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Abstract

We are planning a new beam diagnostic based on
Compressed Ultrafast Photography (CUP)™. A foil inserted
in the beam path is used to generate a continuous optical
image of the beam, which is the same technique used on
the existing DARHT Il beam imaging diagnostic. This
existing diagnostic compresses the beam image with
anamorphic lenses into four views that are streaked
simultaneously on two streak cameras. In our new beam
diagnostic design the anamorphic lenses are replaced with
regular lenses and the beam image is stamped with a
pseudo-random mask pattern. The full image is imaged
onto a streak camera with its entrance slit expanded.
Modifying the CUP technique, which uses a single
streaked image, our design splits the image into four
rotated copies and puts all four images on two streak
cameras. A data cube of multiple image frames is
reconstructed from the streak camera data through the use
of the TwiST algorithm? combined with total variation
denoising®. The additional rotated images improve spatial
resolution and reduce noise and image artifacts compared
to using a single streaked image. In reconstructions of
simulated data, fine detail in the beam profile can be seen
and there is a remarkable absence of image artifacts
compared to the existing DARHT Il beam imaging
diagnostic. Performance was evaluated using a pseudo-
MTF derived from a simulated wave pattern test object.

I.INTRODUCTION

Beam diagnostics played a fundamental role in the
commissioning and optimization of the Dual-Axis
Radiographic Hydrodynamic Test (DARHT) facility
linear induction accelerators at Los Alamos National
Laboratory*®. These flash x-ray radiographic machines
provide single and multi-pulse radiographs of
hydrodynamic experiments. In conjunction with beam-

positioning sensors and beam energy diagnostics, the
beam imaging system®’ on DARHT Il has helped greatly
with the tuning of this multi-pulse accelerator to meet
stringent beam requirements.

This paper describes a proposed beam imaging
diagnostic that combines the optical transition radiation
(OTR) foil used on the existing DARHT Il beam imaging
diagnostic with a powerful new compressed sensing
technique called Compressed Ultrafast Photography
(CUP). In CUP, a time series of images are compressed
onto the image output of a streak camera by first stamping
the image with an unchanging pseudo-random mask
pattern before it reaches the front photocathode of the
streak camera. An iterative reconstruction technique with
a strong total variation prior is used to reconstruct the
three-dimensional data cube from the streak camera
image.

This paper is organized into the following sections.
Section Il describes the proposed construction of the
system. Section Il describes the reconstruction method
for generating the time-series of images from a set of
images generated by the streak cameras. Section IV
presents the results of our simulations, including a method
used to evaluate system performance. Section V is a
discussion of the results and presents other applications of
the technique.

I1.SYSTEM DESIGN

A diagram of the proposed beam imaging system is
shown in Fig. 1. The electron beam strikes an OTR foil to
generate on optical image of the beam. The existing beam
imaging diagnostic on DARHT Il uses 1mm titanium foils
or sometimes aluminum coated quartz. If the beam is well
focused the beam diameter will be ~1 mm, but the main
value of this diagnostic is for tuning defocused beams, in
which case the beam diameter will be much larger.
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Figure 1. Diagram of proposed beam imaging diagnostic

with four rotated images on two streak cameras.

The light emitted from the OTR target passes through a
vacuum viewport and is then split into four copies with
beam splitters and mirrors after passing through a lens
system (only a single lens is shown in the diagram). Three
of the images have rotating prisms that rotate 45°, 90° and
135°. The path lengths for the four images can be made
equal but this is not necessary if the depth of field is made
sufficiently large. We assume a target angle of 45° in our
simulations and have not included any imperfections due
to the optical system. We have also assumed that the
unequal magnification of the electron beam in x and y will
be removed by the optical system, but an exact optical
system design has not been done.

Mask patterns on glass or plastic are placed at the front
surface of the photocathode on the streak cameras. These
are pseudo-random block patterns. It was found that the
optimum size for the smallest blocks is close to the
resolution element size of the streak camera. We use a
128x128 block pattern for each image which is then
mapped to a 256x256 image on the CCD of the streak
camera. The block pattern is different for each of the four
images. We model the blur in the streak camera as a
Gaussian blur with FWHM of 50 pm, with magnification
of 1.0 from the photocathode to the CCD and a
1024x1024 CCD with 25 um pixels. Appropriate signal-
dependent noise was included in our system model, with
the assumption that the highest counts on the CCD will be
Y, of the maximum counts.

There are several alternative arrangements of the
system that could have some advantages. Two viewing
angles could be used, allowing for more light collection
and reducing the number of beam splitters. If one of the
streak cameras is rotated 90° then one rotating prism
could be eliminated. The existing DARHT Il beam
imaging diagnostic uses fiber arrays to carry the signals
far from the beam line, reducing radiation on the cameras.
Our proposed diagnostic could use imaging fiber bundles,
but this is an expensive addition. We are assuming the
diagnostic will sit adjacent to the beam line, requiring
extra shielding.
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Figure 2. Diagram of alternative beam imaging
diagnostic with four images split from a single prism
without rotations.

