SAND2015-xxxx

-
\
-) SAND2015- 1628C

Development of a Contact MiniApplication
Using Kokkos

Glen Hansen
Patrick Xavier

Sam Mish

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National
Nuclear Security Administration under contract DE-AC04-94AL85000.

T VAL =35 @ Sandia
(NI A’ & =4 National

clear ity ini:

Laboratories

Contact mechanics

= Global search
= Repartition to load balance contact
operations
= “Ghosting” is used to ensure potentially-
contacting entities are visible on a given
processor

= Local search and imprinting
= On each processor, “imprint” contacting
entities

"Brick Wall”

= Enforcement in ALEGRA

= Assemble terms that describe physics

_ _ o\ Sandia
interaction between entities @ National

Laboratories

> 4’ Primary decomposition-based search

= Contact calculations are performed using the same decomposition
used for the physics solution
= The surface entities that are involved in contact are not typically
balanced across the available processors
= Indeed, some processors might not contain any surface entities and will
idle during contact operations

= Use a “ghosting search” to migrate possibly contacting entities so
they are visible to each other on the processor

Requires only a limited amount of entity communication but the load
balance is generally poor.

Sandia
3 National
Laboratories

V
\'

-) Secondary decomposition-based search

= A secondary decomposition is used to evenly spread the contacting
surface entities across the available processors

= Use of either an inertial or RCB decomposition ensures most of the
possibly contacting entities are on the same processor. A “ghosting
search” might again be used to migrate entities to eliminate further
communications during the remaining contact operations

A large amount of communication is needed to evenly distribute the
surface entities, and again to recover the primary decomposition at the
completion of the contact operation. Load balance is good, however.

The “fastest” approach is problem dependent. We consider only the ghosting
search in this study.

Sandia
4 National
Laboratories

V
\'

: > Local search and imprinting

= Search to determine possibly contacting “pairs” or subsets of entities

between surfaces

= “Imprinting” establishes the geometric relationships between entities
via projection, to support finite element enforcement operations

. T. D<_ S:AtS:N;Lst
t g
n t g
. Sandia

5 @ National
Laboratories

Enforcement

"Augment" the physics problem with terms that represent the contact

interaction, using multi-point constraints (MPC), penalty methods, or
Lagrange multipliers

Iy = /Cq(TS T Lq])drc
I

Ai Am As O Vi
A A 0 M \'%
ai(T,v) + cf(v,2r) + (T, pp) = (7 TL T il) Am.l gm A, D Vm
si ss $
M" D" 2 My

M= [(g —2)ar

u FC n\én P.

Ami Amm 0 M w
aﬁ(u,w)+Cﬁ(W,lu)+Cﬁ<uaﬂu>:(“zT u; llz AZ‘) A 0 As D Wm
s
0 M D' Z/)\mp,

Sandia
National
Laboratories

\

) Contact search — MPI+X strategy
ContactNodeBlock ContactFaceBlock
node mini-topology face mini-topology
= Transfer node and face lists to the list list
coprocessors
= Compute potential objects to Construct Bounding Boxes
ghost
= Transfer node boxes to host, Compute Ghosted Objects

communicate with MPI

= Communicate incoming node

boxes to coprocessors, search Communicate

: Node Boxes
against faces

= Construct export buffers that
describe entities to be ghosted Search Faces against Nodes

= Zoltan migrate ghosted entities
using MPI

(1)

Sandia
National
Laboratories

< Parallel search algorithm

= Epsilon-inflated axis-aligned bounding boxes (AABBs) wrap
the entities that could come in contact

= Need both the tree traversal and construction to be parallel
with sufficient occupancy on coprocessors

= Employ linear BVH tree designed to be constructed in
parallel

= sort along Z-order curve defined by Morton codes

= number the entities in a careful way to break the
dependence on parent nodes in the tree (Karras, HPG 2012)

= unfortunately, new approach requires 3 binary searches per
entity instead of one and will run slower on a single thread
than an optimal serial algorithm

