

Exceptional service in the national interest

A multi-scale model of dislocation plasticity in α -Fe: Incorporating temperature, strain rate and non-Schmid effects

**Hojun Lim¹, Lucas Hale², Jonathan Zimmerman³, Corbett Battaile¹
and Christopher Weinberger⁴**

¹Computational Materials & Data Science, ³Materials Physics,
Sandia National Laboratories

²Thermodynamics and Kinetics Group,
National Institute of Standards and Technology

⁴Department of Mechanical Engineering & Mechanics,
Drexel University

TMS 2015
Mar. 16, 2015, Orlando, Florida.

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

- **Introduction**
- **BCC plasticity model**
- **Atomistic calculations**
- **CP-FEM calculations**
- **Summary**

Lim, H., Hale, L. M., Zimmerman, J. A., Battaile, C. C., Weinberger, C. R., "A Multi-scale Model of Dislocation Plasticity in α -Iron: Incorporating Temperature, Strain Rate and Non-Schmid Effects", *Int. J. Plasticity*, 2015, In press.

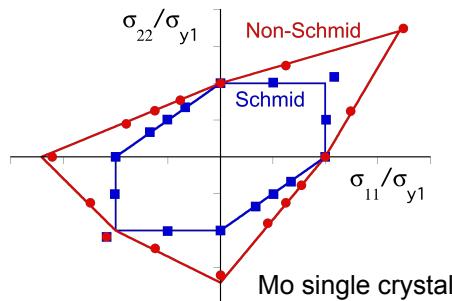
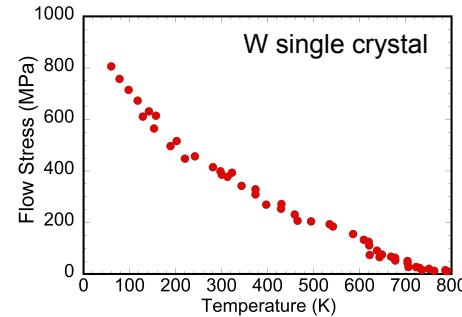
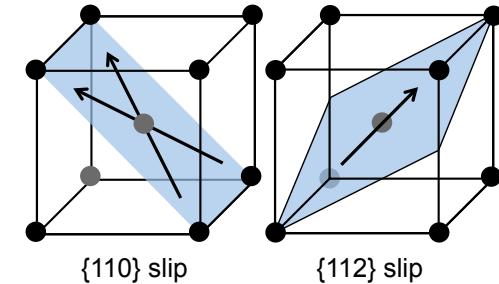
Hale, L. M., Lim, H., Weinberger, C. R., Zimmerman, J. A., Battaile, C. C., "Insights on Activation Enthalpy for Non-Schmid Slip in BCC Metals" *Scripta Mat.*, 2015, 99. 89-92.

Introduction

❖ Need *physically-based* model for BCC metals

- Complex response compared to FCC

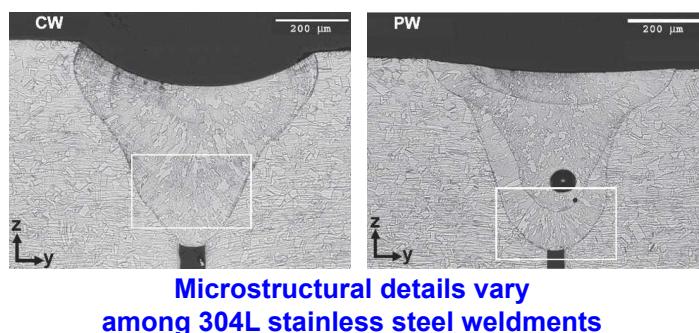
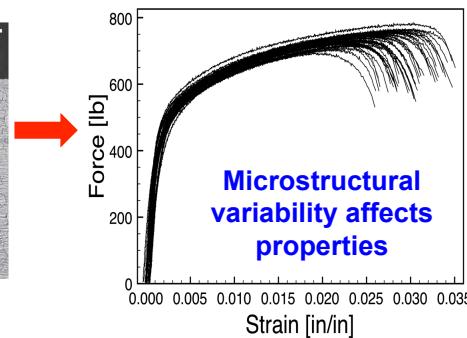
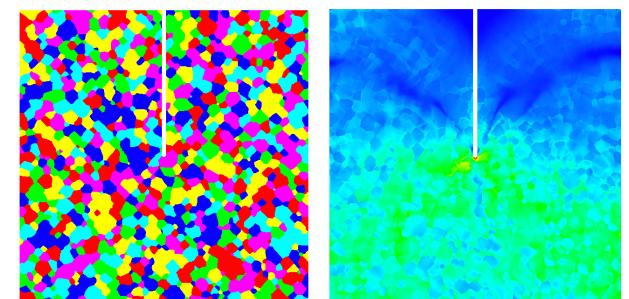
 - Non-Schmid effects, large temp. & rate dep. flow behavior, ambiguity of slip systems,