We have also considered a system that does not use
rotating prisms, as shown in Fig. 2. A single 4-facet prism
divides the light into four images without any rotation.
This is a much simpler system, and it should be able to fit
all four images onto one streak camera. The disadvantage
is that reconstruction is more complicated and gives
poorer results than the system with rotated images.

IHI.LRECONSTRUCTION METHOD
A two-step iterative shrinkage/thresholding (TwIST)?
algorithm is used to reconstruct the time-series of images
from the streak camera data, which is the same method
used by the original CUP* authors.
The system is modeled as a matrix operation

y =KX+ ry(Kx), (1)

where y is the streak camera data, K is the system transfer
matrix, X is the true time series of images and 7 is the
noise operator which is signal-dependent. We have not
included the signal-dependent nature of the noise in our
consideration of reconstruction algorithms, so this signal-
dependence will be ignored. In our simulations of data,
however, this signal-dependence is included.

To reconstruct x from f we solve the minimization
problem

I Kx -y |2

argminX + AD(X) ¢, 2

where 1 is the regularizing parameter and @ is a constraint
function, which in our case is a total-variation constraint.

The total variation constraint @ uses the discreet for-
ward difference operators ¢, and o, representing
horizontal and vertical differences,
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where the object x is a time series of N x N images. The
total-variation constraint function @ is

@(x)lizjm 0, G, i) +[en . i) (5)

Egs. (3-5) are not used directly in the reconstruction
algorithm. To solve Eqg. (2), an iterative backprojection of
smoothed residuals is used. The initial guess X, has all
values initialized to O, although the algorithm is not
sensitive to the choice of xq. The first iteration is

X, = F(xo), (6)
where

F(x) = ‘I’(x + KT(y - Kx)) (7

and ¥ is a total-variation denoising operator based on
Chambolle’s projection algorithm®®, which we will not
describe here. The remaining iterations are

X = (L—a)Xy + (0‘ - ﬂ)xt +p1, (Xt)' ®)

where « and f are constants. There are techniques® for
choosing optimum values of « and B. We found
empirically that « = 0.5 and 4 = 0.02 worked well for our
system.

An additional constraint was added to ensure positivity
in the reconstruction. This was done by forcing all
negative values in x, to zero at the end of each iteration.

It was found that Eq. (8) gave good reconstructions
when rotated images were used. When non-rotated images
were used, using the system shown in Fig. 2, a severe
artifact was found in the appearance of a constant
background image that slides down the reconstruction in
the sweep direction. One way to fix this problem is to use
the first frame of the reconstruction to determine the
background and then subtract a sliding version of this
background from all of the images. This only works if the
first frame has no light in it. We found that the
background closely resembled the backprojection of the
data, so we instead used the following algorithm to
subtract the background,

Xfied = X~ 7 G(KT(V)) ) ©)

where 7 is a constant and G is a Gaussian smoothing
operator. This correction is applied at the end of the

reconstruction and was found intuitively without a
theoretical justification. More research is needed to
determine why Eq. (9) appears to work and to optimize it.
Attempts to incorporate this correction within each
iteration of the reconstruction algorithm did not give good
results.

IV.RESULTS

A. Simulated Data and Reconstructions

A simulated beam pulse of 60 ns duration was used to
test the performance of the system, of which two sample
images at different times are shown in Fig. 3. The full
field of view was 5 mm as measured at the electron beam,
and the maximum width of the beam was 2.7 mm. A
complex changing beam profile was used to simulate a
defocused beam. The sweep length was 1500 ns, so the
sweep travelled one pixel in 1.5 ns. One image frame was
reconstructed for each pixel of sweep, so the
reconstruction had 40 frames during the pulse with 50
total frames reconstructed.

The streak camera data from the four rotated images,
broken out into separate images, is shown in Fig. 4.

Figure 3. Two images at different times from the test
beam pulse used to evaluate the system.
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Figure 4. Four streak camera images generated from the
beam pulse shown in Fig. 3. The sweep direction is to the
right.



The reconstruction from the data shown in Fig. 4 was
done using Egs. (6-8) with 50 iterations of Eq. (8). Two
frames from the reconstruction are shown in Fig. 5,
corresponding to the times of the frames shown in Fig. 3.

As a comparison, the same object was used to simulate
data taken with the existing anamorphic beam diagnostic
used on DARHT II, with the results of reconstructions
shown in Fig. 6. This diagnostic is useful for getting the
general beam size and boundaries, but is unable to
reconstruct details of complex beams.

Figure 5. Two images from the reconstruction of
the beam from the simulated streak camera data shown in
Fig. 4. These are from the same times as the two frames
shown in Fig. 3.

