

Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

Authors: Devin Coleman-Derr¹ and Susannah Tringe^{1*}

1 Department of Energy Joint Genome Institute // LBNL - Walnut Creek, CA

** To whom correspondence may be addressed. Susannah G. Tringe, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. sgtringe@lbl.gov*

May 22, 2014

ACKNOWLEDGMENTS:

Work by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.C. and S.G.T are supported in part by a subcontract to US National Science Foundation Microbial Systems Biology grant IOS-0958245 to Jeffery Dangl, University of North Carolina

DISCLAIMER:

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

Building the crops of tomorrow: advantages of symbiont-based approaches to improving abiotic stress tolerance

3

4 Devin Coleman-Derr¹, Susannah G. Tringe^{*1}

5 ¹ Joint Genome Institute, Walnut Creek, CA, USA

*** Correspondence:** Susannah G. Tringe, Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. sgtringe@lbl.gov

Keywords: symbiosis, abiotic stress, agriculture, plant growth promotion, plant-microbe interactions, drought.

12 Abstract

14 The exponential growth in world population is feeding a steadily increasing global need for arable
15 farmland, a resource that is already in high demand. This trend has led to increased farming on
16 subprime arid and semi-arid lands, where limited availability of water and a host of environmental
17 stresses often severely reduce crop productivity. The conventional approach to mitigating the abiotic
18 stresses associated with arid climes is to breed for stress-tolerant cultivars, a time and labor intensive
19 venture that often neglects the complex ecological context of the soil environment in which the crop
20 is grown. In recent years, studies have attempted to identify microbial symbionts capable of
21 conferring the same stress-tolerance to their plant hosts, and new developments in genomic
22 technologies have greatly facilitated such research. Here, we highlight many of the advantages of
23 these symbiont-based approaches and argue in favor of the broader recognition of crop species as
24 ecological niches for a diverse community of microorganisms that function in concert with their plant
25 hosts and each other to thrive under fluctuating environmental conditions.

27 Introduction

29 Climate change and an increasing world population are predicted to drastically increase the global
30 need for arable farmland, a resource that is already in high demand (Barrow et al., 2008). With the
31 world population expected to reach 9 billion by 2050, it is estimated that the global food supply will
32 need to increase by 70% to meet rapidly rising demand (Editorial, 2010). Changes in the global
33 climate may well compound this challenge, as predicted increases in drought and temperature-related
34 stresses are expected to reduce crop productivity (Grover et al., 2010; Ciais et al., 2005; Larson,
35 2013).

This large expansion in agricultural output will require both improvements in crop yield as well as the cultivation of additional farmland. One direct effect of this trend will be the steadily increasing prevalence of farming on marginal, arid and semi-arid lands, especially in the developing world (Köberl et al., 2011; Lantican et al., 2003). Even without considering the effects of climate change, semi-arid and arid lands often present a host of abiotic challenges to plant growth, including extreme temperatures, excess radiation, and poor nutrient and water availability (Yang et al., 2009).

43

44 The historical approach to mitigate the negative effects of abiotic stresses on crop yield has been the
45 creation of stress-tolerant cultivars (Barrow et al., 2008; Eisenstein, 2013). Conventional breeding
46 techniques have enabled the development of crop varietals with increased yields and greater tolerance
47 to a variety of abiotic stresses (Atkinson and Urwin, 2012), but are both time and labor intensive;
48 genetic engineering of crops with improved stress tolerance is faster, but comes with its own set of
49 drawbacks. Furthermore, both methods often neglect the complex ecological context of the soil
50 environment in which the crop is grown (Morrissey et al., 2004).

51 In recent years, plant-associated microbial communities have received considerable attention for their
52 ability to confer many of the same benefits to crop productivity and stress resistance as have been
53 achieved through plant breeding programs (Barrow et al., 2008; Tank and Saraf, 2010; Marulanda et
54 al., 2009; Marasco et al., 2012; Mayak et al., 2004). It is now well recognized that all plants, and
55 nearly all tissues within the plant, are inhabited by a variety of microorganisms (Berg et al., 2013;
56 Partida-Martínez and Heil, 2011), many of which offer benefits to the host, improving nutrient
57 uptake, preventing pathogen attack, and increasing plant growth under adverse environmental
58 conditions (Yang et al., 2009; Turner et al., 2013). In return these microorganisms receive shelter
59 from the surrounding environment and access to a carbon-rich food supply. The most well-studied of
60 these symbionts include the mycorrhizal fungi, which enhance nutrients uptake (Bonfante and Anca,
61 2009) and root-nodulating bacteria, which fix nitrogen from the surrounding soil (Lugtenberg and
62 Kamilova, 2009), but many other novel plant growth promoting microorganisms (PGPM) continue to
63 be identified each year. These organisms confer stress resistance via diverse mechanisms recently
64 reviewed elsewhere (Yang et al., 2009; Zelicourt et al., 2013; Lugtenberg and Kamilova, 2009;
65 Nadeem et al., 2014; Grover et al., 2010). Importantly, efforts are being made to harness these
66 naturally-occurring, soil-derived beneficial microbes for large-scale improvement of crop
67 performance in agriculture (Nadeem et al., 2014).