- Most BCC models are phenomenological, fit from polycrystals

❖ Need capability to include *microstructural variability* in design

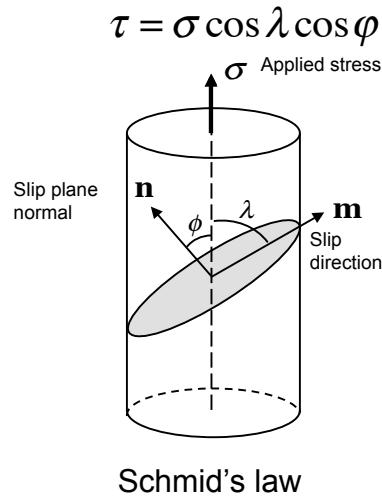
- Connecting microstructural variability to stochastic performance



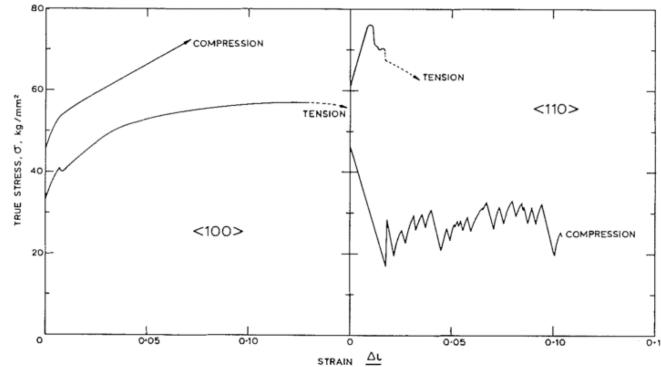
Develop capability for low rate deformation of BCC metals

- **Introduction**
- **BCC plasticity model**
- **Atomistic calculations**
- **CP-FEM calculations**
- **Summary**

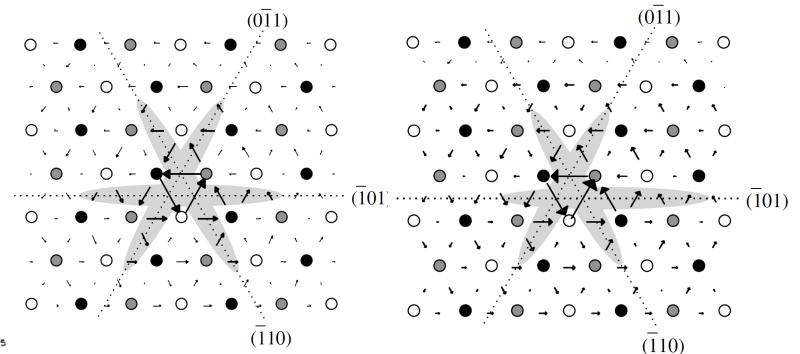
Unusual yield behavior



Non-Schmid yield behavior



Experimental observations:
Tension-Compression Asymmetry in Nb
(Sherwood et al., 1967)



Atomistic understanding:
Non-planar cross dislocation cores
(Groger et al., 2008)

$$\tau_{cr}^{\alpha} = \mathbf{P}_{tot}^{\alpha} : \boldsymbol{\sigma} = \mathbf{P}_S^{\alpha} : \boldsymbol{\sigma} + \mathbf{P}_{nS}^{\alpha} : \boldsymbol{\sigma}$$