Figure 6. Two images from the reconstruction of the
beam from simulations of the existing four-view
anamorphic beam diagnostic used on DARHT I1.

Simulations were also performed using the non-rotated
system from Fig. 2. The results of these reconstructions,
including the extra background subtraction step from Eq.
(9), are shown in Fig. 7. The background subtraction
process does not completely remove the image artifacts
and there is a significant increase in noise.

B. Evaluating System Performance

While visual inspections of reconstructions are
valuable, there is a need to have an automated method of
evaluating system performance. An automated method
can be made more objective than visual evaluation and
can also be easily performed on large numbers of
reconstructions.

Figure 7. Two images from the reconstruction of the
beam from simulations of four non-rotated images using
the system shown in Fig. 2.

To automatically evaluate system performance we
simulated a test object using a sinusoidal wave pattern, an
example of which is shown in Fig. 8. The radius of the
object occupies half the field of view. Eight different
wavelengths were used and a pseudo-MTF (modulation
transfer function) was generated from the modulation in
the reconstructions of these wave objects. We call this a
pseudo-MTF instead of an MTF because the
reconstruction process in non-linear so a traditional MTF
is not valid. Instead, the pseudo-MTF gives the
modulation transfer for this specific set of test objects, all
of which have the same radius. The pseudo-MTF is
averaged over test objects rotated at six different angles.
The object moves uniformly to the right across the field,
always staying in full view. A frame from a

reconstruction of the object is shown in Fig. 9.

)

Figure 8. Test object used to evaluate the pseudo-MTF.
This is one of eight frequencies and six rotations that were
used.
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Figure 9. A frame from the reconstruction of the test
object from Fig. 8.

We chose the spatial frequency at 25% modulation as
our system metric, doing linear interpolation between
frequencies to find this point. We can see the value in
using this metric in choosing the optimum mask element
size. A graph of the 25% modulation point as a function
of smallest mask element size is shown in Fig. 10.
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Figure 10. System performance as a function of mask
element size, showing that the optimum comes at 50 um,
corresponding to the 128x128 mask pattern that we used.
This is also the size of the FWHM of the system blur.

Another example of the use of the pseudo-MTF is
seeing how system performance depends on the length of
the pulse. We simulated wave objects with different pulse
lengths and the results of the pseudo-MTF evaluation are
shown in Fig. 11. We see a steady degradation in
performance as longer pulses are used. This can be
explained by the greater overlap of images as the pulse
gets longer. The ratio of reconstructed pixels to data
pixels gets larger as more frames are reconstructed, so in
essence the data compression is increasing, leading to
poorer image quality.
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Figure 11. System performance as a function of pulse
length expressed as number of reconstructed frames.
System performance steadily degrades with increasing
numbers of reconstructed frames.

V.DISCUSSION

The modified CUP technique that we have used falls
under the general theory of compressed sensing® and is
very similar to compressed hyperspectral imaging (CHI).
CHI also uses a coded mask and a sweep of images across
a camera, but with CHI the sweep is in wavelength
instead of in time. Much of the theory from CHI applies
to CUP, including the degradation in reconstruction
quality with greater levels of compression that we see in
Fig. 11.

The original use of CUP was for very sparse images
where only a small part of the image has data and the
object is generally moving so that any one region of the
image contains data for very few frames. With the use of
multiple images, and particularly with rotated images, the
use of CUP can be expanded to data sets that are much
less sparse. In our simulations the object is much larger
and moves very slowly so each part of the data
contributes to many frames of the reconstruction.

The choice between rotating and non-rotating systems
will likely be influenced by further improvements in the
data analysis. With rotated images, the TwiIST algorithm
shown in Egs. (6-8) naturally does a good job of
reconstructing the object with little sensitivity to the exact
choice of algorithm parameters. With the non-rotating
system the results were almost useless unless the
background subtraction technique in Eq. (9) is used, and
even then the results are significantly worse than when
rotations are used. Further work on the reconstruction
algorithm may reduce the difference between these two
systems and make the non-rotated system preferred due to
its greater simplicity.

The fact that data compression increases as the number
of reconstructed frames increases imposes limits on this
technique’s usefulness for analyzing long data records. If
the object is smaller and moving quickly across the
image, the data compression problem decreases
significantly since more pixels in the streak images
contain information that can be used in the reconstruction.



We concentrated on objects that moved slowly as a more
difficult test of the system performance.

We are considering the development of an x-ray
imaging system using the same technique. In the case of
X-rays, rotations are not possible when using a single
streak camera. A configuration employing two or more
rotated cameras could be possible, but this makes an
overly complicated system, in addition to introducing
significant problems due to using widely spaced viewing
angles. We are expecting that the x-ray system will use a
single streak camera, so improvement in the analysis of
non-rotated images will be very important.
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