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In many cases, the code path, processor instructions, and memory 
access patterns are very similar from realization to realization.

Idea:  Propagate a collection of samples (ensemble) together 
through the forward simulation:

 Each sample-dependent datum becomes a small array
 Increases fine-grained parallelism:  Each sample within 

ensemble can be assigned to a vector lane/CUDA thread
 Improves memory access patterns:  Random memory accesses 

become block accesses (coalesced/packed)
 Enables sharing of non-sample-dependent data (e.g., mesh) 

between samples to reduce memory bandwidth
 Amortizes MPI communication latency across ensemble

Apply to C++ PDE codes via template-based generic programming:
 Template assembly on scalar type
 Instantiate template code on ensemble scalar type
 Ensemble scalar type implements all relevant operations using 

SIMD/SIMT parallelism
 Use thread team interface for kernel launch and functor

Approach implemented by Stokhos embedded uncertainty 
quantification library on top of Kokkos portable manycore
performance library (H.C. Edwards, D. Sunderland, C. Trott).
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Uncertainty quantification (UQ) is an important scientific driver for 
pushing to the exascale, potentially enabling rigorous and accurate 
predictive simulation for many problems that are intractable today.

Nearly all UQ approaches repeatedly sample deterministic 
simulation codes at different realizations of the input data, resulting 
in performance limited to that of each realization.  

Many PDE simulations do not achieve high performance on 
multicore (CPU/GPU/Accelerator) architectures due to:

 Random, uncoalesced memory accesses
 Inability to exploit consistent vectorization

 Results demonstrate significant improvements in assembly 
performance for all multicore architectures and interconnects

 Similar speed-ups achieved for sparse iterative linear system 
solvers (e.g., CG, GMRES)

 Enables further speed-ups by sharing preconditioners across 
the ensemble

 A significant challenge is developing algorithmic approach for 
grouping samples in a real UQ problem to take most advantage 
of similarity in simulation process through ensemble

Idea prototyped within matrix, RHS assembly for 3-D uncertain, 
nonlinear diffusion equation:

Cost of ensemble assembly compared to propagating a single 
sample at a time on contemporary multicore architectures:

 Intel Sandy Bridge CPU (8 cores, 16 threads)
 IBM Blue Gene Q CPU (16 cores, 64 threads)
 AMD Interlagos CPU (16 cores, 16 threads)
 NVIDIA Kepler K20x GPU
 Intel Xeon Phi 7120p (60 cores, 240 threads)

and interconnects:
 IBM Blue Gene Q
 Cray XK7 (CPU-CPU and GPU-GPU)

Assembly Algorithms for PDEs with Uncertain Input 
Data on Emerging Multicore Architectures
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