Schmid Non-Schmid

Generalized non-Schmid yield law

$$\mathbf{P}_S^{\alpha} = \frac{1}{2} (\mathbf{m}^{\alpha} \otimes \mathbf{n}^{\alpha} + \mathbf{n}^{\alpha} \otimes \mathbf{m}^{\alpha})$$

\mathbf{m} : slip direction

\mathbf{n} : slip plane normal

$$\mathbf{t} = \mathbf{m} \times \mathbf{n}$$

$$\mathbf{P}_{nS}^{\alpha} = c_1 \mathbf{t}^{\alpha} \otimes \mathbf{m}^{\alpha} + c_2 \mathbf{t}^{\alpha} \otimes \mathbf{n}^{\alpha} + c_3 \mathbf{n}^{\alpha} \otimes \mathbf{n}^{\alpha} + c_4 \mathbf{t}^{\alpha} \otimes \mathbf{t}^{\alpha} + c_5 \mathbf{m}^{\alpha} \otimes \mathbf{m}^{\alpha}$$

(Lim et al., 2013)

c_i : non-Schmid constants

Atomistic simulations
Single crystal experiments

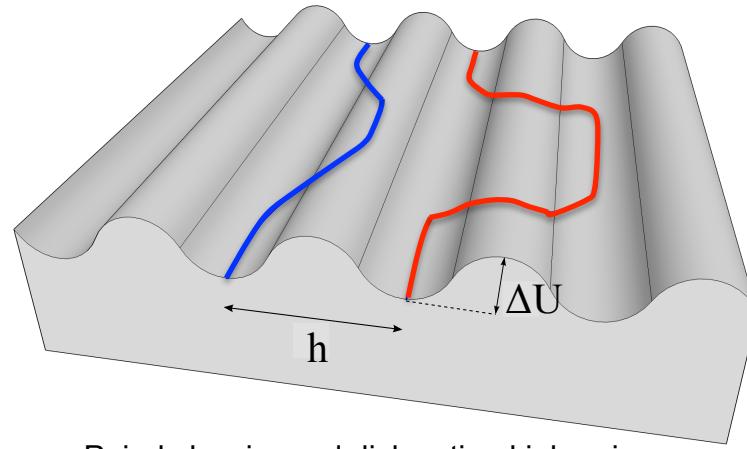
Temperature and strain rate dependent flow

Thermal activation in BCC metals

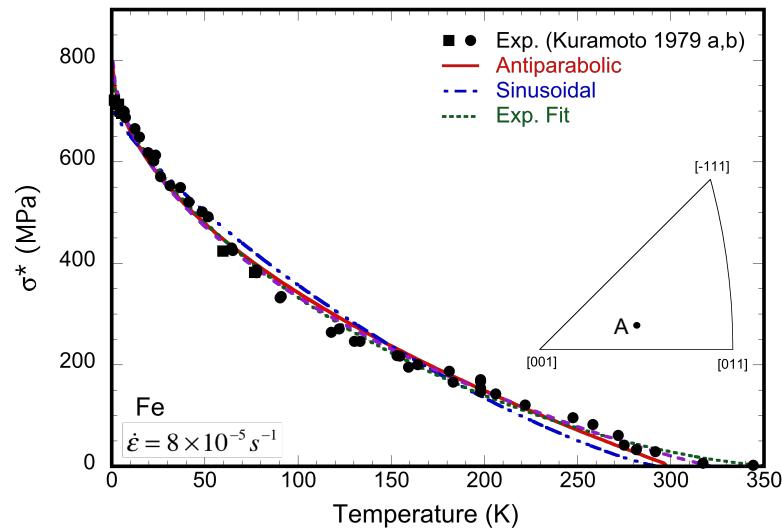
$$\dot{\gamma} = \dot{\gamma}_0 \exp \left(\frac{-\Delta H}{k_B T} \right)$$

$$\Delta H(\tau) = 2H_k \left[1 - \left(\frac{\tau}{\tau_p} \right)^p \right]^q$$

$$\tau = \tau_p \left[1 - \left(\frac{k_B T}{2H_k} \ln \left(\frac{\dot{\gamma}_0}{\dot{\gamma}} \right) \right)^{1/q} \right]^{1/p}$$



