

# Extended and Conformal Decomposition Finite Elements for 3D Compatible Discretizations

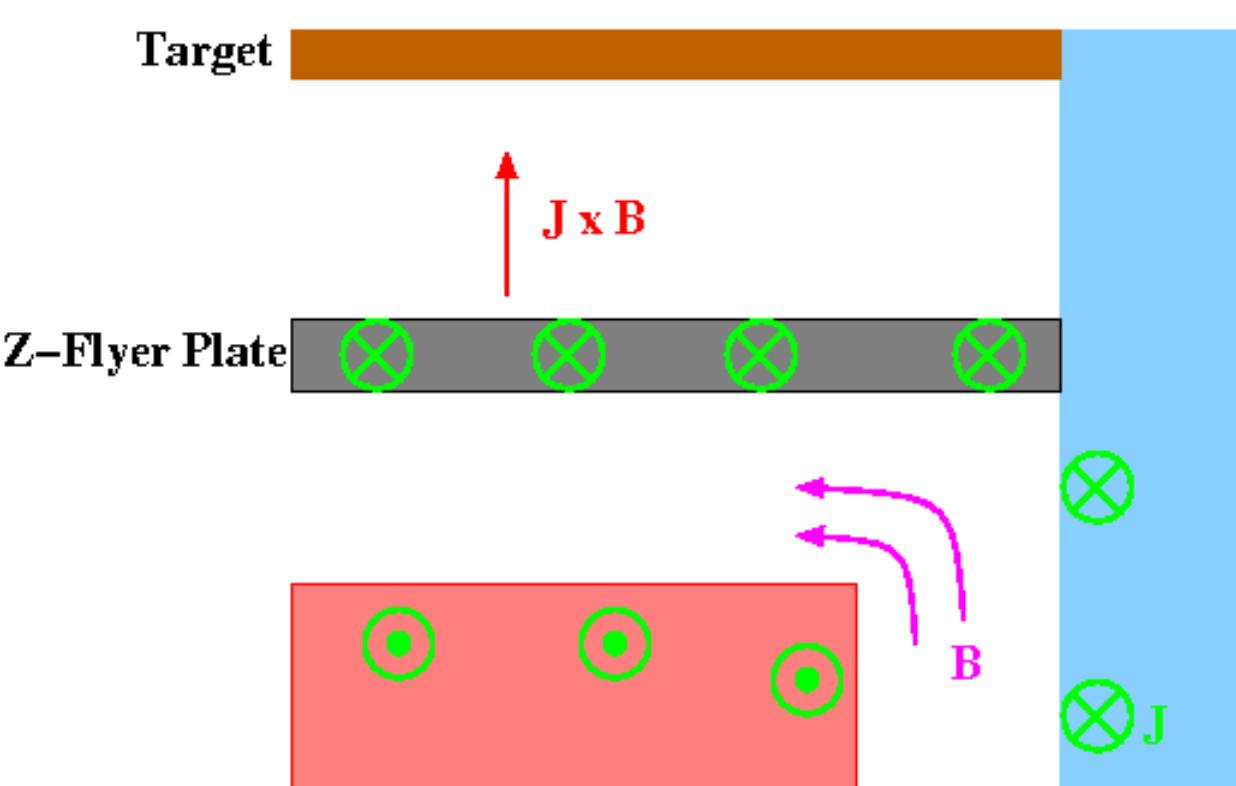
Chris Siefert, Richard Kramer, Pavel Bochev and Tom Voth

Sandia National Laboratories

## Motivating Application

**Motivating application: Z-flyer plate**

- Lorentz force accelerates plate towards target
- Goal: Shape current pulse to ensure plate is flat and solid as possible on impact.



### Current concentrates on material surfaces

- Material/void interfaces "count" for EM as voids must be meshed.
- Lagrangian only works for small deformation.
- Eulerian mixture models underdeveloped for EM.
- Solution: Interface tracking + local mesh or basis refinement.
- Basis refinement: eXtended Finite Element Method (XFEM).
- Mesh refinement: Conformal Decomposition Finite Element Method (CDFEM).

### Governing PDEs

Nodes (2D/3D):  $\tau \frac{\partial u}{\partial t} + \nabla \cdot \sigma \nabla u = 0$

Edges (2D/3D):  $\sigma \frac{\partial E}{\partial t} + \nabla \times \nu \nabla \times E = 0$

