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v   Need physically-based model for BCC metals  
o  Complex response compared to FCC 

 - Non-Schmid effects, large temp. & rate dep. flow behavior, ambiguity of slip systems,  

 
 
 
 
 
 

{110} slip {112} slip Mo single crystal 

W single crystal 

o  Most BCC models are phenomenological, fit from polycrystals 

v  Need capability to include microstructural variability in design 
o  Connecting microstructural variability to stochastic performance 

•  In a study of 40 nominally identical welds, we observed large variations in 
properties caused by local microscopic differences. 

•  Because of this variability, we must de-rate welds significantly to achieve 
reliability goals. 

•  PPM Project Goal: Provide a science-based underpinning for design and 
analysis capabilities that link microscopic differences to property variability. 

Microstructural details vary  
among 304L stainless steel weldments 

Microstructural 
variability affects 

properties 

C. Robino, B. Boyce, C. Battaile 

CP-FEM simulations 

Develop capability for low rate deformation of BCC metals 
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m : slip direction 
n : slip plane normal 
t = m × n 

τ cr
α = Ptot

α :σ = PS
α :σ + PnS

α :σ

PS
α = 1

2
mα ⊗nα + nα ⊗mα( )

PnS
α = c1t

α ⊗mα + c2t
α ⊗nα + c3n

α ⊗nα + c4t
α ⊗ tα + c5m

α ⊗mα

τ =σ cosλ cosϕ

ci : non-Schmid constants Atomistic simulations 
Single crystal experiments 

m
n

Slip 
direction 

Slip plane 
normal 

σ

φ λ

Applied stress 

Experimental observations: 
Tension-Compression  Asymmetry in Nb 

(Sherwood et.,1967) 

Atomistic understanding: 
Non-planar crew dislocation cores 

(Groger et al., 2008) 

Schmid’s law 

Generalized non-Schmid yield law 

Non-Schmid yield behavior 

(Lim et al., 2013) 
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Thermal activation in BCC metals 

Peierls barrier and dislocation kink-pair  

A

Option: Fit Experimental data 

p=0.71, q=1.85 
Temp & Strain Rate dependence captured 
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v  Temperature and strain rate dependence: thermally activated flow 

onto the �-th slip system (Weinberger et al., 2012).

⇤cr = P�
tot : � = P�

S : � +P�
nS : �. (3)

Here, P�
tot is the total stress projection tensor, P�

nS is the non-Schmid part of the stress projection

tensor, and ⇤cr is a material constant. Multiple models have been introduced and used for P�
nS

(Gröger et al., 2008b; Yalcinkaya et al., 2008), which rely on di⇥erent non-Schmid stress components.

A comparison of the di⇥erent models and how they are related to each other can be found in work

by Lim et al. (Lim et al., 2013). For this work, we selected a generalized form of P�
nS using three

orthogonal axes (Yalcinkaya et al., 2008; Lim et al., 2013):

P�
nS = c1P

�,tm
nS + c2P

�,tn
nS + c3P

�,nn
nS + c4P

�,tt
nS + c5P

�,mm
nS . (4)

Here, non-Schmid stress projection tensors are represented as P�,uv
nS = u� ⇤ v� where m�, n�,

and t� = m� ⇥ n� are unit vectors for the �-th slip-system and the ci terms are the non-Schmid

material constants that determine the e⇥ects of each non-Schmid stress components. In this work,

m, n and t correspond to ⌅111⇧, ⌅110⇧ and ⌅112⇧ crystallographic directions for the BCC crystal,

respectively. The non-Schmid constants can be obtained from atomistic simulations (Gröger et al.,

2008b) or single crystal experiments (Lim et al., 2013).

The model for P�
nS in Equation (4) is chosen here due to a number of key features. The model

captures non-Schmid e⇥ects associated with changes in the shear stress parallel to the slip direction,

shear stresses perpendicular to the slip direction, and uniaxial tension and compression stresses.

The formula for the stress projection tensor relies on three orthogonal directions, thus allowing

for the e⇥ects of the di⇥erent shear and normal stresses to be easily interpreted. This has the

additional benefit of making the model general to any crystal system.

