique called Compressed Ultrafast Photography 
(CUP). In CUP, a time series of images are compressed 
onto the image output of a streak camera by first stamping 
the image with an unchanging pseudo-random mask 
pattern before it reaches the front photocathode of the 
streak camera. An iterative reconstruction technique with 
a strong total variation prior is used to reconstruct the 
three-dimensional data cube from the streak camera 
image.  
 This paper is organized into the following sections. 
Section II describes the proposed construction of the 
system. Section III describes the reconstruction method 
for generating the time-series of images from a set of 
images generated by the streak cameras. Section IV 
presents the results of our simulations, including a method 
used to evaluate system performance. Section V is a 
discussion of the results and presents other applications of 
the technique. 
 
 

II. SYSTEM DESIGN 
 
 A diagram of the proposed beam imaging system is 
shown in Fig. 1. The electron beam strikes an OTR foil to 
generate on optical image of the beam. The existing beam 
imaging diagnostic on DARHT II uses 1mm titanium foils 
or sometimes aluminum coated quartz. If the beam is well 
focused the beam diameter will be ~1 mm, but the main 
value of this diagnostic is for tuning defocused beams, in 
which case the beam diameter will be much larger. 
 



 

 
Figure 1. Diagram of proposed beam imaging diagnostic 
with four rotated images on two streak cameras. 
 
 The light emitted from the OTR target passes through a 
vacuum viewport and is then split into four copies with 
beam splitters and mirrors after passing through a lens 
system (only a single lens is shown in the diagram). Three 
of the images have rotating prisms that rotate 45º, 90º and 
135º. The path lengths for the four images can be made 
equal but this is not necessary if the depth of field is made 
sufficiently large. We assume a target angle of 45º in our 
simulations and have not included any imperfections due 
to the optical system. We have also assumed that the 
unequal magnification of the electron beam in x and y will 
be removed by the optical system, but an exact optical 
system design has not been done. 
 Mask patterns on glass or plastic are placed at the front 
surface of the photocathode on the streak cameras. These 
are pseudo-random block patterns. It was found that the 
optimum size for the smallest blocks is close to the 
resolution element size of the streak camera. We use a 
128×128 block pattern for each image which is then 
mapped to a 256×256 image on the CCD of the streak 
camera. The block pattern is different for each of the four 
images. We model the blur in the streak camera as a 
Gaussian blur with FWHM of 50 μm, with magnification 
of 1.0 from the photocathode to the CCD and a 
1024×1024 CCD with 25 μm pixels. Appropriate signal-
dependent noise was included in our system model, with 
the assumption that the highest counts on the CCD will be 
¼ of the maximum counts. 
 There are several alternative arrangements of the 
system that could have some advantages. Two viewing 
angles could be used, allowing for more light collection 
and reducing the number of beam splitters. If one of the 
streak cameras is rotated 90º then one rotating prism 
could be eliminated. The existing DARHT II beam 
imaging diagnostic uses fiber arrays to carry the signals 
far from the beam line, reducing radiation on the cameras. 
Our proposed diagnostic could use imaging fiber bundles, 
but this is an expensive addition. We are assuming the 
diagnostic will sit adjacent to the beam line, requiring 
extra shielding. 
 

 
Figure 2. Diagram of alternative beam imaging 
diagnostic with four images split from a single prism 
without rotations. 
 
 We have also considered a system that does not use 
rotating prisms, as shown in Fig. 2. A single 4-facet prism 
divides the light into four images without any rotation. 
This is a much simpler system, and it should be able to fit 
all four images onto one streak camera. The disadvantage 
is that reconstruction is more complicated and gives 
poorer results than the system with rotated images. 
 
 

III. RECONSTRUCTION METHOD 
 
 A two-step iterative shrinkage/thresholding (TwIST)2 
algorithm is used to reconstruct the time-series of images 
from the streak camera data, which is the same method 
used by the original CUP1 authors. 
 The system is modeled as a matrix operation 
 
 ( )xxy KK η+= , (1) 
 
where y is the streak camera data, K is the system transfer 
matrix, x is the true time series of images and η is the 
noise operator which is signal-dependent. We have not 
included the signal-dependent nature of the noise in our 
consideration of reconstruction algorithms, so this signal-
dependence will be ignored. In our simulations of data, 
however, this signal-dependence is included. 
 To reconstruct x from f we solve the minimization 
problem 
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where λ is the regularizing parameter and Φ is a constraint 
function, which in our case is a total-variation constraint. 
 The total variation constraint Φ uses the discreet for-
ward difference operators ∂h and ∂v representing 
horizontal and vertical differences, 
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where the object x is a time series of N × N images. The 
total-variation constraint function Φ is  
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Eqs. (3–5) are not used directly in the reconstruction 
algorithm. To solve Eq. (2), an iterative backprojection of 
smoothed residuals is used. The initial guess x0 has all 
values initialized to 0, although the algorithm is not 
sensitive to the choice of x0. The first iteration is 
 