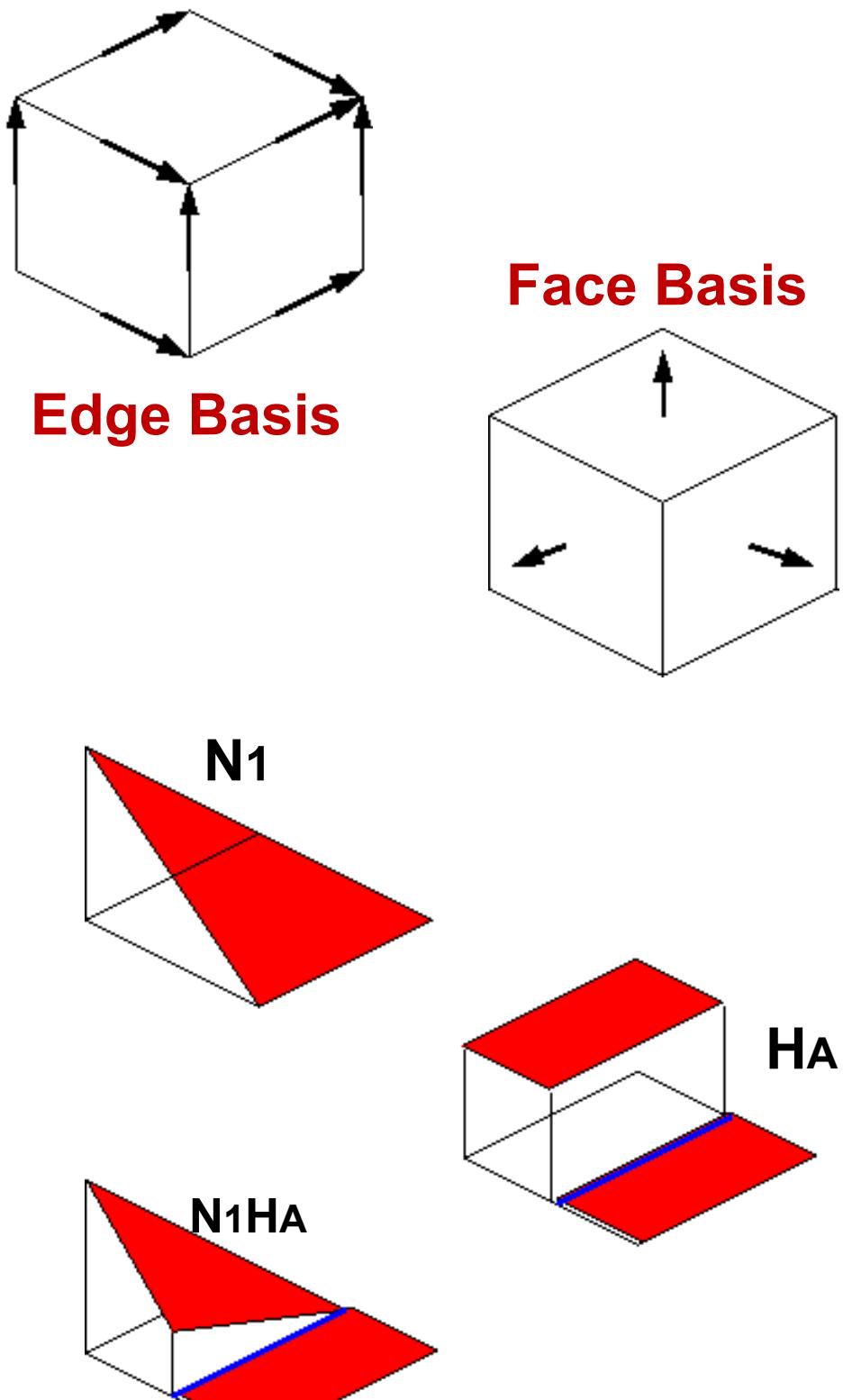
Faces (3D):  $\nu \frac{\partial F}{\partial t} + \nabla \kappa \nabla \cdot F = 0$

These PDEs capture electrostatics, magnetic diffusion and thermal diffusion (both nodal and flux-based).

## Approach

### Edge and Face Element Discretizations

- Preserves  $\operatorname{div} \operatorname{curl} = 0$  and  $\operatorname{curl} \operatorname{grad} = 0$  discretely.
- Fact: Lowest order edge basis functions on simplices (tris, tets) have a *constant tangential component* along any line.
- Fact: Lowest order face basis functions on simplices (tris, tets) have a *constant normal component* along any plane.



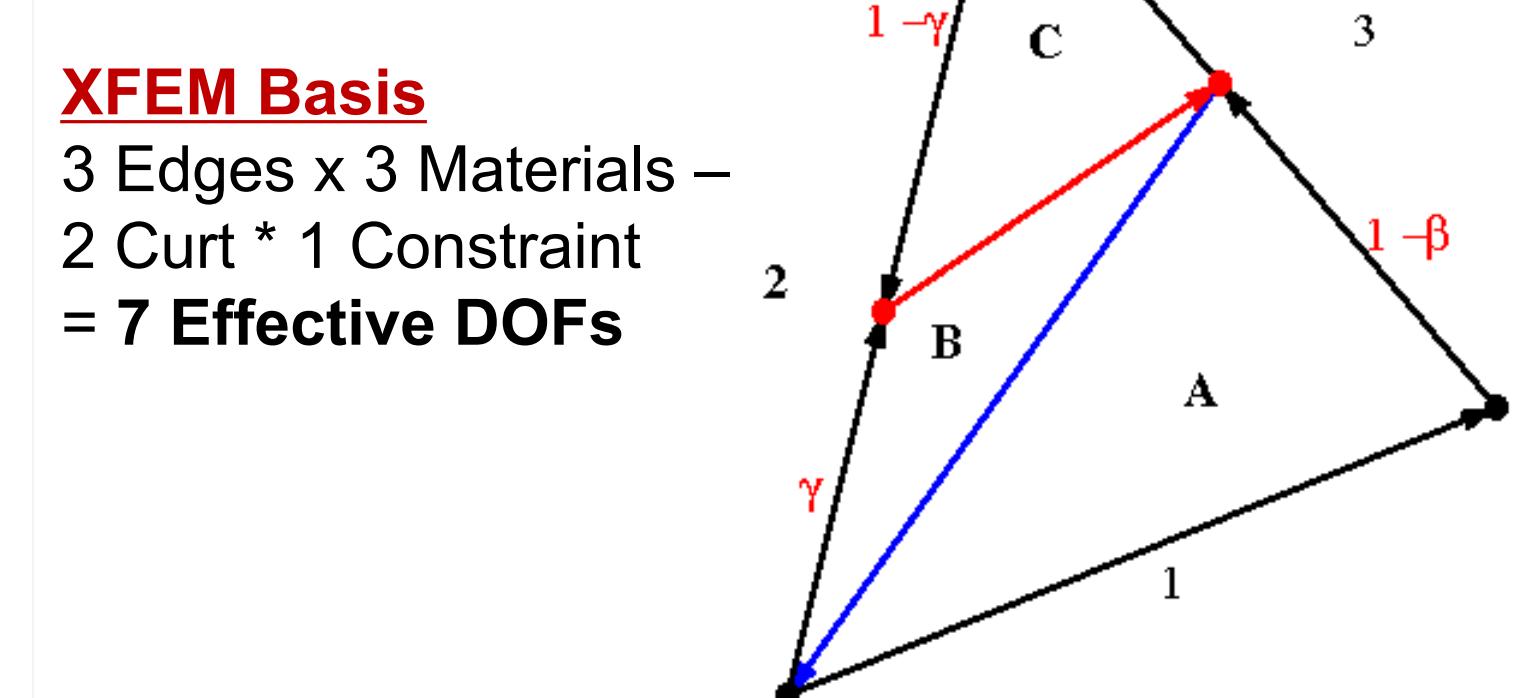
### eXtended Finite Element Method (XFEM)

