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Difficulties in Computational MHD

Coupling between the Navier-Stokes equations and the Maxwell
equations

Prominent physics (e.g. the Alfvén wave) arise from this coupling

Important to accurately capture the coupling (implicit fully coupled
vs operator splitting schemes)

Physical phenomena spanning over a wide range of length- and
time-scales (restrictive time steps for explicit schemes)

Conforming discretizations (~E on edges/~B on faces from physical

perspective; some formulations require ~B on edges)
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Fully Coupled Fully Implicit Schemes

Multiple Time Scales
MHD times scales difficult for explicit, operator-split, and semi-implicit time 
integration

Stable time integration enabled by implicit time stepping

• Newton’s Method: Must solve linear system

Our approach is to use preconditioned Newton-Krylov methods

• Effective preconditioning is key to parallel scalability

Implicit schemes allow stable time integration when following
physical time scales of interest

Fast time scales translate to stiff modes in discrete systems

Need preconditioners that approximate coupled overlapping time
scales that produce important modes

Steady state is inifinite time step limit, extreme case
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Robust Solvers

We want preconditioners that capture the
hydrodynamic-electromagnetic coupling(

M Z
Y N

) (
xem

xfl

)
Systems may have different discretizations for different DOFs (u and

p nodal, Q2-Q1 for LBB stable, ~E on edges/~B on faces, ~B on edges,
~A on edges)

Motivates block preconditioners

Different physics separated → use preconditioning ideas developed
for single physics
Different discretizations separated → use simple existing solvers for
subsolves (vector convection-diffusion, scalar Laplacian, curl-curl
operator on edges, etc.)
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Goals of this Work

Focus on a dual saddle point formulation (~B on edges, magnetic
Lagrange multiplier)

Reflective of many difficulties in preconditioning MHD (strong
coupling, different discretizations, unique operators)

Develop block preconditioners that

1. Account for coupling through outer structure
2. Handle each saddle point subsystem well
3. Use existing technologies for component solves

Demonstrate robustness to nondimensional parameters and parallel
scalability
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A Lagrange Multiplier Fomulation

D. Schötzau. Mixed finite element methods for stationary
incompressible magnetohydrodynamics. Numer. Math., 96:771-800,
2004.

∂~B
∂t + 1

Rem
∇×∇× ~B −∇× (~u × ~B) +∇r = ~0

∇ · ~B = 0

∂~u
∂t + ~u · ∇~u − 1

Re ∆~u +∇p + S~B ×∇× ~B = ~0

∇ · ~u = 0

Integrate by parts so we can have ~B ∈ H(curl)

Q2-Q1 for ~u-p, first order edge elements for ~B, Q1 for r results in a
stable discretization
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A Preconditioner Form

The discrete system:(
M Z
Y N

) (
xem

xfl

)
=

(
I 0

YM−1 I

) (
M Z
0 X

) (
xem

xfl

)
X = N − YM−1Z

Use an approximation of the U factor as the preconditioner

Requires approximations of the Maxwell system and the perturbed
Navier-Stokes system

If fluids are ordered first, a Schur complement is obtained on the
electromagnetic DOFs (considering this for other formulations)

We prefer here to put the Schur complement on the fluids as there
are already several difficulties with the Maxwell system
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The (Convective) Maxwell Saddle Point System

Discrete system: (
FB Dt

D 0

) (
B
r

)
Corresponding continuous system:(

1
∆t I + 1

Rem
∇×∇×−∇× (~a× ·) ∇
−∇· 0

) (
~B
r

)
The (1,1) block is singular at steady state and close to singular
when ∆t is large

The curl-conforming convection-diffusion operator has a large null
space (not all errors are well represented in the residual →
traditional multigrid fails)

May want to modify the (1,1) block so it is easier for component
solvers (necessary for steady problems)
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Grad Div Augmentation

Based on augmented Lagrangian preconditioning (e.g. Benzi &
Olshanskii)

Augment the (1,1) block(
FB Dt

D 0

)
=

(
I − 1

Rm
DtQ−1

r

0 I

) (
FB + 1

Rem
DtQrD Dt

D 0

)
Approximately completes the Laplacian

GB := FB + 1
Rem

DtQrD ∼ 1
∆t I −

1
Rem

∆−∇× (~a× ·)

Null space is now trivial, not close to singular if ∆t is large

Traditional multigrid can be used on this operator (errors are well
represented in the residual)
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The Grad Div Schur Complement

Block LU decomposition:(
GB Dt

D 0

)
=

(
I 0

DG−1
B 0

) (
GB Dt

0 Xr

)
Xr = −DG−1

B Dt

Approximate the Schur complement with commutators, motivated
by PCD preconditioner for Navier-Stokes

Continuous commutator:

∇ · [ 1
∆t I −

1
Rem

∆−∇× (~a× ·)] = [ 1
∆t I −

1
Rem

∆r ]∇·

Discrete commutator:

DQ−1
B GB ≈ LrQ

−1
r D

Schur complement:
Xr ≈ −QrL

−1
r Ar
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The Full Grad Div Approximation

Two approximations(
GB Dt

0 −QrL
−1
r Ar

)
,

(
GB DtL−1

r (Lr + 1
Rem

Ar)

0 −QrL
−1
r Ar

)
The second incorporates the upper triangular factor used for the
original augmentation, requires an extra solve with Lr