For the thermally activated deformation mechanisms, the temperature and shear strain rate of

the �-th slip system can be related to the activation enthalpy, �H, using the Arrhenius expression

as follows:

⇥̇� = ⇥̇0exp

�
��H

kBT

⇥
(5)

5

m
n
t=m× n

: slip direction 

: slip plane normal 

 

H0

γ 0
p,q

: energy barrier 

: ref. strain rate 
: mat. constants 
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v  Non-Schmid yield behavior: scaling law derived from atomistics 

 
τ *α = B T , !γ α( ) τ cr − c2PnS

α ,tn :σ − c3PnS
α ,nn :σ − c4PnS

α ,tt :σ − c5PnS
α ,mm :σ⎡⎣ ⎤⎦ − c1PnS

α ,mt :σ

B T, !γ α( ) = 1− kBT
H0

ln !γ 0 / !γ( )⎛
⎝⎜

⎞
⎠⎟

1/q⎛

⎝
⎜

⎞

⎠
⎟

1/p

v  Resolved shear stress 

τ MRSSP

CRSS
= c1PS :σ + c1PnS

mt :σ
τ cr − c2PnS

tn :σ − c3PnS
nn :σ − c4PnS

tt :σ − c5PnS
mm :σ

τ MRSSP

CRSS
= 1− T

Tc

⎛
⎝⎜

⎞
⎠⎟

1/q⎛

⎝
⎜

⎞

⎠
⎟

1/p

 
Tc =

H0

kB ln γ 0 / γ( )
(Kocks et al., 1975) 

(Hale et al., 2014) 
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[111]

[101]

[121]

m

t
n

y 

x

z 

[111]

[101]

[121]

m

t

n

(Fellinger et al., 2010) 

•  LAMMPS 
•  Chamanti’s potential  
•  552,960 atoms  
24a[121]× 40a[101]× 48a[111]

v  Parameterization: 

Best-fit ci and τcr from atomistics  
c1 c2 c3 c4 c5 τcr 

0.27 0.15 0.31 -0.23 0.02 584 MPa 

⌧cr = m · �n+ c1m · �t+ c2n · �t+ c3n · �n+ c4t · �t+ c5m · �m
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A B

Temperature dependence Crystal orientation dependence 

Schmid model (Ten. & Comp.) Non-Schmid model (Ten.) 
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0.15

0.2

0.25

0.3

0.35

A B 

Max. = 0.38 
Min. = 0.12 

[111]

[001] [011]

Non-Schmid model (Comp.) 

Orientation dependent yield behavior is accurately predicted by non-Schmid model 
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Strain rate dependence Effect of H0 

τ *α = B T, !γ α( ) τ cr − c2PnS
α ,tn :σ − c3PnS

α ,nn :σ − c4PnS
α ,tt :σ − c5PnS

α ,mm :σ⎡⎣ ⎤⎦ − c1PnS
α ,mt :σ

B T, !γ α( ) = 1− kBT
H0

ln !γ 0 / !γ( )⎛
⎝⎜

⎞
⎠⎟

1/q⎛

⎝
⎜

⎞

⎠
⎟

1/p

0.60eV ≤ H0 ≤ 0.91eV
Brunner and Diehl, 1991a,b;  
Proville et al., 2013 

Strain rate dependent yield behavior is accurately predicted by non-Schmid model 
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BCC	
  CP-­‐FEM	
  model	
  

•  Slip rate:  

•  Slip resistance: 

Obstacle stress: 

Obstacle stress 
Lattice friction 

(Hutchinson, 1976) 

(Taylor, 1934) 

(Kocks, 1976) 
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•  Solid mechanics code developed at Sandia National Laboratories (JAS-3D) 

•  24 {110}<111> slip systems 

Lattice friction: 

g↵ =
q

(⌧⇤↵)2 + (⌧↵
obs

)2

⌧⇤↵ = B (T, �̇↵) [⌧cr � c2P
↵
tn : � � c3P

↵
nn : � � c4P

↵
tt : � � c5P

↵
mm : �]� c1P

↵
mt : �

of H0 from atomistic simulation in the current work and from the literature range within 0.60 -

0.91 eV (Brunner and Diehl, 1991a,b; Proville et al., 2013). Furthermore, we can estimate T
c

at

"̇ = 8 ⇥ 10�5 s�1 to be in the range of 300 - 350 K from experimental data (Kuramoto et al.,

1979a,b) that correspond to 3.49⇥104 s�1  �̇0  1.55 ⇥ 1011 s�1. Using these ranges of values

for �H0 and �̇0, the two dashed lines in Figure 10 denote upper and lower bounds of the rate

sensitivity for single crystal in orientation ‘A’. It is shown that predictions using the non-Schmid

model using reported values of H0 and estimate of T
c

provide reasonable bounds on the measured

strain rate sensitivity data.