Peierls barrier and dislocation kink-pair



Option: Fit Experimental data

$$p=0.71, q=1.85$$

Temp & Strain Rate dependence captured

- ❖ Non-Schmid yield behavior: scaling law derived from atomistics

$$\frac{\tau^{MRSSP}}{CRSS} = \frac{c_1 \mathbf{P}_S : \boldsymbol{\sigma} + c_1 \mathbf{P}_{nS}^{mt} : \boldsymbol{\sigma}}{\tau_{cr} - c_2 \mathbf{P}_{nS}^{tn} : \boldsymbol{\sigma} - c_3 \mathbf{P}_{nS}^{nn} : \boldsymbol{\sigma} - c_4 \mathbf{P}_{nS}^{tt} : \boldsymbol{\sigma} - c_5 \mathbf{P}_{nS}^{mm} : \boldsymbol{\sigma}}$$

(Hale et al., 2014)

$$\mathbf{P}_{nS}^{\alpha,uv} = \mathbf{u}^\alpha \otimes \mathbf{v}^\alpha$$

\mathbf{m} : slip direction

\mathbf{n} : slip plane normal

$$\mathbf{t} = \mathbf{m} \times \mathbf{n}$$

- ❖ Temperature and strain rate dependence: thermally activated flow

$$\frac{\tau^{MRSSP}}{CRSS} = \left(1 - \left(\frac{T}{T_c} \right)^{1/q} \right)^{1/p}$$

$$T_c = \frac{H_0}{k_B \ln(\dot{\gamma}_0 / \dot{\gamma})} \quad (\text{Kocks et al., 1975})$$

H_0 : energy barrier

$\dot{\gamma}_0$: ref. strain rate

p, q : mat. constants

- ❖ Resolved shear stress

$$\tau^{*\alpha} = B(T, \dot{\gamma}^\alpha) \left[\tau_{cr} - c_2 \mathbf{P}_{nS}^{\alpha,tn} : \boldsymbol{\sigma} - c_3 \mathbf{P}_{nS}^{\alpha,nn} : \boldsymbol{\sigma} - c_4 \mathbf{P}_{nS}^{\alpha,tt} : \boldsymbol{\sigma} - c_5 \mathbf{P}_{nS}^{\alpha,mm} : \boldsymbol{\sigma} \right] - c_1 \mathbf{P}_{nS}^{\alpha,mt} : \boldsymbol{\sigma}$$

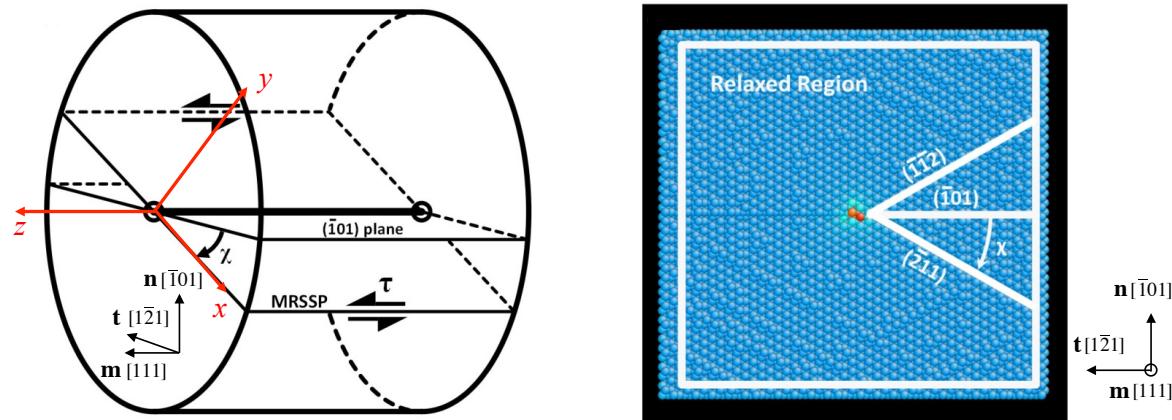
$$B(T, \dot{\gamma}^\alpha) = \left(1 - \left(\frac{k_B T}{H_0} \ln(\dot{\gamma}_0 / \dot{\gamma}) \right)^{1/q} \right)^{1/p}$$