- Add intra-element discontinuities w/o changing mesh.
- Used here for **weak** (bonded materials) discontinuities.
- Uses Partition of Unity to preserve convergence:

$$u^h(x) = \sum_A \sum_I N_i(x) H_A(x) u_{I,A}$$

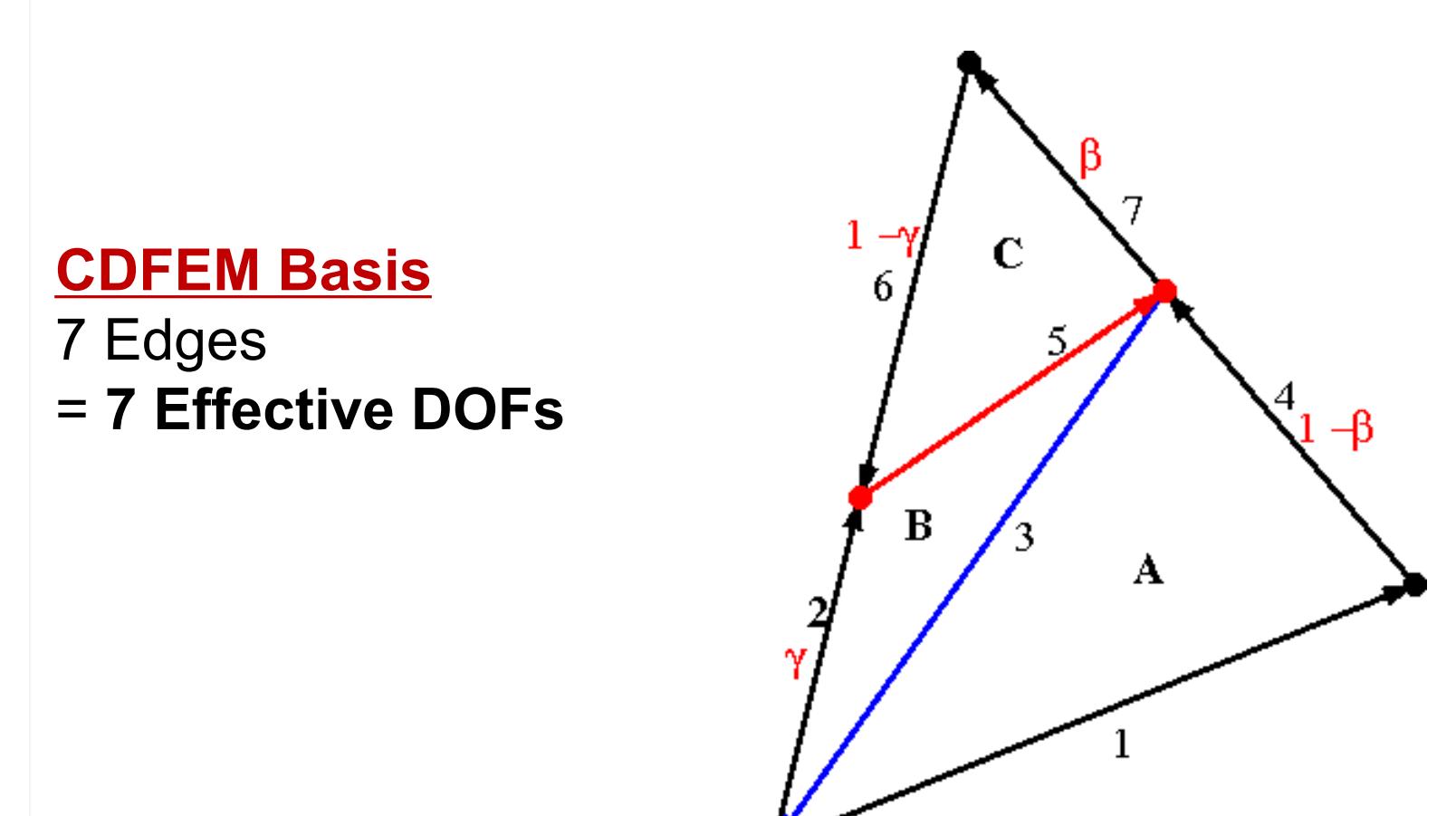
where the constant is in the span of the  $F_i$ 's

- Tie solution together w/ *virtual algebraic constraints*.
- Idea #1: Start w/ simplices, decompose into simplices.
- Idea #2: Apply just enough constraints to tie everywhere.