5. CP-FE Simulations

The proposed activation enthalpy model parameterized using atomistic simulations and single

crystal experiments successfully predicted the temperature, strain rate and orientation dependent

yield behavior of Fe single crystals. In the following section, we implement the model into a BCC

crystal plasticity framework to simulate grain-scale deformations of single and polycrystalline Fe.

5.1. Crystal Plasticity Formulations

Crystal plasticity - finite element (CP-FE) models allow detailed investigation of grain-scale

deformation behavior in polycrystalline metals, e.g. plastic anisotropy and texture evolution. The

activation enthalpy model outlined in the previous section is implemented into a BCC CP-FE

framework developed at Sandia National Laboratories (Bi✏e, 1987; Lim et al., 2013, 2015). The

foundation of the model is based on well-established Peirce-Asaro-Needleman (PAN) formulations

(Peirce et al., 1982). The model uses a multiplicative decomposition of the deformation gradient

and assumes that the plastic deformation is caused only by the dislocation slip at each material

point (Lee, 1969; Asaro, 1983). The model uses a fully implicit time integration scheme to conduct

a quasi-static analysis. Detailed kinematics of the model can be found elsewhere (Peirce et al.,

1982; Bronkhorst et al., 1992; Kalidindi et al., 1992).

For a rate dependent crystal plasticity model, the slip rate on ↵-th slip system, �̇↵, is represented

as a power-law function of resolved shear stress, ⌧↵ and slip resistance, g↵ (Hutchinson, 1976):

�̇↵ = �̇0
✓
⌧↵

g↵

◆1/m

. (13)

20

strain rate and non-Schmid behavior as follows:

 
1�

✓
T

T
c

◆1/q
!1/p

=
P
S

� + c1P
mt

nS

�

⌧
cr

� c2P tn

nS

� � c3Pnn

nS

� � c4P tt

nS

� � c5Pmm

nS

�
. (9)

Here, � = v · �v and P = v ·Pv where v is the loading direction. Note that � represents a critical

level of uniaxial stress to initiate slip that depends on temperature, strain rate and non-Schmid

dependence as follows,

� =
B(T, �̇) ⌧

cr

P
S

+ c1Pmt

nS

+B(T, �̇)(c2P tn

nS

+ c3Pnn

nS

+ c4P tt

nS

+ c5Pmm

nS

)
, (10)

where

B(T, �̇) =

 
1�

✓
k
B

T

H0
ln (�̇0/�̇)

◆1/q
!1/p

. (11)

Equation (10) shows that temperature and strain rate impact the stress needed to induce yield,

�, through the property ⌧
cr

and several of the non-Schmid projection operators, but not through the

Schmid tensor, P
S

, and the term c1P
mt

nS

. These temperature and strain rate e↵ects are contained

with the function B (T, �̇). At high temperature/ low strain rate regime where B(T, �̇) is small,

� is more dominantly controlled by P
S

and c1P
mt

nS

. At low temperature/ high strain rate regime,

e↵ects of other four non-Schmid contributions, c2P tn

nS

, c3Pnn

nS

, c4P tt

nS

and c5P
mm

nS

, becomes equally

important. Equation (10) can be parameterized to experimental data or atomistic simulations to

obtain material parameters, as will be shown in the following sections.

3. Atomistic Calculations

In this section, atomistic calculations based on previous work by Hale et al. (Hale et al., 2014b)

are used to parameterize the non-Schmid behavior associated with the full range of possible stress

states. These calculations are used to determine not only the stress state dependence of the critical

stress, but also the stress state dependence of the activation enthalpy. All of the simulations are

performed using the LAMMPS molecular dynamics software (Plimpton, 1995).

8

An obstacle strength, ⌧
obs

, for each slip system is obtained from a dislocation density-based

hardening law (Taylor, 1934; Lee et al., 2010).

