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Polymer nanocomposite thin films Wi

Goal: Integrate functional nanoparticles into a (functional) polymer matrix: top-
down nanofabrication vs bottom-up self-assembly.

Use polymer brush to control nanoparticle spacing via interactions between the
brush and the polymer matrix: enthalpically or entropically

Dispersed-to-aggregated state determined mainly by the wet-to-dry transition:

P<2N P> 2N
Dispersion Aggregation 2

Hore MJA, Frischknecht AL, and Composto RJ, ACS MacroLetters (2011)



Orientational control: end-end linkage

o
SH-PS B
g Ligand exchange

CTAB coated nanorods (NRs)

& PS-terminated CTAB-coated NRs

(Amphiphillic building block)
Trigger the controlled assembly
by DMF/Water

Controlled hot-spot generation in dynamic solution phase
via end-to-end NR assembly

Can we preferentially obtain end-end assembly via an entropically
controlled system of chemically identical brush/matrix polymers?
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Lee A, et al., JACS (2011)



Theoretical model ) e,
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Using self-consistent field theory (SCFT), we
minimize the free energy and obtain polymer
brush profiles:

er]/gl—to—end side-by-side

Lrod

Pad
Rrod

P/N, 0*7 Rrod/Rga L’rod/Rg

Brush MW R, Rod/Rg @ =P/N 1/2
(g/mol) (nm) W(H) = _AR? W(H) = _ALroaR,;
3000 1.5 1.67 0.57-13.33 12H?2 24 H3/2
5300 1.95 1.28 0.47 -13.28 . . .

Total interaction energy is then the sum:
11500 2.90 0.86 0.48-12.59

— 10 nm

CdSe/CdS nanorods (5 x 28 nm) with PS brushes Fiot(H) = F(¢(r),&(r); H) + W(H)

in PS matrix prepared by spin coating (average polymer chain entropy ~ van der Waals
thickness 36 nm). + excluded volume attraction




Side-by-side assembly
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Frischknecht AL, et al., Macromolecules (2013)



End-to-end linkage ) s
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End-to-end interaction free energy ) teima

How do we determine dispersed/aggregated state?
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End-to-end interaction free energy Wi

How do we determine dispersed/aggregated state?
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Aggregated at contact
Dispersed

Aggregated at H,;,

S O X O

Barrier to contact

End-to-end dispersion maps
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Aggregated at contact
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Can we control end-to-end separation? ()&,

decreasing N_,_at constant N
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Can we control end-to-end separation?
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