68 In this article, we will highlight some of the advantages associated with symbiont-based approaches
69 to increasing crop resistance to abiotic stress, with a focus on engineering increased tolerance to
70 drought, which is the most critical and prevalent factor for crop production in many parts of the
71 world (Grayson, 2013; Castiglioni et al., 2008). We present suggestions for future directions of
72 abiotic stress tolerance improvement in crop plants, including the use of cutting edge genomic
73 technologies for the identification and selection of candidate symbionts and the functional modules
74 they employ for enhancing host growth, as well as an assessment of current agronomic practices in
75 the light of modern understanding of microbial community influence over plant phenotype. We
76 conclude with an argument in favor of increased collaboration between conventional breeding
77 programs and microbial-based research for crop improvement and, more generally, for a broader
78 conceptual understanding of crop productivity as a complex product of plant genetics and microbial
79 community function.

80 **81 Limitations associated with direct engineering of increased stress tolerance into crop plants**

82 The success of plant biotechnology programs has helped the world's food supply keep pace with the
83 increasing rate of population growth (Morrissey et al., 2004). Novel crop varietals, with superior
84 yields as well as increased tolerance to biotic and abiotic stresses, have been continuously produced
85 for decades through conventional plant breeding programs, and more recently through genetic
86 engineering (Atkinson and Urwin, 2012). Despite the undeniable success of these past efforts and
87 their continued applicability to drought-tolerance in crop species, each of these methods has its
88 drawbacks, which should be fully considered. Plant breeding is highly time consuming, as well as
89 labor and cost intensive (Ashraf, 2010; Eisenstein, 2013). Additionally, in the quest for the

92 improvement of a particular trait, such as drought tolerance, certain (often unknown) desirable traits
93 can be unintentionally lost from the host's gene pool during conventional breeding (Philippot et al.,
94 2013). Perhaps the largest drawback, however, is that plant breeding only confers benefit to a single
95 host species, and this benefit is often not easily transferable to other crop systems, as the genetic
96 components responsible for the improvements frequently remain unidentified.

97 To avoid the time and labor costs associated with conventional breeding, some researchers have
98 turned to generation of transgenic lines for producing varietals with improved plant growth
99 regulators, antioxidants, organic osmolytes or other factors capable of increasing drought tolerance
100 (Eisenstein, 2013). Unfortunately, the vast majority of these are developed and tested in the
101 greenhouse, rather than in the field and claims made regarding their performance are often inflated
102 compared to actual results in agricultural settings, due to the large array of abiotic and biotic factors
103 left out of the initial experiments (Ashraf, 2010). Additionally, these transgenic crops often must pass
104 rigorous food and environmental safety regulations and trials before becoming marketable, which
105 adds additional time to the product development process (Eisenstein, 2013). Furthermore, release of a
106 transgenic product into the marketplace does not guarantee its success, as public response to use of
107 genetically-modified crops varies considerably from country to country (Fedoroff et al., 2010).

108 Both the conventional breeding and genetic engineering based approaches may rely too heavily on
109 the assumption that plants function as autonomous organisms regulated solely by their genetic code
110 and cellular physiology (Barrow et al., 2008), although plant-microbe interactions can heavily
111 influence crop response to environmental conditions. Many field trials of new stress-tolerant
112 cultivars simply have not addressed microbial influence on improved performance (Budak et al.,
113 2013; Cooper et al., 2014; Swamy and Kumar, 2013). Greenhouse trials are often conducted with
114 standard sterilized potting soils and sterilized soil amendments (Witt et al., 2012; Porch, 2006;
115 Waterer et al., 2010) in an attempt to create a microbe-free growth environment, an artificial context
116 rarely if ever found in nature (Friesen et al., 2011; Partida-Martínez and Heil, 2011). By doing so,
117 they not only neglect one of the top determinants of phenotypic output, they may also miss vertically
118 transmitted symbionts present within the plant seed (Barrow et al., 2008), which could lead to
119 overestimations of the effect of host genotype on plant phenotype.

120 **Advantages of symbiont-based approaches to improving stress tolerance**

121 Compared with methods for directly engineering stress tolerance into the host described above,
122 symbiont-based approaches to improving stress tolerance offer some clear advantages. First,
123 microbial symbionts are frequently capable of conferring stress tolerance to a wide variety of diverse
124 plant hosts, and many PGPM can confer benefits to both monocots and dicot crop species (Zhang et
125 al., 2008; Redman et al., 2002; Timmusk and Wagner, 1999). The bacterium *Achromobacter*
126 *piechaudii*, isolated from dry riverbeds of southern Israel, was capable of increasing salt and drought
127 resistance in both pepper and tomato (Mayak et al., 2004). Using olive trees, tomato, grapevine and
128 pepper plants, Marasco et al. have demonstrated that microbes isolated from the roots of one host
129 species cultivated under desert farming conditions are capable of improving the growth of a different
130 host species when grown under a water-stress regime (Marasco et al., 2013). The ability to transfer
131 stress-resistance solutions from one crop species to another through a microbial inoculum has the
132 potential to save years of plant breeding effort.

133 Secondly, PGPM frequently confer more than one type of abiotic and/or biotic stress
134 tolerance (Mayak et al., 2004; Rodriguez et al., 2008), and crops grown on arid and semi-arid lands
135 typically suffer from multiple stress factors. It has been shown that *Arabidopsis* plants in symbiosis

136 with *Paenibacillus polymyxa* have increased drought tolerance as well as improved resistance to
137 pathogen attack (Timmusk and Wagner, 1999). Waller et al. demonstrated that barley plants
138 inoculated with the fungus *Piriformospora indica* have both increased resistance to *Fusarium* and
139 *Blumeria* infections and increased salt tolerance (Waller et al., 2005). These examples of microbes
140 conferring multiple benefits are likely due to the fact that many symbionts exert their influence over
141 the plant host through manipulating plant hormone pathways (Friesen et al., 2011; Glick et al., 2007)
142 and that considerable cross-talk exists between plant stress response pathways (Atkinson and Urwin,
143 2012).