- **Introduction**
- **BCC plasticity model**
- **Atomistic calculations**
- **CP-FEM calculations**
- **Summary**

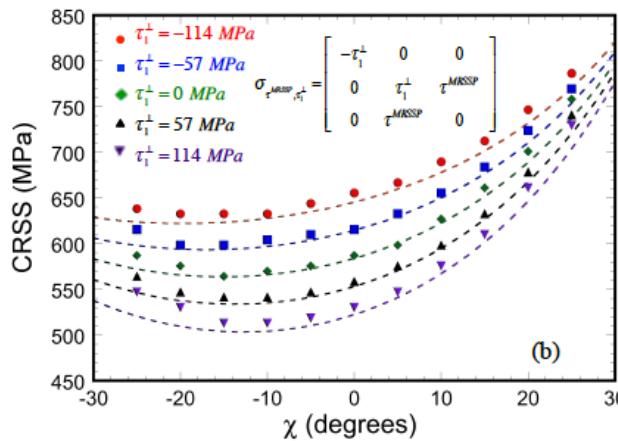
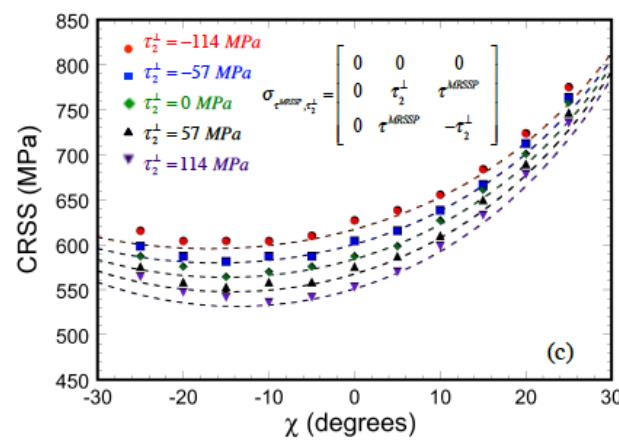
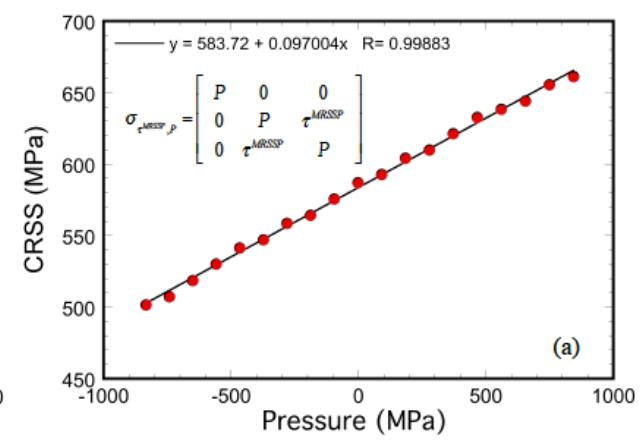
Atomistic simulations