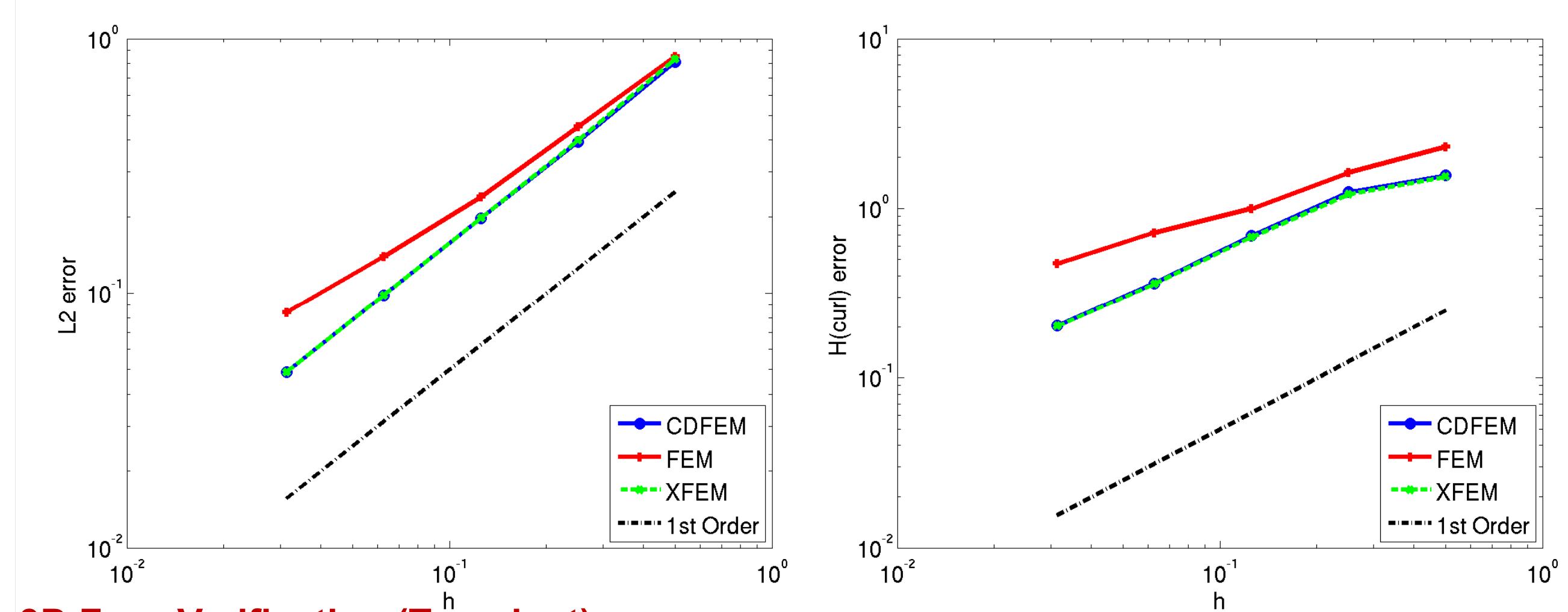
This allows us to prove **exact** equivalence to...