Sandia
3 National
Laboratories

j/" Data movement: original MPl model

Zoltan_Migrate(), MP1_SEND(), etc

=. &
_

|
Rank k

Design optimized for MPI performance/scalability

Sandia
9 National
Laboratories

P
-
j/" Data movement: current GPU implementation

Design balanced for performance on both sides

@ Rank k

Pack/
Unpack

Z

Network
Sandia
10 National
Laboratories

-
= > Global ghosting search using Kokkos: MPI+GPU

0.06 3.5
4 MPI ACME —+— 4 MPI ACME —+—
4 MPI AMC Kokkos::Cuda 4 MPI AMC Kokkos::Cuda
3+ MigrateExportedData() ——

0.05
—_ —~ 25}
L 004 L
£ £
= = 2f
§ 0.03 | §
O o 15¢
= =

0.02 |
= = |

0.01 | 0.5

All Data Using 4 MPI Ranks ' All Data Using 4 MPI Ranks
0 | | | | 0) | | | |
M 2M 3M 4M 5M M 2M 3M 4M 5M
Number of Elements Number of Elements
Global Search Overall Scaling of Ghosting Function

= Results on "Curie" (one NVIDIA KX20 / node)
= MAS = Morton-code accelerated search
= MigrateExportedData() = Zoltan_Migrate of ghost nodes and faces

Sandia
1 National
Laboratories

-
> <'Global ghosting search using Kokkos MPI+OpenMP

12

3.5

ACME Ref ——
Morton 1 Thread
3t Morton 2 Threads
Morton 4 Threads ——
Morton 8 Threads —=&—
25 | MigrateExportedData()

Wall Clock Time (s)

OpenMP

All Data Using 4 MPI Ranks

1M 2M 3M
Number of Elements

Results on "Curie" (16-core Opteron / node)

MAS = Morton-code accelerated search

5M

MigrateExportedData() = Zoltan_Migrate of ghost nodes and faces

(1)

Sandia
National
Laboratories

Scalability on multicore and GPU architectures

3.5000E+00

3.0000E+00

2.5000E+00

2.0000E+00

1.5000E+00

1.0000E+00

5.0000E-01

0.0000E+00

OpenMP, 1 th/rk

OpenMP, 2 th/rk

OpenMP, 4 th/rk

OpenMP, 8 th/rk

Cuda

13

Compare Kokkos/OpenMP
1,2,4,8 threads and
Kokkos/Cuda

Diversity in the
performance of
Kokkos::atomic_fetch_and_
add
= Fast on Kepler
= Reconsider approach on
Opteron

Ongoing work:
= try “count-allocate-fill”
pattern, at least for
OpenMP
= Experiments on Xeon/Phi

Sandia
National
Laboratories

-~
> 4' Need to address MPI communications model

Pack and unpack on device buffer, then MP1_SEND() using device buffer handle

Pack/
Unpack

Note: Latency hiding can easily be employed here
 Initiate ghosting search at end of previous solution step
« Assemble remainder of finite element physics problem while
waiting for ghosting migration to complete
« Perform local search and imprinting — proceed to assembly of @ Sandia

contact contributions National

14 Laboratories

e g Conclusions

= A tradeoff exists between possible performance gains with MPI
parallelism and on-node multicore parallelism

= With the contact problem, the physics solution and decomposition will
enforce a given MPI rank structure and data layout

= Within that context, one must weigh entity communications costs and
load balancing issues
= if "FLOPS are free," load imbalance may not be a large concern
= However, there is a limited amount of memory on the GPU, may need to
rebalance to spread the contact operations across available GPU
memory

= [t can be the case that an implementation designed for one
coprocessor (GPU) may not perform well on another (Phi/multicore)

Sandia
15 National
Laboratories

< References

= G. Hansen, P. Xavier, S. Mish, T. Voth, M. Heinstein, M. Glass, "An MPI+X
Implementation of Contact Global Search Using Kokkos," Engineering with
Computers, submitted.

= T. Karras, "Maximizing Parallelism in the Construction of BVHs, Octrees,
and k-d Trees, High Performance Graphics, 2012.

= T. Karras, "Thinking Parallel, Part Ill: Tree Construction on the GPU,"
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-
construction-gpu/ (2012)

Sandia
16 National
Laboratories

http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/
http://devblogs.nvidia.com/parallelforall/thinking-parallel-part-iii-tree-construction-gpu/