- LAMMPS
- Chamanti's potential
- 552,960 atoms

$24a[\bar{1}2\bar{1}] \times 40a[\bar{1}01] \times 48a[111]$



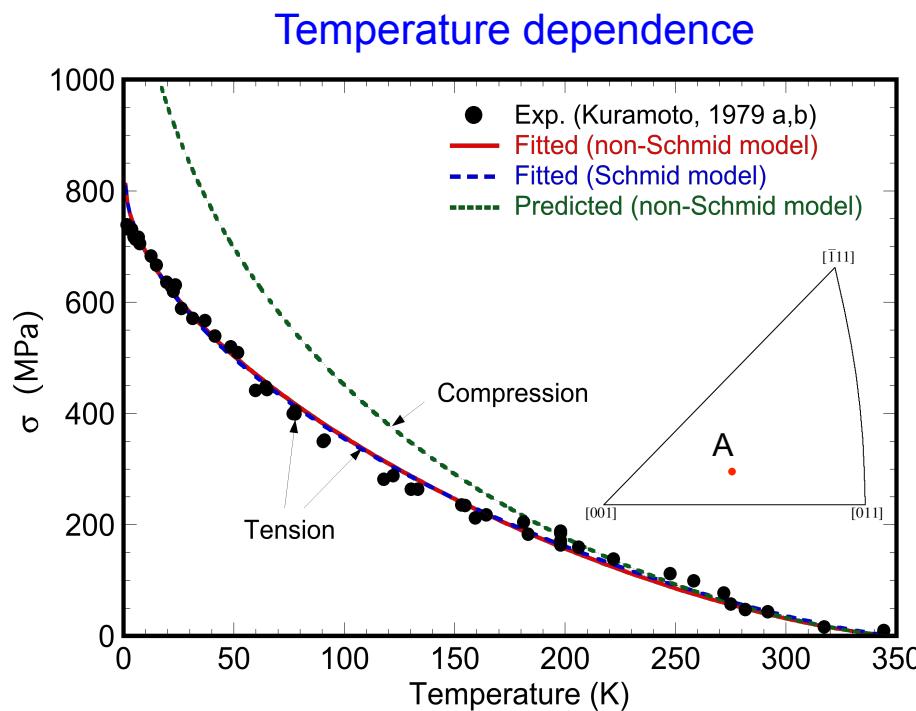
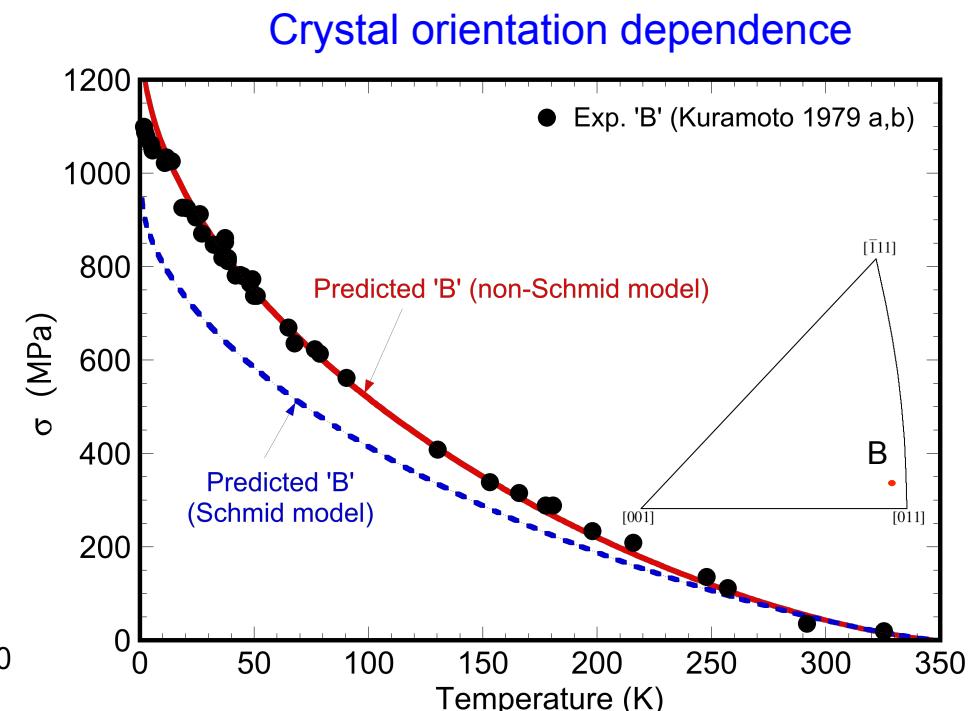
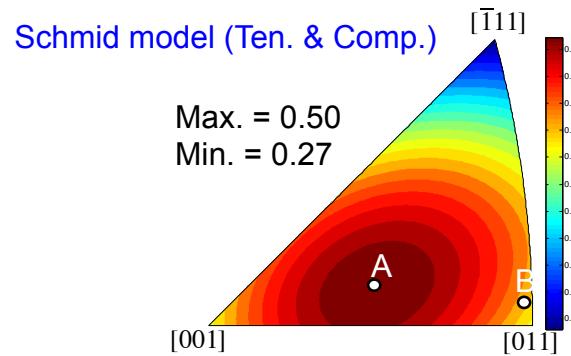
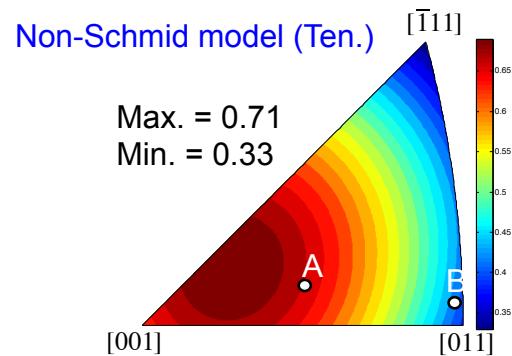
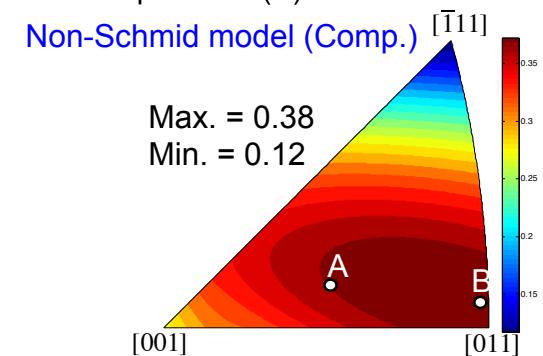
❖ **Parameterization:** $\tau_{cr} = \mathbf{m} \cdot \sigma \mathbf{n} + c_1 \mathbf{m} \cdot \sigma \mathbf{t} + c_2 \mathbf{n} \cdot \sigma \mathbf{t} + c_3 \mathbf{n} \cdot \sigma \mathbf{n} + c_4 \mathbf{t} \cdot \sigma \mathbf{t} + c_5 \mathbf{m} \cdot \sigma \mathbf{m}$