⌧↵
obs

= Aµb

vuut
24X

�=1

⇢� . (17)

Here, A is a material constant, µ is the shear modulus, b is the Burger’s vector, and ⇢� is the

dislocation density on slip system �. In this work, A=0.4, µ=69.7 GPa and b=2.48 Å are used

(Hirth and Lothe, 1982). The evolution of dislocation density for the ↵-th slip system is obtained

by a standard phenomenological equation Kocks (1976) as follows:

⇢̇↵ =

0

@1

vuut
NSX

�=1

⇢� � 2⇢
↵

1

A · |�̇↵|, (18)

where, 1 and 2 are hardening parameters that represent generation and annihilation of disloca-

tions, respectively, and determine the shape of the hardening curve. In this work, we assume that

hardening parameters are independent of temperature and strain rate. Note that material param-

eters needed to formulate ⌧⇤ in Equation (16) are obtained from atomistic simulations (c1 � c5),

single crystal experiments (⌧
cr

, p and q) and DFT simulations (H0). The two hardening parame-

ters, 1 and 2, represent the evolution of ⌧
obs

in Equation (17) and are parameterized from the

stress-strain responses of single crystal Fe at T=348 K and ✏̇ = 8⇥10�5 in Figure 11 (a) (Kuramoto

et al., 1979a,b) which results in values of 1=7⇥105 m�1 and 2=50.

5.2. Single Crystal Deformation

The atomistically-informed CP-FE model is used to simulate uniaxial tension of Fe single crys-

tals for various temperatures and strain rates. In this work, eight-noded hexahedral finite elements

having a single integration point at the element centroid are used. A single finite element is loaded

along orientation ‘A’, close to [1̄49] direction (Figure 5) with (a) varying temperature at "̇ = 8⇥10�5

s�1 and (b) varying strain rate at T = 300 K. Note that the strain rate is controlled by the simu-

lation time and the applied strain (i.e. 1250 seconds for 10 % deformation) and the temperature is

assumed to be constant throughout the simulation. Figures 11 (a) compares measured (Kuramoto

et al., 1979a) and predicted stress-strain responses of Fe single crystal at six temperatures, from
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Temperature dependence Strain rate dependence 

Crystal rotations 

 

ε =
1 0 0
0 −1/ 2 0
0 0 −1/ 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
dt

Isochoric deformation to 20% strain: 
Tension Compression 
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f I1, J2, J3( ) =α1I1 + J2
3/2 +α 2J3( )1/3

I1 : 1st stress invariant 
J2 : 2nd invariant of deviatoric stress 
J3 : 3rd invariant of deviatoric stress 

‘P dep.’ ‘Shape’ 

x

y

z

3-D FE model Uniaxial tension: temperature dependence Bi-axial yield surface 

[100] [100] [100] 

Initial Deformed (0 K) Deformed (300 K) 

The model captures temperature dependent stress-strain responses & texture evolution 



Summary	
  

§  A	
  new	
  BCC	
  plas.city	
  model	
  incorpora.ng	
  temperature,	
  strain	
  rate	
  and	
  
non-­‐Schmid	
  effects	
  for	
  bcc	
  iron	
  is	
  proposed.	
  	
  

§  Atomis.cally-­‐informed	
  CP-­‐FE	
  model	
  more	
  accurately	
  predicts	
  
temperature	
  and	
  strain	
  rate	
  effects	
  as	
  well	
  as	
  crystal	
  orienta.on	
  
dependent	
  yield	
  stresses.	
  

§  Non-­‐Schmid	
  stresses	
  affect	
  stress-­‐strain	
  responses	
  as	
  well	
  as	
  texture	
  
evolu.ons.	
  Non-­‐Schmid	
  effects	
  are	
  more	
  significant	
  at	
  low	
  temperatures	
  
and	
  high	
  strain	
  rates.	
  

§  Proposed	
  computa.onal	
  method	
  provides	
  a	
  convenient	
  and	
  direct	
  link	
  
from	
  the	
  fundamental	
  disloca.on	
  physics	
  to	
  the	
  con.nuum-­‐scale	
  plas.c	
  
deforma.on	
  of	
  BCC	
  metals	
  at	
  the	
  grain	
  scale.	
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