### Conformal Decomposition Finite Element Method (CDFEM)

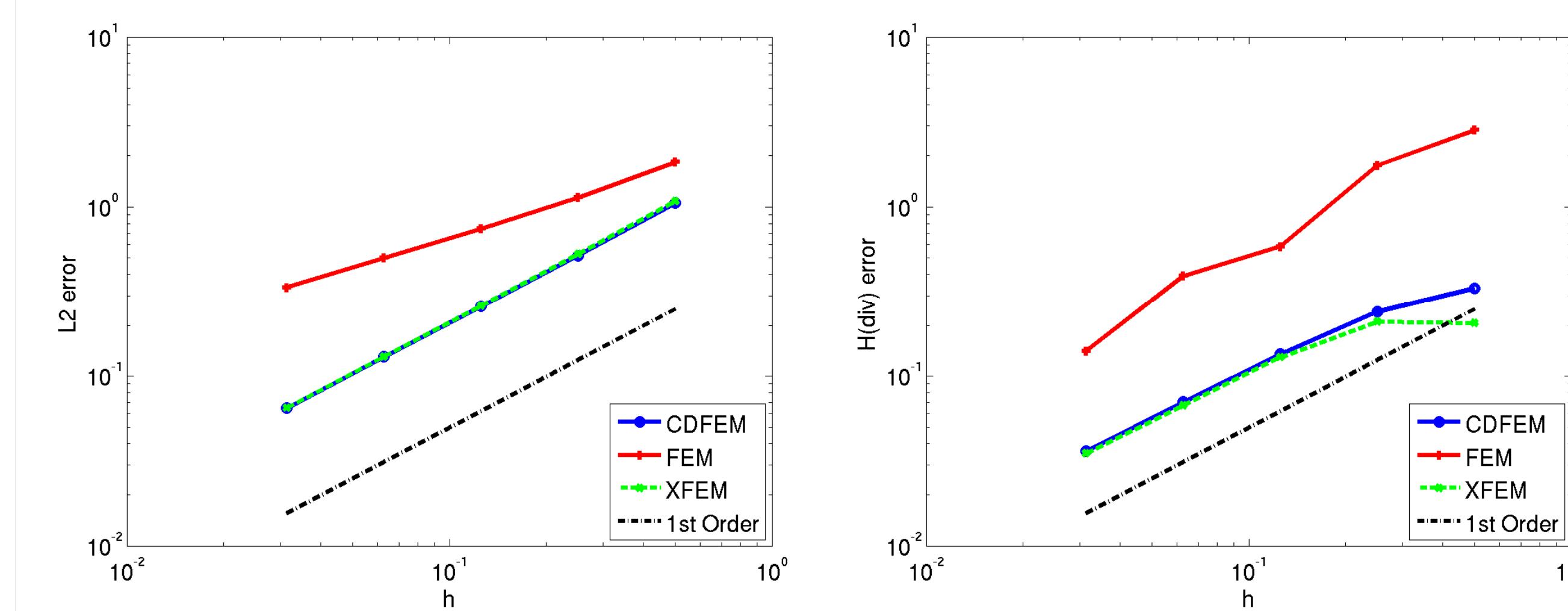


## 3D Verification Results

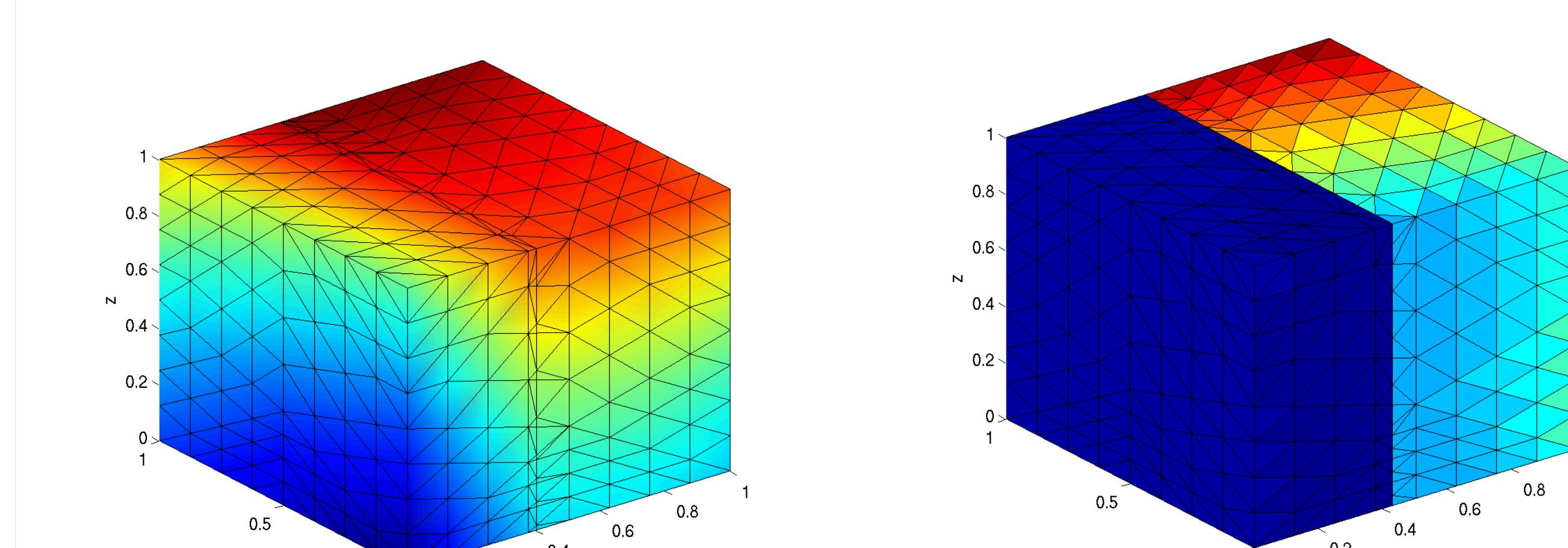
### 3D Edge Verification (Transient)



### 3D Face Verification (Transient)



### 3D Visualizations



## Remap Algorithms

The starting point for our remap method is:

P. Bochev and M. Shashkov. Constrained interpolation (remap) of divergence-free fields. *Comput. Methods Appl. Mech. Engrg.*, 194:511–530, 2005.