144 Thirdly, plant-associated microbial species represent a vast reservoir of genetic information
145 that has coevolved with their hosts under natural environmental conditions. These microbes can add
146 genetic flexibility to the adaptation of comparatively sessile and longer-lived plants (Barrow et al.,
147 2008). The concept of ‘habitat-specific symbioses’, put forth by Rodriguez et al., is one of the most
148 intriguing discoveries pertaining to microbial contributions to stress tolerance made in recent years
149 (Rodriguez et al., 2008). Their research found that salt, drought, and disease resistance were each
150 individually conferred by specific fungal symbionts that had been harvested from coastal, arid, and
151 agricultural environments, respectively. Furthermore, they found that these beneficial effects could
152 be conferred on different plant host species, including both monocots and dicots. These insights
153 suggest that the foundation for the growth-promoting effects of microbial symbionts is based on the
154 co-evolution of the association between plant and microbe under adverse environmental conditions
155 (Rodriguez et al., 2008). For the purposes of developing novel biotechnological agents for use in
156 agriculture, this study supports the idea that the optimal place to look for PGPM that confer
157 resistance to a specific environmental stress is in soils where that stress is a regular phenomenon.

158 **Future directions of abiotic stress tolerance improvement in crop plants**

159 Microbial species with plant-growth promoting capabilities are both numerous and easier to
160 characterize now than ever before. A considerable fraction of endophytes isolated from crops appear
161 to have measurable effects on host fitness (Friesen et al., 2011). Two recent studies found that more
162 than 25% of bacteria isolated from cultivated crops had plant growth promoting activities (Hassan et
163 al., 2010; Marasco et al., 2012). While the identification of microbial endophytes has been
164 challenging in the past due to the frequent lack of plant-host symptoms, localized colonization,
165 intimate integration with plant cellular structures, and lack of cultivability, recent advances in
166 genomic technologies have helped make this process faster and cheaper (Berg et al., 2013). A recent
167 technique for selective depletion of chloroplast and mitochondrial-derived 16S amplicons allows for
168 vastly increased resolution of bacterial endophyte populations derived from within plant tissues
169 (Lundberg et al., 2013). While in the past whole-genome sequencing of candidate symbionts was
170 only possible for cultivable species, it is now possible to obtain draft genomes of microbial
171 endophytes in a high-throughput fashion using single-cell sorting coupled with next-generation
172 sequencing technologies (Woyke et al., 2006). Understanding the genomic content of these PGPMs
173 will enable us to better understand the mechanisms behind the conferred stress-tolerances, as well as
174 cultivate them for experimental investigation (Pope et al., 2011).

175 As more and more genomes from plant-growth promoting microorganisms become available, our
176 ability to identify the shared genetic components or metabolites that are responsible for conferring
177 specific abiotic stress advantages increases. Through a transcriptomic analysis of the symbiosis
178 between oilseed rape and *Stenotrophomonas rhizophila*, a recent study identified spermidine as a
179 novel PGPM regulator of plant abiotic stress (Alavi et al., 2013). Identification of the genetic
180 components within PGPMs that are responsible for alleviating abiotic stress may in some cases yield
181 potential targets for transgenic modification of the host organism (Nadeem et al., 2014). Recently,

182 bacterial cold-shock proteins transformed into various plant species led to increased tolerance to a
183 variety of abiotic stresses, including cold, heat and drought (Castiglioni et al., 2008).

184 Investigation of the mechanisms by which plant-growth promoting microorganisms confer
185 stress-tolerance to their plant hosts is another avenue for identifying targets for direct transgenic
186 manipulation of stress response in crops. Recent technological advances in cell-type specific
187 transcriptomics (Taylor-Teeple et al., 2011), combined with an experimental system designed to
188 examine host transcription during symbiosis with PGPM, could allow for a precise dissection of the
189 genetic signaling mechanisms responsible for increased stress tolerance. An improved understanding
190 of these host mechanisms could provide potential candidate loci for transgenic or plant-breeding
191 strategies aimed at plant-host improvement (Grover et al., 2010). For example, salt tolerance induced
192 by *Bacillus subtilis* was shown to be the result of tissue specific modulation of the expression of the
193 *Arabidopsis* Na⁺/K⁺ transporter, *HKT1* (Zhang et al., 2008). Similarly, drought resistance in
194 *Arabidopsis* as a result of inoculation with *Paenibacillus polymyxa* was related to strong upregulation
195 of the host gene *ERD15* (Timmusk and Wagner, 1999).

196 Finally, there is a need for rethinking modern agronomic practices in light of our current
197 understanding of the importance of host-associated microbial communities for plant productivity and
198 health. Current large-scale agricultural systems rely heavily on monoculture cropping systems, in
199 many cases without between-season crop rotation, which has been shown to lead to the build up of
200 specialized plant pathogens, increased disease incidence, and decreased yield (Berendsen et al., 2012;
201 Gentry et al., 2013). Research is being conducted to determine if the use of specific cover crops can
202 be used to promote and maintain a beneficial microbiome between growing seasons for important
203 crop species (East, 2013). Current methods of tilling may also negatively impact the plant microbial
204 community; alternatives, including ‘conservation-’ or ‘zero-tillage’, may have the potential to
205 promote a healthy belowground microbiome by reducing moisture loss and maintaining naturally
206 occurring strata within the soil, which helps support microbial biodiversity (East, 2013).

