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PV Systems Reliability Program
Statement of Problem Methodology
« PV system investment is driven by initial price, « Develop and apply reliability tools for use
system performance over time, and system throughout the PV supply chain, not only PV
reliability/availability to adequately assess risk. module

» Failure Modes and Effects Analyses

» Accelerated Testing and Diagnostics

* Real-time testing of systems

* Need to understand WHOLE SYSTEM reliability, «  In-depth reliability and availability models
not only PV modules «  Focus is on system reliability, inverter reliability,

O&M strategies

» Poorly understood Reliability decreases
confidence in PV technology and increases LCOE

Project Objectives Challenges

* Reduce LCOE by providing information needed to: « Constantly evolving technologies, manufacturing

- Improve BOS lifetime, reliability, safety, processes, and materials

availability and performance * Increasingly complex systems functions

» Help investors to quantify bankability, quantify risks | ¢ Short time-to-market demands
and reduce the costs of project financing .

Risk to owners and underwriters, and associated
cost implications




Overview & Need for Electro Thermal Modeling () & _

= Decreasing size & growing complexity of power transistors (ie.
MOSFETS and IGBTs) and micro-electronic systems, power
dissipation of integrated circuits bas become a critical concern.

= Thermal influence upon an electrical system caused by each
transistor’s self-heating and tightly coupled thermal interaction with
neighboring devices cannot be neglected since excessive
temperatures can cause deterioration.

= |tis necessary to develop an electro-thermal model which accurately computes
the dependence between power dissipation and temperature distribution over

the device. Airflow Plentiful
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IGET/(Diode) load terminals "°USI"9

PCB

control terminals

wie hond

ceramics

epoxy filler soft gel (silicone gel)

baseplate (Cu, AISIC)
Construction of an IGBT module
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= Research Goal: Develop robust, reliable and non-ideal electro-thermal
model for an inverter and PV system.

= Purpose: Provide an overview of heat transfer challenges and
design/operational solutions using fast, comprehensive, transient
modelling tools.

= PV Inverter Reliability: PV inverters continue to be an area of reliability
challenges for achieving levelized LCOE. Electro-thermal issues still
contribute to these issues, especially for advanced inverter functionality.
Rigorous, non-ideal, and transient electro-thermal models are required
for robust development.

= Sandia Reliability Program: Sandia’s historical and unique capabilities
with power electronics, computing resources and PV fundamental
science, as well as distinctive experimental platform laboratories and
field-sites, provide distinction for electro-thermal modelling.
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Thermal Heat Transfer
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= Heat Transfer & Thermal Management

= Modes for Electronic Design: Conduction, Convection & Radiation

conduction convection radiation
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4 Natural Convection
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= |nverter Thermal Considerations

(Incropera and Dewitt, 2002)

Thermal Velocity
. boundary  boundary

layer. 6, layer. 6

= Thermally Sensitive Electronics Process h [W/m?K]
= Passive vs. Active Cooling Natural Convection
= Temperature Sensing & Controls Gases 2-25
_ , , Liquids 50-1000
Derates & Aging/Failure Modes Forced Comvection
= Power Electronics Considerations Gases 25-250
Liquids 100-20,000

= Conduction HT to case & heat sink Convection with Phase Change

= Radiation HT only ~1-2% Boiling or Condensation

2,500-100,000



Thermal Design Considerations ) .

= Critical Thermal Management Components

ardized output power

Stan

u |GBT’S/MOSFET’S (Flicker et. al, 2012)
= Latch-Up
= Bond Lift-Off

= Capacitors

(Saddik, 2013)

Direct Active Cooling Issues
= Dust, Salt Build-Up and Fouling

Conjugate Heat Transfer
Derate Operation
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(Saddik, 2013)
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= Greater Number of Layers Increases R,, with B"'"*"ngo':;ggmw"m
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= Thermal cycling

= Determines the ability of parts to resist extremely low and high temperatures,
as well as their ability to withstand cyclical extremes. Stress resulting from
cyclical thermomechanical loading accelerates fatigue failures.

= Humidity Freeze

= This test serves as a mechanical strength test to ensure the reliability of a
device/system from failure due to stress and water ingress

= High Temperature Operating Bias (HTOB)

= |t consists of subjecting the parts to a specified bias or electrical stressing, for a
specified amount of time, and at a specified high temperature.