**The key:** Think about remap as a method to transfer a representation of a field from one mesh to another.

Given the source field  $\mathbf{B}^0$ ,

$$\lambda_{\text{opt}}^e = \operatorname{argmin} \left\| \mathbf{B}^0 \right\|_e^2 - \left\| \mathbf{B}^n(\lambda^e) \right\|_e^2 \quad \forall e \in T^n.$$

where (element-wise)

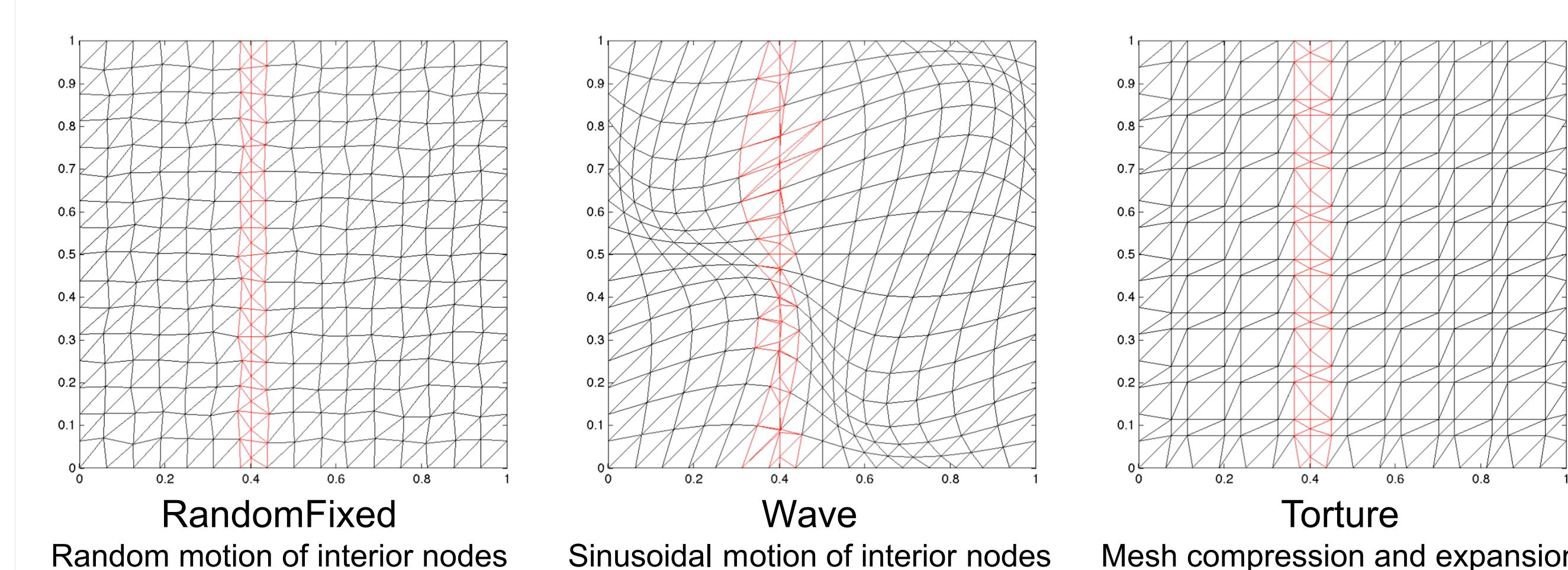
$$\begin{array}{c} \text{Low order (dissipative) field approximation} \\ \mathbf{B}_{\text{lo}}^n \end{array} + \begin{array}{c} \text{High order (accurate) field approximation} \\ \mathbf{B}_{\text{hi}}^n \end{array} = \begin{array}{c} \text{Accurate and conservative remapped field} \\ \mathbf{B}^n = \lambda_{\text{opt}} \mathbf{B}_{\text{lo}}^n + (1 - \lambda_{\text{opt}}) \mathbf{B}_{\text{hi}}^n \end{array}$$

on the destination mesh  $T^h$ .