Have proven bounds on the eigenvalues of both preconditioned
system

Steady versions (
GB Dt

0 −Qr

)
,

(
GB 2Dt

0 −Qr

)
Steady state without convection: S.-L. Wu, T.-Z. Huang, and L. Li.
Block triangular preconditioner for static Maxwell equations.
Comput. Appl. Math., 30:589-612, 2011.
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Mass Augmentation

Through similar arguments, we obtain the mass augmentation
preconditioner (

FB + 1
Rem

QB 0

0 RemAr

)
Also has provable eigenvalue bounds

Requires fewer solves and multiplies

Makes the (1,1) block nonsingular for steady problems, further from
singular for transients

Traditional multigrid still can’t be used on the (1,1) block, but there
exist special edge based multigrid routines for operators of this type
(with no convection)

We use an eddy current Maxwell solver implemented in ML (Trilinos)

J. Hu, R. Tuminaro, P. Bochev, C. Garasi, and A. Robinson. Toward
an h-independent algebraic multigrid method for Maxwell’s
equations. SIAM J. Sci. Comput., 27:1669-1688, 2006.
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The Perturbed Navier-Stokes System

Schur complement X = N − YM−1Z
Working with the corresponding continuous operators, −YM−1Z
can be approximated by a discretization of(

γSRem
~b × (· × ~b) 0

0 0

) (
~u
p

)
The discrete approximation:

Xxfl ≈
(

FB + K B t

B 0

) (
u
p

)
Saddle point system with zero order perturbation of the fluid
convection-diffusion operator
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Perturbed Navier-Stokes Schur Complement

Upper triangular approximation(
FB + K B t

0 Xp

)
, Xp = −B(FB + K )−1B t

The convection-diffusion operator commutes well with the
divergence, but the coupled operator corresponding to K does not

Motivated by our work on an exact penalty MHD formulation, we
apply a modified version of LSC where the contribution of K is
relaxed

Xp ≈ −(BQ−1
u B t)[BQ−1

u (FB + αK )Q−1
u B t ]−1(BQ−1

u B t)

E. Phillips, H. Elman, E. Cyr, J. Shadid, and R. Pawlowski. A block
preconditioner for an exact penalty formulation for stationary MHD.
SIAM J. Sci. Comput., 36:B930-B951, 2014.
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Component Solves

A =

(
M Z
Y N

)
, P =

(
M̂ Z
0 X̂

)

M̂ is either the full grad div approximation incorporating the upper
triangular term (GDf), the economy grad div approximation (GDe),
or the mass augmentation approximation (M)

X̂ is the upper tringular perturbed Navier-Stokes approximation

Operator AMG Smoother
Fu + K 1 sweep ILU(0)
BQ−1

u B t 5 sweeps GS
Ar, Lr 5 sweeps GS

FB + 1
Rem

DtQ−1
r D 2 sweeps ILU(0) wrapped in GMRES (10−3)

FB + 1
Rem

QB Maxwell wrapped in GMRES (10−3)
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Implementation

Implemented in the Trilinos framework

Drekar for finite element formulation
Teko for constructing block preconditioners
ML for multigrid
IFPACK for smoothers

Backward Euler with fixed time step for transient problems

Newton’s method for nonlinear solves (10−4 residual reduction)

GMRES for linear solves (10−3 residual reduction)
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Test Problem

3D lid driven cavity with imposed magnetic field

Domain [0, 1]3

~u = (1, 0, 0) on top, zero on all other walls

~B × ~n = (−1, 0, 0)× ~n
Re = 100,S = 1, steady solution z = 0 cross section

Rem = 1 Rem = 10 Rem = 100
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Transient Results

h = 1
16 ,∆t = 1

16 ,Re = 100, integrated to t = 2

CFLAlfven =
√

S ∆t
h is a measure of how well the Alfvén wave is

resolved by the time discretization

CFLAlfven = 1 if discrete time follows Alfvén speed

Alfvén wave is stiff when CFLAlfven > 1

Ha =
√

SReRem is a non-dimensional measure of coupling

M GD E
XXXXXXXXXXCFLAlfven

Ha
1 10 100 1 10 100 1 10 100

1 22 18 20 30 21 21 26 20 21
10 31 22 46 111 30 49 30 28 49

100 44 32 51 108 32 66 29 31 62
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Steady Results

h = 1
16 ,S = 1

GD and E give the same results for steady state

M GD/E
PPPPPPPPRe

Rem 1 10 100 1 10 100

1 13 23 27 10 12 16
10 17 29 48 14 16 28

100 34 47 84 21 28 62
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Steady Scaling Results

Number of processors: 1, 8, 64, 512, 4096, h = 1
4 ,

1
8 ,

1
16 ,

1
32 ,

1
64

Re = 100,Rem = 10,S = 1
Compared to a domain decomposition preconditioner with one level
of overlap and ILUTP on each subdomain
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Timings are dominated by the edge solves, growth largely due to
more GMRES iterations being needed to reach 10−3 tolerance
Need to improve these solves
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Conclusions

Developed block preconditioners for a dual saddle point MHD
formulation that is robust to the non-dimensional parameters and
scaled reasonably well

Block structure and Schur complement approximations handle
coupling

Use augmentation to make the Maxwell subsystem solvable

GD and E preconditioners use only traditional multigrid

M preconditioner makes use of existing Maxwell multigrid algorithms

Scaling can be improved by focusing on the ~B field component
solves → improve smoothers to avoid using an inner GMRES solve

The curl-conforming convection-diffusion operator arises in other
MHD formulations

We are currently using ideas developed for this formulation on vector
potential and ~E -~B MHD formulations, extending to two-fluid MHD
and full Maxwell
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