 ( )01 xx Γ= , (6) 
where 
 

 ( ) ( )( )xyxx KK −+Ψ=Γ T  (7) 
 
and Ψ is a total-variation denoising operator based on 
Chambolle’s projection algorithm3,8, which we will not 
describe here. The remaining iterations are  
 
 ( ) ( )tttt xxxx λββαα Γ+−+−= −+  )1( 11 , (8) 
 
where α and β are constants. There are techniques2 for 
choosing optimum values of α and β. We found 
empirically that α = 0.5 and β = 0.02 worked well for our 
system. 
 An additional constraint was added to ensure positivity 
in the reconstruction. This was done by forcing all 
negative values in xt to zero at the end of each iteration. 
 It was found that Eq. (8) gave good reconstructions 
when rotated images were used. When non-rotated images 
were used, using the system shown in Fig. 2, a severe 
artifact was found in the appearance of a constant 
background image that slides down the reconstruction in 
the sweep direction. One way to fix this problem is to use 
the first frame of the reconstruction to determine the 
background and then subtract a sliding version of this 
background from all of the images. This only works if the 
first frame has no light in it. We found that the 
background closely resembled the backprojection of the 
data, so we instead used the following algorithm to 
subtract the background, 
 

 ( )( )yGxx fixed
T Kτ−=  , (9) 

 
where τ is a constant and G is a Gaussian smoothing 
operator. This correction is applied at the end of the 

reconstruction and was found intuitively without a 
theoretical justification. More research is needed to 
determine why Eq. (9) appears to work and to optimize it. 
Attempts to incorporate this correction within each 
iteration of the reconstruction algorithm did not give good 
results. 
 
 

IV. RESULTS 
 
A. Simulated Data and Reconstructions  
 A simulated beam pulse of 60 ns duration was used to 
test the performance of the system, of which two sample 
images at different times are shown in Fig. 3. The full 
field of view was 5 mm as measured at the electron beam, 
and the maximum width of the beam was 2.7 mm. A 
complex changing beam profile was used to simulate a 
defocused beam. The sweep length was 1500 ns, so the 
sweep travelled one pixel in 1.5 ns. One image frame was 
reconstructed for each pixel of sweep, so the 
reconstruction had 40 frames during the pulse with 50 
total frames reconstructed. 
 The streak camera data from the four rotated images, 
broken out into separate images, is shown in Fig. 4. 
 

  
Figure 3. Two images at different times from the test 
beam pulse used to evaluate the system. 
  

 
Figure 4. Four streak camera images generated from the 
beam pulse shown in Fig. 3. The sweep direction is to the 
right. 



 

 The reconstruction from the data shown in Fig. 4 was 
done using Eqs. (6–8) with 50 iterations of Eq. (8). Two 
frames from the reconstruction are shown in Fig. 5, 
corresponding to the times of the frames shown in Fig. 3. 
 As a comparison, the same object was used to simulate 
data taken with the existing anamorphic beam diagnostic 
used on DARHT II, with the results of reconstructions 
shown in Fig. 6. This diagnostic is useful for getting the 
general beam size and boundaries, but is unable to 
reconstruct details of complex beams. 
 

  
Figure 5. Two images from the reconstruction of  
the beam from the simulated streak camera data shown in 
Fig. 4. These are from the same times as the two frames 
shown in Fig. 3. 
  

  
Figure 6. Two images from the reconstruction of the 
beam from simulations of the existing four-view 
anamorphic beam diagnostic used on DARHT II. 
 
 Simulations were also performed using the non-rotated 
system from Fig. 2. The results of these reconstructions, 
including the extra background subtraction step from Eq. 
(9), are shown in Fig. 7. The background subtraction 
process does not completely remove the image artifacts 
and there is a significant increase in noise. 
 
B. Evaluating System Performance 
 While visual inspections of reconstructions are 
valuable, there is a need to have an automated method of 
evaluating system performance. An automated method 
can be made more objective than visual evaluation and 
can also be easily performed on large numbers of 
reconstructions. 
 
