
1

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, 
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National 

Nuclear Security Administration under contract DE-AC04-94AL85000.

Development of a Contact MiniApplication
Using Kokkos

Glen Hansen

Patrick Xavier

Sam Mish

SAND2015-xxxx

SAND2015-1628C



22

Contact mechanics

"Brick Wall”
in ALEGRA

 Global search
 Repartition to load balance contact 

operations
 “Ghosting” is used to ensure potentially-

contacting entities are visible on a given 
processor

 Local search and imprinting
 On each processor, “imprint” contacting 

entities

 Enforcement 
 Assemble terms that describe physics 

interaction between entities



33

Primary decomposition-based search

 Contact calculations are performed using the same decomposition 
used for the physics solution
 The surface entities that are involved in contact are not typically 

balanced across the available processors
 Indeed, some processors might not contain any surface entities and will 

idle during contact operations

 Use a “ghosting search” to migrate possibly contacting entities so 
they are visible to each other on the processor

Requires only a limited amount of entity communication but the load 
balance is generally poor.



44

Secondary decomposition-based search

 A secondary decomposition is used to evenly spread the contacting 
surface entities across the available processors

 Use of either an inertial or RCB decomposition ensures most of the 
possibly contacting entities are on the same processor. A “ghosting 
search” might again be used to migrate entities to eliminate further 
communications during the remaining contact operations

A large amount of communication is needed to evenly distribute the 
surface entities, and again to recover the primary decomposition at the
completion of the contact operation. Load balance is good, however.

The “fastest” approach is problem dependent. We consider only the ghosting
search in this study.



55

Local search and imprinting

 Search to determine possibly contacting “pairs” or subsets of entities 
between surfaces

 “Imprinting” establishes the geometric relationships between entities 
via projection, to support finite element enforcement operations



66

Enforcement

 "Augment" the physics problem with terms that represent the contact 
interaction, using multi-point constraints (MPC), penalty methods, or 
Lagrange multipliers



77

Contact search – MPI+X strategy

 Transfer node and face lists to the 
coprocessors

 Compute potential objects to 
ghost

 Transfer node boxes to host, 
communicate with MPI

 Communicate incoming node 
boxes to coprocessors, search 
against faces

 Construct export buffers that 
describe entities to be ghosted

 Zoltan migrate ghosted entities 
using MPI

ContactNodeBlock

node mini-topology 
list

ContactFaceBlock

face mini-topology 
list

Construct Bounding Boxes

Compute Ghosted Objects

Communicate 
Node Boxes

Search Faces against Nodes

Migrate



88

Parallel search algorithm

 Epsilon-inflated axis-aligned bounding boxes (AABBs) wrap 
the entities that could come in contact

 Need both the tree traversal and construction to be parallel 
with sufficient occupancy on coprocessors

 Employ linear BVH tree designed to be constructed in 
parallel
 sort along Z-order curve defined by Morton codes
 number the entities in a careful way to break the 

dependence on parent nodes in the tree (Karras, HPG 2012)
 unfortunately, new approach requires 3 binary searches per 

entity instead of one and will run slower on a single thread 
than an optimal serial algorithm

En#ty& ε"ε"

ε"

ε"

x 

y 



99

Data movement: original MPI model

NetworkPack/ 
Unpack

Zoltan_Migrate(), MPI_SEND(), etc

Design optimized for MPI performance/scalability

Rank k



1010

Data movement: current GPU implementation

Network

Pack/ 
Unpack

Design balanced for performance on both sides

Rank k



1111

Global ghosting search using Kokkos: MPI+GPU

Global Search Overall Scaling of Ghosting Function

 Results on "Curie" (one NVIDIA KX20 / node)

 MAS = Morton-code accelerated search

 MigrateExportedData() = Zoltan_Migrate of ghost nodes and faces



1212

Global ghosting search using Kokkos MPI+OpenMP

 Results on "Curie" (16-core Opteron / node)

 MAS = Morton-code accelerated search 

 MigrateExportedData() = Zoltan_Migrate of ghost nodes and faces



1313

Scalability on multicore and GPU architectures

 Compare Kokkos/OpenMP
1,2,4,8 threads and 
Kokkos/Cuda

 Diversity in the 
performance of 
Kokkos::atomic_fetch_and_
add
 Fast on Kepler
 Reconsider approach on 

Opteron

 Ongoing work:
 try “count-allocate-fill” 

pattern, at least for 
OpenMP

 Experiments on Xeon/Phi

0.0000E+00

5.0000E-01

1.0000E+00

1.5000E+00

2.0000E+00

2.5000E+00

3.0000E+00

3.5000E+00

OpenMP, 1 th/rk OpenMP, 2 th/rk OpenMP, 4 th/rk OpenMP, 8 th/rk Cuda



1414

Need to address MPI communications model

Network

Pack/ 
Unpack

Pack and unpack on device buffer, then MPI_SEND() using device buffer handle

Note: Latency hiding can easily be employed here
• Initiate ghosting search at end of previous solution step
• Assemble remainder of finite element physics problem while 

waiting for ghosting migration to complete
• Perform local search and imprinting – proceed to assembly of 

contact contributions

Rank k



1515

Conclusions

 A tradeoff exists between possible performance gains with MPI 
parallelism and on-node multicore parallelism

 With the contact problem, the physics solution and decomposition will 
enforce a given MPI rank structure and data layout

 Within that context, one must weigh entity communications costs and 
load balancing issues
 if "FLOPS are free," load imbalance may not be a large concern
 However, there is a limited amount of memory on the GPU, may need to 

rebalance to spread the contact operations across available GPU 
memory

 It can be the case that an implementation designed for one 
coprocessor (GPU) may not perform well on another (Phi/multicore)



1616

References

 G. Hansen, P. Xavier, S. Mish, T. Voth, M. Heinstein, M. Glass, "An MPI+X 
Implementation of Contact Global Search Using Kokkos," Engineering with 
Computers, submitted.

 T. Karras, "Maximizing Parallelism in the Construction of BVHs, Octrees, 
and k-d Trees, High Performance Graphics, 2012.

 T. Karras, "Thinking Parallel, Part III: Tree Construction on the GPU," 
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-
construction-gpu/ (2012)

http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

