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Polymer	
  nanocomposite	
  thin	
  films	
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- 
Goal:	
  Integrate	
  func:onal	
  nanopar:cles	
  into	
  a	
  (func:onal)	
  polymer	
  matrix:	
  top-­‐
down	
  nanofabrica:on	
  vs	
  bo[om-­‐up	
  self-­‐assembly.	
  
	
  
Use	
  polymer	
  brush	
  to	
  control	
  nanopar:cle	
  spacing	
  via	
  interac:ons	
  between	
  the	
  
brush	
  and	
  the	
  polymer	
  matrix:	
  enthalpically	
  or	
  entropically	
  	
  
	
  
Dispersed-­‐to-­‐aggregated	
  state	
  determined	
  mainly	
  by	
  the	
  wet-­‐to-­‐dry	
  transi:on:	
  
	
  

Hore	
  MJA,	
  Frischknecht	
  AL,	
  and	
  Composto	
  RJ,	
  ACS	
  MacroLe,ers	
  (2011)	
  

Increasing	
  polymeriza:on	
  P	
  of	
  matrix	
  chain	
  

200	
  nm	
   200	
  nm	
   200	
  nm	
  



Can	
  we	
  preferen:ally	
  obtain	
  end-­‐end	
  assembly	
  via	
  an	
  entropically	
  
controlled	
  system	
  of	
  chemically	
  iden:cal	
  brush/matrix	
  polymers?	
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Orienta:onal	
  control:	
  end-­‐end	
  linkage	
  	
  

Lee	
  A,	
  et	
  al.,	
  JACS	
  (2011)	
  	
  



Total	
  interac:on	
  energy	
  is	
  then	
  the	
  sum:	
  	
  

Theore:cal	
  model	
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Using	
  self-­‐consistent	
  field	
  theory	
  (SCFT),	
  we	
  
minimize	
  the	
  free	
  energy	
  and	
  obtain	
  polymer	
  
brush	
  profiles:	
  

end-­‐to-­‐end	
   side-­‐by-­‐side	
  

y/Rg

x/Rg
r/Rg

z/Rg

�

�

10	
  nm	
  

CdSe/CdS	
  nanorods	
  	
  (5	
  x	
  28	
  nm)	
  with	
  PS	
  brushes	
  
in	
  PS	
  matrix	
  prepared	
  by	
  spin	
  coa:ng	
  (average	
  
thickness	
  36	
  nm).	
  	
  

Brush	
  MW	
  
(g/mol)	
  

Rg	
  
(nm)	
  

Rrod/Rg	
   α	
  =	
  P/N	
  

3000	
   1.5	
   1.67	
   0.57	
  -­‐	
  13.33	
  

5300	
   1.95	
   1.28	
   0.47	
  -­‐	
  13.28	
  

11500	
   2.90	
   0.86	
   0.48	
  -­‐	
  12.59	
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AL

rod

R
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24H3/2W (H) = �AR2
rod

12H2

F
tot

(H) = F (�(r), ⇠(r);H) +W (H)

polymer	
  chain	
  entropy	
  	
  	
  
	
  	
  +	
  excluded	
  volume 

van	
  	
  der	
  Waals	
  	
  
a[rac:on 
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Side-­‐by-­‐side	
  assembly	
  

0 2 4 6 8-0.5

0.0

0.5

1.0

1.5

@r-2RrodD HRgL

D
FHk B

TêR
gL

0 2 4 6 8-0.5

0.0

0.5

1.0

1.5

@r-2RrodD HRgL

D
FHk B

TêR
gL

α	
  =	
  0.5	
   α	
  =	
  5.0	
  
s = 1

s = 1 H+vdWL
s = 2

s = 2 H+vdWL
s = 3

s = 3 H+vdWL
vdW

Frischknecht	
  AL,	
  et	
  al.,	
  	
  Macromolecules	
  (2013)	
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End-­‐to-­‐end	
  linkage	
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End-­‐to-­‐end	
  interac:on	
  free	
  energy	
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How	
  do	
  we	
  determine	
  	
  dispersed/aggregated	
  state?	
  	
  	
  
Áaggregatedatcontact
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End-­‐to-­‐end	
  interac:on	
  free	
  energy	
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End-­‐to-­‐end	
  dispersion	
  maps	
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End-­‐to-­‐end	
  dispersion	
  maps	
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Can	
  we	
  control	
  end-­‐to-­‐end	
  separa:on?	
  
decreasing	
  Ncap	
  at	
  constant	
  Nside	
  and	
  P	
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Can	
  we	
  control	
  end-­‐to-­‐end	
  separa:on?	
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At	
  the	
  minimum:	
  decreasing	
  Ncap	
  	
  

decreasing	
  Ncap	
  at	
  constant	
  Nside	
  and	
  P	
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