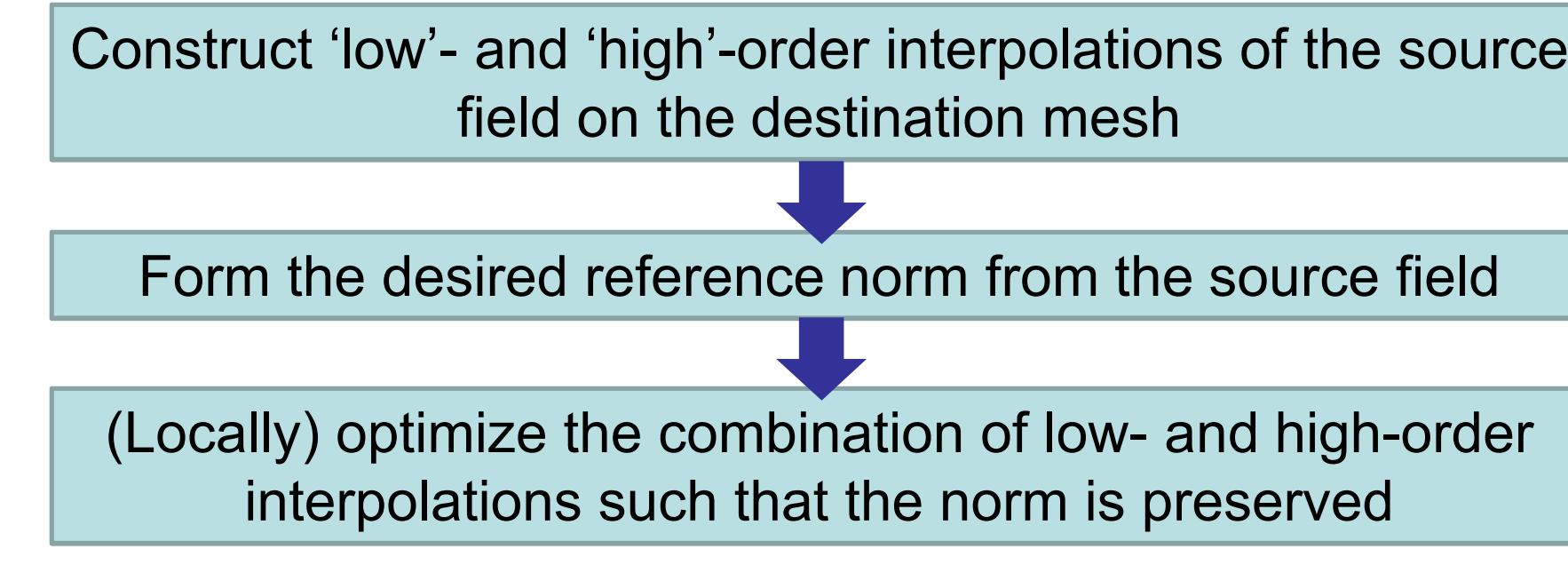
## Remap Tests

Remap testing uses three different mesh motions, shown below.

A fixed material interface is located at  $x = 0.4$ ; elements cut by the interface are enriched and shown in red. Each mesh increment is independently enriched.



## Remap Algorithm Overview



### Patch recovery

*Nodal:* Standard procedure to extract element-wise quadratic approximations from linear FEM over element neighbors.

*Edge:* Extract coefficients for 2nd-order Nédélec edge shape function polynomials from the 1st order approximation.

*Respects material interfaces.*

### Reference Norm

*Perfect remap idealization:* Integrate the known analytic solution over each destination element to define the reference norm.

*Practical alternatives:*

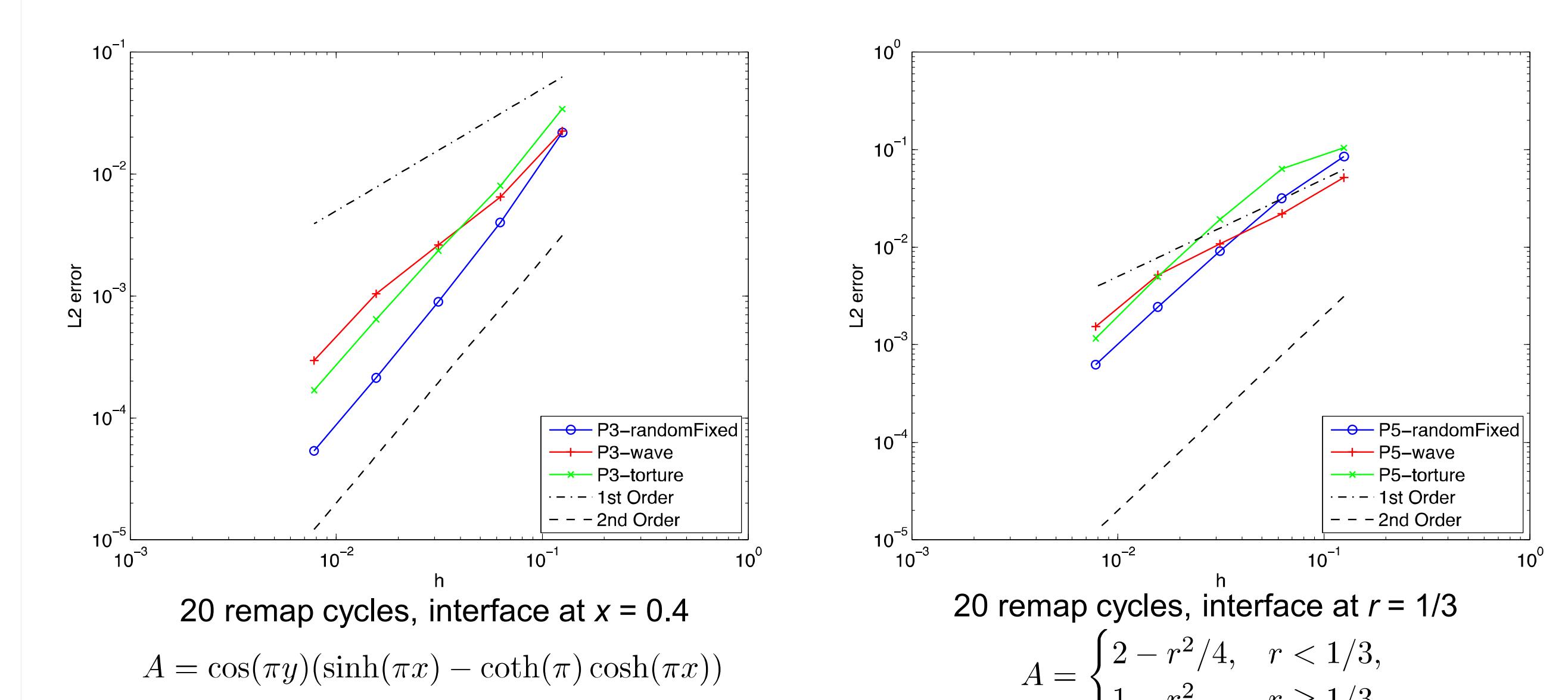
- Intersection remap of element quantities from source to destination elements.
- Approximate integration of source field on the dest mesh.