207 Conclusion

208

209 As with the plant-breeding and transgenic approaches to engineering stress-resistance in tomorrow’s
210 crops, there are of course challenges associated with symbiont based strategies that will need to be
211 overcome. One potential challenge will be detangling synergistic and antagonistic effects of different
212 microorganisms within the plant microbiome (Trabelsi and Mhamdi, 2013). Research has
213 demonstrated synergistic effects of multiple PGPM (Figueiredo et al., 2008), and another study has
214 identified a virus present within a plant growth promoting fungus as the causative agent of heat
215 resistance conferred to a tropical grass (Márquez et al., 2007). A second challenge stems from the
216 fact that while many PGPM have been shown to confer their benefits across multiple host species, it
217 is clear that this is not always the case. In some studies, the host species (and even host cultivar) has
218 been shown to play a significant role in driving microbial community composition and activity
219 (Philippot et al., 2013; Ofek et al., 2013), selecting for and against particular microbial partners.
220 Additionally, interactions between the PGPM and the members of the existing microbial community
221 could alter or negate the potential beneficial effects of the microbe (Schippers et al., 1987). Due to
222 the complexity of interactions among the microbes, host, and environment, there is the potential that
223 a PGPM that confers benefit in one context may have a null, or even negative, effect in a different
224 context; therefore, considerable work will need to be done to determine the range of applicability for
225 each PGPM as a beneficial agricultural agent. A third challenge, which is equally important for both
226 symbiont and host-based methods of improving stress tolerance, will be unraveling the complex
227 relationships between the various biotic and abiotic stress responses. Research programs aimed at

228 developing tolerance to a particular stress do not necessarily test susceptibility to other stresses; due
229 to the intrinsically related nature of the pathways governing stress response, later field trials have in
230 some instances revealed increased susceptibility to other stresses (Atkinson and Urwin, 2012).
231 Lastly, methods of microbial delivery within field settings and stable integration of PGPMs into the
232 agricultural soil ecosystem will need improvement. While many applications of PGPMs to crops in
233 field settings have demonstrated significant improvements to stress tolerance (Rolli et al., 2014;
234 Mengual et al., 2014; Celebi et al., 2010), others have shown inconsistent or even negative effects
235 (Nadeem et al., 2014). One promising method of stabilizing beneficial effects of PGPM in the field
236 involves the inoculation of a microbial consortium of PGPM, as opposed to a single PGPM species.
237 Combining PGPM known to grow and perform well together will likely increase the resilience of the
238 inoculum and its beneficial effects, and additionally allow for tailoring the community to respond to
239 specific combinations of abiotic and biotic stresses (Trabelsi and Mhamdi, 2013).

240 Agriculture currently accounts for 70% of human fresh water use, and in many parts of the
241 world this rate of water consumption exceeds local regeneration rates, leading to unsustainable
242 reliance on underground aquifers that are rapidly depleting (Castiglioni et al., 2008; Jiao, 2010).
243 Given this, it is not surprising that drought and other water-related stresses are considered by many to
244 be the most significant threats to global agricultural security in the near future. Encouragingly, in the
245 research conducted by Rodriguez et al., the ‘habitat-specific symbionts’ selected from a coastal site,
246 a geothermal site, and an agricultural site shared one trait: the ability to confer drought resistance.
247 Rodriguez et al. hypothesize that the ability of fungal endophytes to confer drought tolerance may be
248 a common evolutionary relic from when plants left the ocean, as fungal symbiosis is thought to be in
249 part responsible for the movement of plants to land (Rodriguez et al., 2008). If this turns out to be the
250 case, proponents of symbiont-based approaches to increasing stress resistance in crop plants may do
251 well to focus their efforts on drought and other water-related stresses.

252 In the future, there is a need for more collaboration between the host-focused and symbiont-
253 focused approaches to mitigating abiotic stress in crop plants. Medical science has in recent years
254 undergone a profound restructuring of its understanding of the microbiome housed within the body
255 and its impact on human health (East, 2013). There is a clear parallel here for plant science, with
256 implications that have the potential to change the face of agriculture and help us to meet the
257 challenges confronting humanity in light of our expanding population and changing planet. The
258 fundamental change required is a broader recognition that plants do not exist as autonomous
259 organisms governed entirely by their genetic blueprints, but rather serve as ecological niches for
260 diverse communities of easily overlooked microbes, which work in concert with the plant to survive
261 in a wide range of stressful environmental conditions.

262 1. Acknowledgement

263 Work by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science
264 of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. D.C. and S.G.T are
265 supported in part by a subcontract to US National Science Foundation Microbial Systems Biology
266 grant IOS-0958245 to Jeffery Dangl, University of North Carolina.

267 2. References¹

¹ Provide the doi when available, and ALL complete author names.

268 Alavi, P., Starcher, M., Zachow, C., Mueller, H., and Berg, G. (2013). Root-microbe systems: the
269 effect and mode of interaction of Stress Protecting Agent (SPA) *Stenotrophomonas*
270 *rhizophila* DSM14405T. *Funct. Plant Ecol.* 4, 141. doi:10.3389/fpls.2013.00141.