 

  
Figure 7. Two images from the reconstruction of the 
beam from simulations of four non-rotated images using 
the system shown in Fig. 2.  
 
 To automatically evaluate system performance we 
simulated a test object using a sinusoidal wave pattern, an 
example of which is shown in Fig. 8. The radius of the 
object occupies half the field of view. Eight different 
wavelengths were used and a pseudo-MTF (modulation 
transfer function) was generated from the modulation in 
the reconstructions of these wave objects. We call this a 
pseudo-MTF instead of an MTF because the 
reconstruction process in non-linear so a traditional MTF 
is not valid. Instead, the pseudo-MTF gives the 
modulation transfer for this specific set of test objects, all 
of which have the same radius. The pseudo-MTF is 
averaged over test objects rotated at six different angles. 
The object moves uniformly to the right across the field, 
always staying in full view. A frame from a 
reconstruction of the object is shown in Fig. 9.  
 

 
Figure 8. Test object used to evaluate the pseudo-MTF. 
This is one of eight frequencies and six rotations that were 
used. 
 



 

 
Figure 9. A frame from the reconstruction of the test 
object from Fig. 8. 
 
  
 We chose the spatial frequency at 25% modulation as 
our system metric, doing linear interpolation between 
frequencies to find this point. We can see the value in 
using this metric in choosing the optimum mask element 
size. A graph of the 25% modulation point as a function 
of smallest mask element size is shown in Fig. 10. 
 

 
Figure 10. System performance as a function of mask 
element size, showing that the optimum comes at 50 µm, 
corresponding to the 128×128 mask pattern that we used. 
This is also the size of the FWHM of the system blur. 
 
 Another example of the use of the pseudo-MTF is 
seeing how system performance depends on the length of 
the pulse. We simulated wave objects with different pulse 
lengths and the results of the pseudo-MTF evaluation are 
shown in Fig. 11. We see a steady degradation in 
performance as longer pulses are used. This can be 
explained by the greater overlap of images as the pulse 
gets longer. The ratio of reconstructed pixels to data 
pixels gets larger as more frames are reconstructed, so in 
essence the data compression is increasing, leading to 
poorer image quality. 
 

 
Figure 11. System performance as a function of pulse 
length expressed as number of reconstructed frames. 
System performance steadily degrades with increasing 
numbers of reconstructed frames.  
 
 

V. DISCUSSION 
 
 The modified CUP technique that we have used falls 
under the general theory of compressed sensing9 and is 
very similar to compressed hyperspectral imaging (CHI). 
CHI also uses a coded mask and a sweep of images across 
a camera, but with CHI the sweep is in wavelength 
instead of in time. Much of the theory from CHI applies 
to CUP, including the degradation in reconstruction 
quality with greater levels of compression that we see in 
Fig. 11. 
 The original use of CUP was for very sparse images 
where only a small part of the image has data and the 
object is generally moving so that any one region of the 
image contains data for very few frames. With the use of 
multiple images, and particularly with rotated images, the 
use of CUP can be expanded to data sets that are much 
less sparse. In our simulations the object is much larger 
and moves very slowly so each part of the data 
contributes to many frames of the reconstruction. 
 The choice between rotating and non-rotating systems 
will likely be influenced by further improvements in the 
data analysis. With rotated images, the TwIST algorithm 
shown in Eqs. (6–8) naturally does a good job of 
reconstructing the object with little sensitivity to the exact 
choice of algorithm parameters. With the non-rotating 
system the results were almost useless unless the 
background subtraction technique in Eq. (9) is used, and 
even then the results are significantly worse than when 
rotations are used. Further work on the reconstruction 
algorithm may reduce the difference between these two 
systems and make the non-rotated system preferred due to 
its greater simplicity. 
 The fact that data compression increases as the number 
of reconstructed frames increases imposes limits on this 
technique’s usefulness for analyzing long data records. If 
the object is smaller and moving quickly across the 
image, the data compression problem decreases 
significantly since more pixels in the streak images 
contain information that can be used in the reconstruction. 



 

We concentrated on objects that moved slowly as a more 
difficult test of the system performance. 
 We are considering the development of an x-ray 
imaging system using the same technique. In the case of 
x-rays, rotations are not possible when using a single 
streak camera. A configuration employing two or more 
rotated cameras could be possible, but this makes an 
overly complicated system, in addition to introducing 
significant problems due to using widely spaced viewing 
angles. We are expecting that the x-ray system will use a 
single streak camera, so improvement in the analysis of 
non-rotated images will be very important. 
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