System Element Failure Mechanism Accelerated Test

Mechanical Deformation, Thermal cycling
Moisture Ingress, (TC)/Humidity Freeze
Corrosion, Dielectric (HF)/Damp Heat Test/UV
Breakdown Precondition

TCE Mismatch,
PCB/Solder system Electromigration.
Corrosion

Enclosure/Interconnect

Thermal Cycling/humidity
Freeze/ Damp Heat Test

Dielectric/Insulation Humidity Freeze /Thermal

Passive components Breakdown Cycling/ UV Degradation

Thermal Cycling/Damp
Heat Test/Extreme

Active Components Mechanical Wear-Out, etc.  Temperature
Exposure/Integrated
Power Cycling

Hot Carrier Injection (HCI), Thermal
Integrated Circuit Devices Time-DependentDielectric Cycling/Humidity
Breakdown (TDDB), etc. Freeze/Damp Heat Test




Accelerated Testing (AT) ) .
= Accelerated Stress Testing (ALT)

= Accelerated Stress Testing (AST) 0 e
" Highly Accelerated Life Testing (HALT) ﬁl/t\
= All of the above allow us to correlate g« Heatsmk-)// e
to degradation signatures and » | tncosr
predictions, as well as to validate ’fzz * '
novel diagnostic, screening and 20 et 2o s
testing methods. 10 o i ()
= Tests include: s wos om o3 ow
= Thermal Shock (TS), Thermal Cycling (TC), Highly Acceleratedﬁme(hrs,
Thermal Shock (HATS), Damp Heat (DH) ,Humidity Freeze (HF)
10



What is ALT & why?

What?
= Component life tests

= High stresses
= Single or combined

= Activate “appropriate” failure
modes

= Measureable
= Failure analysis
Why?
= Time

= Full system is expensive and
complicated

il
Issues with ALT:
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Unknown failure mechanisms

Unknown / variable use
environment

Changing mechanisms as
function
of environmental stress

Difficult to control and
characterize defects

Long duration experiments

Evolving / improving
technology




Laboratory testing provides vital
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information for PV system reliability
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http://upload.wikimedia.org/wikipedia/commons/6/6e/Bathtub_curve.jpg

Accelerated Aging for Inverters ) .

® No specific industry standard exists
® [EC 61215 is the “de-facto” spec

® HALT testing is spotty; independently applied by inverter manufacturers
® Data in most cases proprietary

® Separate needs identified for residential and commercial scale inverters

® Failure modes identified but not in a uniform program applicable across the
industry

® System predictive models will require inputs for inverters
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= SPICE

" Good for modelling device-level electrical components though....

= PLECS

= |dealized Power Electronics & difficult to interface with other platforms

= COMSOL
= [ssues with quick customization and convergence.
= Matlab/Simulink
= SimPowerSystems
= Great for general Electro-thermal analysis, though issues with idealities with power
electronics.
= SimElectronics ' Reduced LCOE
= SPICE-Level Modelling with Non-ldeal Characterization lif
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PV

Inverter Modelling Platforms )

PLECS

Three-phase PV inverter
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Matlab/Simulink SymPower Systems ) i
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= Simulink

= Block-Diagram Platform for analyzing systems
= SimPower Systems PV Examples

= Electrical — Linear Differential Equations

= Thermal — Modelling based on resistor and capacitor thermal circuits

Aoply

Half-bridge 1GBT
ith Loss Calculation
{Module 1)

|
+ A
4 H
hd
Half-bridge 1GBT

with Loss Calculation
{Module 2)
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SimElectronics Model
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Heat Exchanger Cooling Plate ) i
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= Current Work Evaluating Heat Transfer Capability
of Binary Mixture Working Fluids to Improve Heat
Exchanger Performance

= Propylene-Glycol (PPG)/Water
= FEthanol/Water
= Pure Components

= Alternative Adhesives Durability/ Performance

Evaluation
100 ox10° 70
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Reduced LCOE
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Solar Gain & Thermal Gain

= Thermal gain from solar radiation in an object, space
or structure, which increases with the strength of the
sun, and with the ability of any intervening material to

transmit or resist radiation.

Radiative Energy
Balance:

absorption

material

intarnal
reflection

solar
transmission

primary transmittance

secondary transmittance

= FEA/CFD Impact Analysis of Internal Comps.
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Accelerated Testing ) B,
= HALT — Highly Accelerated Life Testing

= Stress tests not meant to simulate the field env., but find weaknesses in design

= Stresses are stepped up to well beyond the expected field environment until
“fundamental limit of the technology” is reached

= General Procedures for HALT Testing:
= 1. Attach thermocouples, & monitor line input Vac, output Vdc, and other signals.
= 2. Perform temperature cycling
= 3. Perform functional test

= 4. Determine root cause of any failures, implement corrective action (if required), and
repeat test (if required).
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