271 Ashraf, M. (2010). Inducing drought tolerance in plants: Recent advances. *Biotechnol. Adv.* 28, 169–
272 183. doi:10.1016/j.biotechadv.2009.11.005.

273 Atkinson, N. J., and Urwin, P. E. (2012). The interaction of plant biotic and abiotic stresses: from
274 genes to the field. *J. Exp. Bot.* 63, 3523–3543. doi:10.1093/jxb/ers100.

275 Barrow, J. R., Lucero, M. E., Reyes-Vera, I., and Havstad, K. M. (2008). Do symbiotic microbes have a
276 role in plant evolution, performance and response to stress? *Commun. Integr. Biol.* 1, 69–73.

277 Berendsen, R. L., Pieterse, C. M. J., and Bakker, P. A. H. M. (2012). The rhizosphere microbiome and
278 plant health. *Trends Plant Sci.* 17, 478–486. doi:10.1016/j.tplants.2012.04.001.

279 Berg, G., Zachow, C., Müller, H., Philipps, J., and Tilcher, R. (2013). Next-Generation Bio-Products
280 Sowing the Seeds of Success for Sustainable Agriculture. *Agronomy* 3, 648–656.
281 doi:10.3390/agronomy3040648.

282 Bonfante, P., and Anca, I.-A. (2009). Plants, Mycorrhizal Fungi, and Bacteria: A Network of
283 Interactions. *Annu. Rev. Microbiol.* 63, 363–383. doi:10.1146/annurev.micro.091208.073504.

284 Budak, H., Kantar, M., and Yucebilegili Kurtoglu, K. (2013). Drought Tolerance in Modern and Wild
285 Wheat. *Sci. World J.* 2013. doi:10.1155/2013/548246.

286 Castiglioni, P., Warner, D., Bensen, R. J., Anstrom, D. C., Harrison, J., Stoecker, M., Abad, M., Kumar,
287 G., Salvador, S., D'Ordine, R., et al. (2008). Bacterial RNA Chaperones Confer Abiotic Stress
288 Tolerance in Plants and Improved Grain Yield in Maize under Water-Limited Conditions.
289 *PLANT Physiol.* 147, 446–455. doi:10.1104/pp.108.118828.

290 Celebi, S. Z., Demir, S., Celebi, R., Durak, E. D., and Yilmaz, I. H. (2010). The effect of Arbuscular
291 Mycorrhizal Fungi (AMF) applications on the silage maize (*Zea mays* L.) yield in different
292 irrigation regimes. *Eur. J. Soil Biol.* 46, 302–305. doi:10.1016/j.ejsobi.2010.06.002.

293 Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., Buchmann, N.,
294 Bernhofer, C., Carrara, A., et al. (2005). Europe-wide reduction in primary productivity
295 caused by the heat and drought in 2003. *Nature* 437, 529–533. doi:10.1038/nature03972.

296 Cooper, M., Gho, C., Leafgren, R., Tang, T., and Messina, C. (2014). Breeding drought-tolerant maize
297 hybrids for the US corn-belt: discovery to product. *J. Exp. Bot.*, eru064.
298 doi:10.1093/jxb/eru064.

299 East, R. (2013). Microbiome: Soil science comes to life. *Nature* 501, S18–S19.
300 doi:doi:10.1038/501S18a.

301 Editorial (2010). How to feed a hungry world. *Nature* 466, 531–532. doi:10.1038/466531a.

302 Eisenstein, M. (2013). Discovery in a dry spell. *Nature* 501, S7–S9. doi:10.1038/501S7a.

303 Fedoroff, N. V., Battisti, D. S., Beachy, R. N., Cooper, P. J. M., Fischhoff, D. A., Hodges, C. N., Knauf,
304 V. C., Lobell, D., Mazur, B. J., Molden, D., et al. (2010). Radically Rethinking Agriculture for
305 the 21st Century. *Science* 327, 833–834. doi:10.1126/science.1186834.

306 Figueiredo, M. V. B., Burity, H. A., Martínez, C. R., and Chanway, C. P. (2008). Alleviation of drought
307 stress in the common bean (*Phaseolus vulgaris* L.) by co-inoculation with *Paenibacillus*
308 *polymyxa* and *Rhizobium tropici*. *Appl. Soil Ecol.* 40, 182–188.
309 doi:10.1016/j.apsoil.2008.04.005.

310 Friesen, M. L., Porter, S. S., Stark, S. C., von Wettberg, E. J., Sachs, J. L., and Martinez-Romero, E.
311 (2011). Microbially Mediated Plant Functional Traits. *Annu. Rev. Ecol. Evol. Syst.* 42, 23–46.
312 doi:10.1146/annurev-ecolsys-102710-145039.

313 Gentry, L. F., Ruffo, M. L., and Below, F. E. (2013). Identifying Factors Controlling the Continuous
314 Corn Yield Penalty. *Agron. J.* 105, 295. doi:10.2134/agronj2012.0246.

315 Glick, B. R., Cheng, Z., Czarny, J., and Duan, J. (2007). Promotion of plant growth by ACC deaminase-
316 producing soil bacteria. *Eur. J. Plant Pathol.* 119, 329–339. doi:10.1007/s10658-007-9162-4.

