
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a
wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear

Security Administration under contract DE-AC04-94AL85000.

In many cases, the code path, processor instructions, and memory
access patterns are very similar from realization to realization.

Idea: Propagate a collection of samples (ensemble) together
through the forward simulation:

 Each sample-dependent datum becomes a small array
 Increases fine-grained parallelism: Each sample within

ensemble can be assigned to a vector lane/CUDA thread
 Improves memory access patterns: Random memory accesses

become block accesses (coalesced/packed)
 Enables sharing of non-sample-dependent data (e.g., mesh)

between samples to reduce memory bandwidth
 Amortizes MPI communication latency across ensemble

Apply to C++ PDE codes via template-based generic programming:
 Template assembly on scalar type
 Instantiate template code on ensemble scalar type
 Ensemble scalar type implements all relevant operations using

SIMD/SIMT parallelism
 Use thread team interface for kernel launch and functor

Approach implemented by Stokhos embedded uncertainty
quantification library on top of Kokkos portable manycore
performance library (H.C. Edwards, D. Sunderland, C. Trott).

Problem

Sandia National Laboratories
E.T. Phipps and H.C. Edwards
Sandia National Laboratories, Albuquerque 87185

Results

Approach

Significance

SAND 2014-xxxxP

Uncertainty quantification (UQ) is an important scientific driver for
pushing to the exascale, potentially enabling rigorous and accurate
predictive simulation for many problems that are intractable today.

Nearly all UQ approaches repeatedly sample deterministic
simulation codes at different realizations of the input data, resulting
in performance limited to that of each realization.

Many PDE simulations do not achieve high performance on
multicore (CPU/GPU/Accelerator) architectures due to:

 Random, uncoalesced memory accesses
 Inability to exploit consistent vectorization

 Results demonstrate significant improvements in assembly
performance for all multicore architectures and interconnects

 Similar speed-ups achieved for sparse iterative linear system
solvers (e.g., CG, GMRES)

 Enables further speed-ups by sharing preconditioners across
the ensemble

 A significant challenge is developing algorithmic approach for
grouping samples in a real UQ problem to take most advantage
of similarity in simulation process through ensemble

Idea prototyped within matrix, RHS assembly for 3-D uncertain,
nonlinear diffusion equation:

Cost of ensemble assembly compared to propagating a single
sample at a time on contemporary multicore architectures:

 Intel Sandy Bridge CPU (8 cores, 16 threads)
 IBM Blue Gene Q CPU (16 cores, 64 threads)
 AMD Interlagos CPU (16 cores, 16 threads)
 NVIDIA Kepler K20x GPU
 Intel Xeon Phi 7120p (60 cores, 240 threads)

and interconnects:
 IBM Blue Gene Q
 Cray XK7 (CPU-CPU and GPU-GPU)

Assembly Algorithms for PDEs with Uncertain Input
Data on Emerging Multicore Architectures

Ensemble PDE Solution Input Data Ensemble FEM Residual Ensemble

FEM Residual Equations: 0

1

2

3

4

5

6

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Matrix/RHS Assembly
(64x64x64 Spatial Mesh)

Sandy
Bridge CPU

Blue Gene Q
CPU

AMD
Interlagos
CPU
Nvidia K20X
GPU 0

5

10

15

20

25

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Halo Exchange -- Blue Gene Q
(1 MPI Rank/Node, 64 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

0

2

4

6

8

10

8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 CPU
(2 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes
0

5

10

15

20

16 32 48 64

Sp
ee

d
-U

p

Ensemble Size

Halo Exchange -- Cray XK7 GPU
(1 MPI Ranks/Node, 8 Threads/Rank,

64x64x64 Mesh/Node)

2 Nodes

4 Nodes

8 Nodes

16 Nodes

32 Nodes

64 Nodes

128 Nodes

256 Nodes

512 Nodes

SAND2015-1604C