**Optimization**  
Each element generates a simple squared quadratic objective function: roots at which local minima and maxima occur can be evaluated analytically (minimizes computational cost and improves accuracy).

## 2D Remap Results

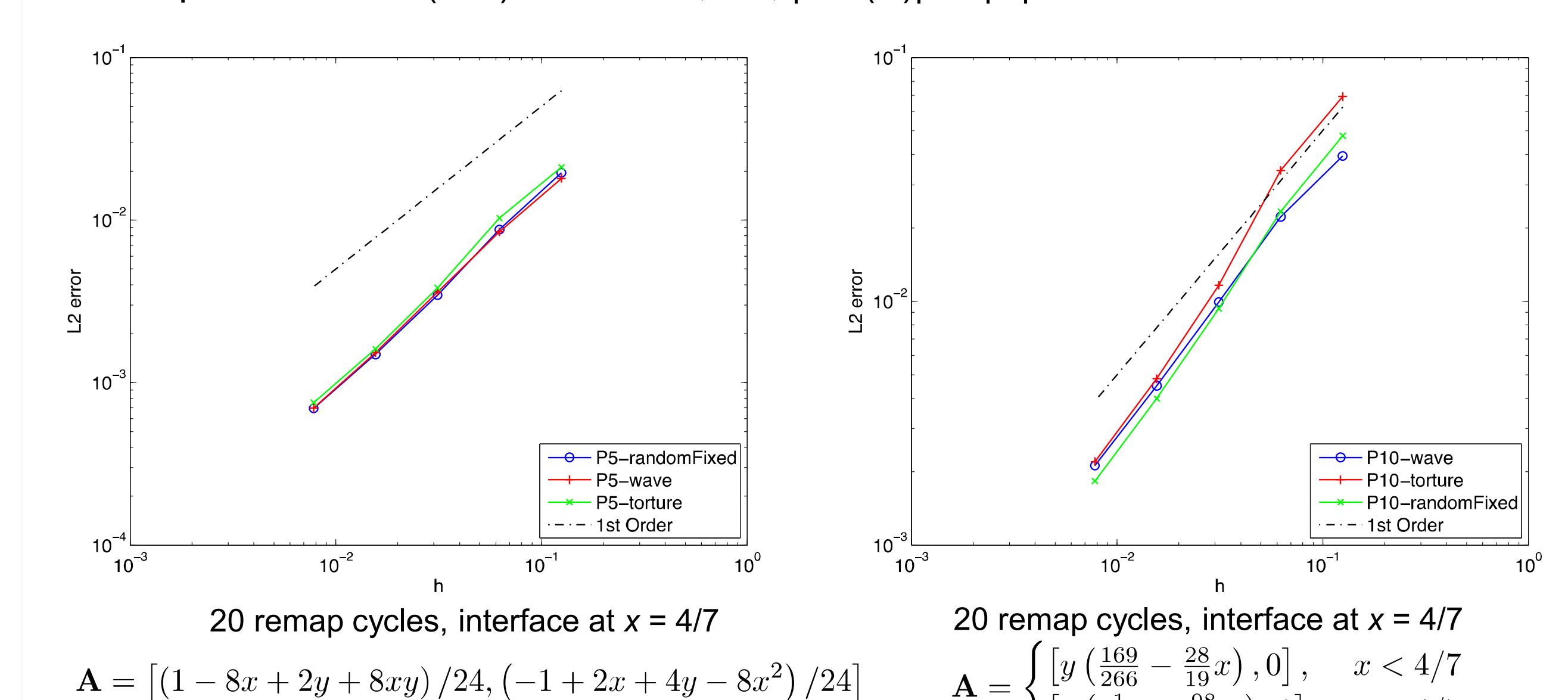
### Nodal A-form (transverse magnetic):

Equation (1) solved assuming  $A = A(x, y)$ , with a nodal compatible discretization, where  $A$  is a scalar potential of the  $\mathbf{B}$  field such that  $\mathbf{B} = \operatorname{grad}(A)$ . Norm preserved is  $H^1$  seminorm of the field, i.e.,  $|\operatorname{grad}(A)|^2 = \|\mathbf{B}\|^2$ .



### Compatible transverse electric:

Equation (1) solved assuming  $\mathbf{A} = [A_x, A_y, 0]$ , with an edge-based compatible discretization, where  $\mathbf{A}$  is a vector potential of the  $\mathbf{B}$  field such that  $\mathbf{B} = \operatorname{curl}(\mathbf{A})$ . Norm preserved is  $H(\operatorname{curl})$  of the field, i.e.,  $|\operatorname{curl}(\mathbf{A})|^2 = \|\mathbf{B}\|^2$ .



## Current and Future Work

- Improved (piecewise linear) interface reconstruction.
- Mixed meshes (quad/tri and hex/pyramid/prism/tet).
- Extending remap algorithms to 3D.
- Improved patch recovery for edge element discretizations.
- References:
  - R. Kramer, P. Bochev, C. Siefert and T. Voth. An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities. *Computer Methods in Applied Mechanics and Engineering*, Volume 266, pp. 70–80, 2013.
  - R. Kramer, P. Bochev, C. Siefert and T. Voth. Algebraically constrained extended edge element method (eXFEM-AC) for resolution of multi-material cells. *Journal of Computational Physics*, Volume 276, Pages 596–612, 2014.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2014-18214D.



Sandia  
National  
Laboratories