317 Grayson, M. (2013). Agriculture and Drought. *Nature* 501, S1. doi:10.1038/501S1a.

318 Grover, M., Ali, S. Z., Sandhya, V., Rasul, A., and Venkateswarlu, B. (2010). Role of microorganisms in
319 adaptation of agriculture crops to abiotic stresses. *World J. Microbiol. Biotechnol.* 27, 1231–
320 1240. doi:10.1007/s11274-010-0572-7.

321 Hassan, M. N., Afghan, S., and Hafeez, F. Y. (2010). Suppression of red rot caused by *Colletotrichum*
322 *falcatum* on sugarcane plants using plant growth-promoting rhizobacteria. *BioControl* 55,
323 531–542. doi:10.1007/s10526-010-9268-z.

324 Jiao, L. (2010). Water Shortages Loom as Northern China's Aquifers Are Sucked Dry. *Science* 328,
325 1462–1463. doi:10.1126/science.328.5985.1462-a.

326 Köberl, M., Müller, H., Ramadan, E. M., and Berg, G. (2011). Desert Farming Benefits from Microbial
327 Potential in Arid Soils and Promotes Diversity and Plant Health. *PLoS ONE* 6, e24452.
328 doi:10.1371/journal.pone.0024452.

329 Lantican, M. a., Pingali, P. I., and Rajaram, S. (2003). Is research on marginal lands catching up? The
330 case of unfavourable wheat growing environments. *Agric. Econ.* 29, 353–361.
331 doi:10.1111/j.1574-0862.2003.tb00171.x.

332 Larson, C. (2013). Losing Arable Land, China Faces Stark Choice: Adapt or Go Hungry. *Science* 339,
333 644–645. doi:10.1126/science.339.6120.644.

334 Lugtenberg, B., and Kamilova, F. (2009). Plant-Growth-Promoting Rhizobacteria. *Annu. Rev.*
335 *Microbiol.* 63, 541–556. doi:10.1146/annurev.micro.62.081307.162918.

336 Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D., and Dangl, J. L. (2013). Practical
337 innovations for high-throughput amplicon sequencing. *Nat. Methods* 10, 999–1002.
338 doi:10.1038/nmeth.2634.

339 Marasco, R., Rolli, E., Ettoumi, B., Vigani, G., Mapelli, F., Borin, S., Abou-Hadid, A. F., El-Behairy, U.
340 A., Sorlini, C., Cherif, A., et al. (2012). A Drought Resistance-Promoting Microbiome Is
341 Selected by Root System under Desert Farming. *PLoS ONE* 7, e48479.
342 doi:10.1371/journal.pone.0048479.

343 Marasco, R., Rolli, E., Vigani, G., Borin, S., Sorlini, C., Ouzari, H., Zocchi, G., and Daffonchio, D. (2013).
344 Are drought-resistance promoting bacteria cross-compatible with different plant models?
345 *Plant Signal. Behav.* 8, e26741. doi:10.4161/psb.26741.

346 Márquez, L. M., Redman, R. S., Rodriguez, R. J., and Roossinck, M. J. (2007). A Virus in a Fungus in a
347 Plant: Three-Way Symbiosis Required for Thermal Tolerance. *Science* 315, 513–515.
348 doi:10.1126/science.1136237.

349 Marulanda, A., Barea, J.-M., and Azcón, R. (2009). Stimulation of Plant Growth and Drought
350 Tolerance by Native Microorganisms (AM Fungi and Bacteria) from Dry Environments:
351 Mechanisms Related to Bacterial Effectiveness. *J. Plant Growth Regul.* 28, 115–124.
352 doi:10.1007/s00344-009-9079-6.

353 Mayak, S., Tirosh, T., and Glick, B. R. (2004). Plant growth-promoting bacteria that confer resistance
354 to water stress in tomatoes and peppers. *Plant Sci.* 166, 525–530.
355 doi:10.1016/j.plantsci.2003.10.025.

356 Mengual, C., Schoebitz, M., Azcón, R., and Roldán, A. (2014). Microbial inoculants and organic
357 amendment improves plant establishment and soil rehabilitation under semiarid conditions.
358 *J. Environ. Manage.* 134, 1–7. doi:10.1016/j.jenvman.2014.01.008.

359 Morrissey, J. P., Dow, J. M., Mark, G. L., and O’Gara, F. (2004). Are microbes at the root of a solution
360 to world food production? *EMBO Rep.* 5, 922–926.

361 Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., and Ashraf, M. (2014). The role of mycorrhizae
362 and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under
363 stressful environments. *Biotechnol. Adv.* doi:10.1016/j.biotechadv.2013.12.005.

364 Ofek, M., Voronov-Goldman, M., Hadar, Y., and Minz, D. (2013). Host signature effect on plant root-
365 associated microbiomes revealed through analyses of resident vs . active communities: Host
366 effect on plant root-associated microbiomes. *Environ. Microbiol.* doi:10.1111/1462-
367 2920.12228.

368 Partida-Martínez, L. P., and Heil, M. (2011). The Microbe-Free Plant: Fact or Artifact? *Front. Plant*
369 *Sci.* 2. doi:10.3389/fpls.2011.00100.

370 Philippot, L., Raaijmakers, J. M., Lemanceau, P., and van der Putten, W. H. (2013). Going back to the
371 roots: the microbial ecology of the rhizosphere. *Nat. Rev. Microbiol.*
372 doi:10.1038/nrmicro3109.

373 Pope, P. B., Smith, W., Denman, S. E., Tringe, S. G., Barry, K., Hugenholtz, P., McSweeney, C. S.,
374 McHardy, A. C., and Morrison, M. (2011). Isolation of Succinivibrionaceae Implicated in Low
375 Methane Emissions from Tammar Wallabies. *Science* 333, 646–648.
376 doi:10.1126/science.1205760.

377 Porch, T. G. (2006). Application of Stress Indices for Heat Tolerance Screening of Common Bean. *J.
378 Agron. Crop Sci.* 192, 390–394. doi:10.1111/j.1439-037X.2006.00229.x.

379 Redman, R. S., Sheehan, K. B., Stout, R. G., Rodriguez, R. J., and Henson, J. M. (2002).
380 Thermotolerance generated by plant/fungal symbiosis. *Science* 298, 1581–1581.

381 Rodriguez, R. J., Henson, J., Van Volkenburgh, E., Hoy, M., Wright, L., Beckwith, F., Kim, Y.-O., and
382 Redman, R. S. (2008). Stress tolerance in plants via habitat-adapted symbiosis. *ISME J.* 2,
383 404–416. doi:10.1038/ismej.2007.106.

384 Rolli, E., Marasco, R., Vigani, G., Ettoumi, B., Mapelli, F., Deangelis, M. L., Gandolfi, C., Casati, E.,
385 Previtali, F., Gerbino, R., et al. (2014). Improved plant resistance to drought is promoted by
386 the root-associated microbiome as a water stress-dependent trait: Root bacteria protect
387 plants from drought. *Environ. Microbiol.* doi:10.1111/1462-2920.12439.

388 Schippers, B., Bakker, A. W., and Bakker, P. A. (1987). Interactions of deleterious and beneficial
389 rhizosphere microorganisms and the effect of cropping practices. *Annu. Rev. Phytopathol.*
390 25, 339–358.

391 Swamy, B. P. M., and Kumar, A. (2013). Genomics-based precision breeding approaches to improve
392 drought tolerance in rice. *Biotechnol. Adv.* 31, 1308–1318.
393 doi:10.1016/j.biotechadv.2013.05.004.

394 Tank, N., and Saraf, M. (2010). Salinity-resistant plant growth promoting rhizobacteria ameliorates
395 sodium chloride stress on tomato plants. *J. Plant Interact.* 5, 51–58.
396 doi:10.1080/17429140903125848.

397 Taylor-Teeple, M., Ron, M., and Brady, S. M. (2011). Novel biological insights revealed from cell
398 type-specific expression profiling. *Curr. Opin. Plant Biol.* 14, 601–607.
399 doi:10.1016/j.pbi.2011.05.007.

400 Timmusk, S., and Wagner, E. G. H. (1999). The plant-growth-promoting rhizobacterium *Paenibacillus*
401 *polymyxa* induces changes in *Arabidopsis thaliana* gene expression: a possible connection
402 between biotic and abiotic stress responses. *Mol. Plant. Microbe Interact.* 12, 951–959.

403 Trabelsi, D., and Mhamdi, R. (2013). Microbial Inoculants and Their Impact on Soil Microbial
404 Communities: A Review. *BioMed Res. Int.* 2013. doi:10.1155/2013/863240.

405 Turner, T. R., James, E. K., and Poole, P. S. (2013). The plant microbiome. *Genome Biol.* 14, 209.

406 Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., Heier, T., Hückelhoven, R.,
407 Neumann, C., and von Wettstein, D. (2005). The endophytic fungus *Piriformospora indica*

408 reprograms barley to salt-stress tolerance, disease resistance, and higher yield. *Proc. Natl.*
409 *Acad. Sci. U. S. A.* 102, 13386–13391.

410 Waterer, D., Benning, N. T., Wu, G., Luo, X., Liu, X., Gusta, M., McHughen, A., and Gusta, L. V.
411 (2010). Evaluation of abiotic stress tolerance of genetically modified potatoes (*Solanum*
412 *tuberosum* cv. *Desiree*). *Mol. Breed.* 25, 527–540. doi:10.1007/s11032-009-9351-2.

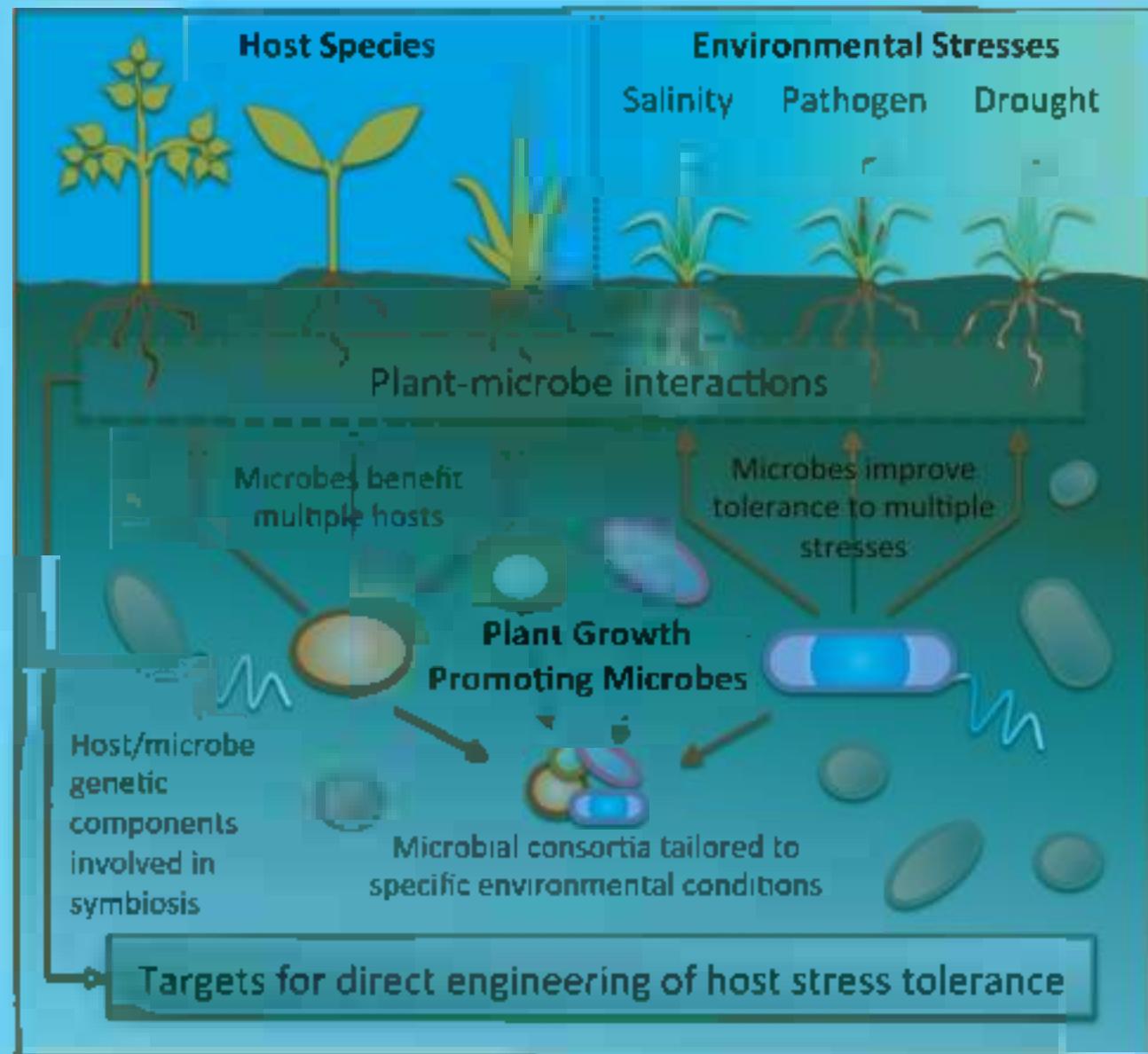
413 Witt, S., Galicia, L., Liseć, J., Cairns, J., Tiessen, A., Araus, J. L., Palacios-Rojas, N., and Fernie, A. R.
414 (2012). Metabolic and Phenotypic Responses of Greenhouse-Grown Maize Hybrids to
415 Experimentally Controlled Drought Stress. *Mol. Plant* 5, 401–417. doi:10.1093/mp/ssr102.

416 Woyke, T., Teeling, H., Ivanova, N. N., Huntemann, M., Richter, M., Gloeckner, F. O., Boffelli, D.,
417 Anderson, I. J., Barry, K. W., Shapiro, H. J., et al. (2006). Symbiosis insights through
418 metagenomic analysis of a microbial consortium. *Nature* 443, 950–955.
419 doi:10.1038/nature05192.

420 Yang, J., Kloepper, J. W., and Ryu, C.-M. (2009). Rhizosphere bacteria help plants tolerate abiotic
421 stress. *Trends Plant Sci.* 14, 1–4. doi:10.1016/j.tplants.2008.10.004.

422 Zelicourt, A. de, Al-Yousif, M., and Hirt, H. (2013). Rhizosphere Microbes as Essential Partners for
423 Plant Stress Tolerance. *Mol. Plant* 6, 242–245. doi:10.1093/mp/sst028.

424 Zhang, H., Kim, M.-S., Sun, Y., Dowd, S. E., Shi, H., and Paré, P. W. (2008). Soil bacteria confer plant
425 salt tolerance by tissue-specific regulation of the sodium transporter HKT1. *Mol. Plant.*
426 *Microbe Interact.* 21, 737–744.


427

428 **3. Figure legends**

429 **Figure 1. Advantages of symbiont-based approaches to improving stress tolerance in crops.**

430 Plant-growth promoting microbes are capable of conferring benefits to multiple species of plant
431 hosts, and of offering improved tolerance to multiple stresses simultaneously. Inoculations with
432 combinations of PGPM can be tailored to specific environmental conditions. Dissection of plant-
433 microbe interactions during symbiosis has the potential to reveal both the microbial and host genetic
434 components responsible for improved stress tolerance; these may serve as targets for plant-
435 breeding/genetic-engineering based approaches to improving stress tolerance in the host.

Figure 1. Advantages of Symbiont-Based approaches to improving stress tolerance in crops. Plant-growth promoting microbes are capable of conferring benefits to multiple species of plant hosts, and of offering improved tolerance to multiple stresses simultaneously. Inoculations with combinations of PGPM can be tailored to specific environmental conditions. Dissection of plant-microbe interactions during symbiosis has the potential to reveal both the microbial and host genetic components responsible for improved stress tolerance; these may serve as targets for plant-breeding/genetic-engineering based approaches to improving stress tolerance in crops.