Best-fit c_i and τ_{cr} from atomistics

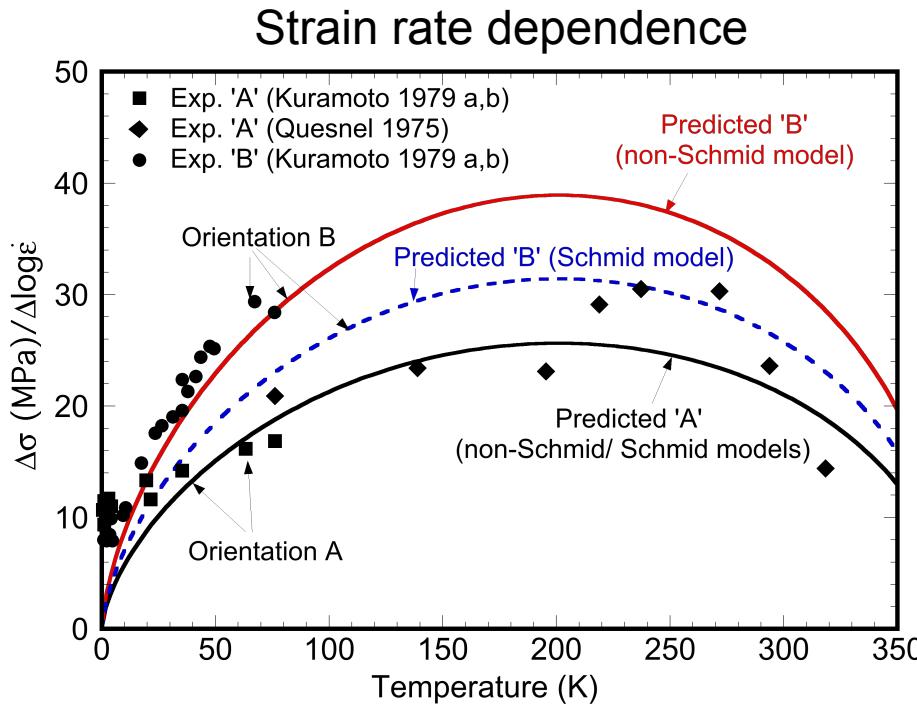
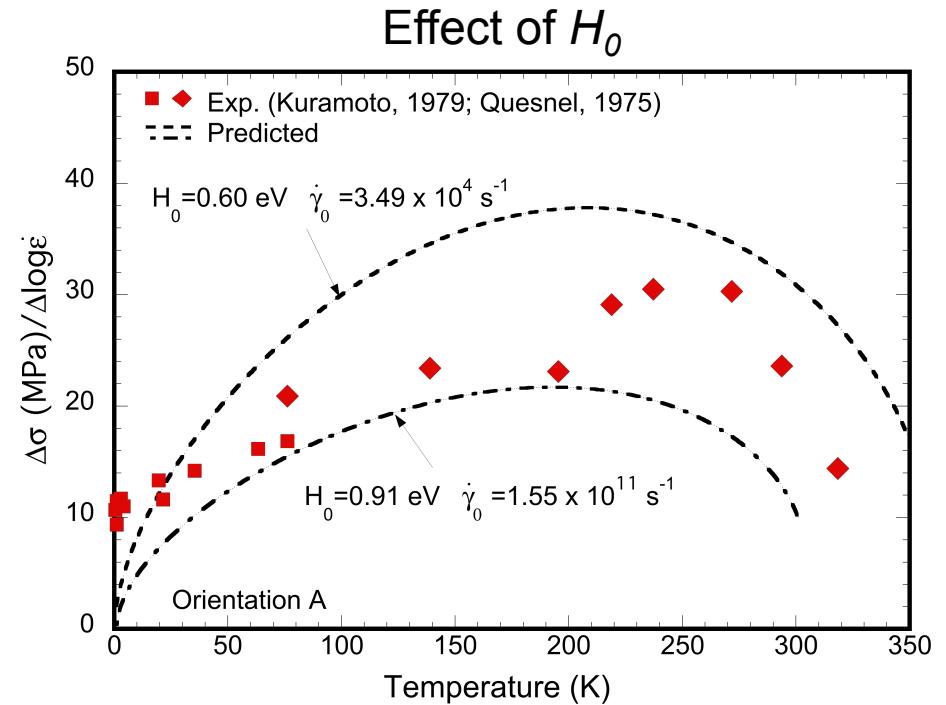
c_1	c_2	c_3	c_4	c_5	τ_{cr}
0.27	0.15	0.31	-0.23	0.02	584 MPa

Flow stress predictions: α -Fe single crystals



Orientation dependent yield behavior is accurately predicted by non-Schmid model

Strain rate dependence: α -Fe single crystal



$$\tau^{*\alpha} = B(T, \dot{\gamma}^\alpha) \left[\tau_{cr} - c_2 \mathbf{P}_{nS}^{\alpha,tn} : \boldsymbol{\sigma} - c_3 \mathbf{P}_{nS}^{\alpha,nn} : \boldsymbol{\sigma} - c_4 \mathbf{P}_{nS}^{\alpha,tt} : \boldsymbol{\sigma} - c_5 \mathbf{P}_{nS}^{\alpha,mm} : \boldsymbol{\sigma} \right] - c_1 \mathbf{P}_{nS}^{\alpha,mt} : \boldsymbol{\sigma}$$

$$B(T, \dot{\gamma}^\alpha) = \left(1 - \left(\frac{k_B T}{H_0} \ln(\dot{\gamma}_0 / \dot{\gamma}) \right)^{1/q} \right)^{1/p}$$

$$0.60 \text{ eV} \leq H_0 \leq 0.91 \text{ eV}$$

Brunner and Diehl, 1991a,b;
Provile et al., 2013

Strain rate dependent yield behavior is accurately predicted by non-Schmid model

- **Introduction**
- **BCC plasticity model**
- **Atomistic calculations**
- **CP-FEM calculations**
- **Summary**

- Solid mechanics code developed at Sandia National Laboratories (JAS-3D)
- 24 $\{110\}\langle111\rangle$ slip systems
- Slip rate: $\dot{\gamma}^\alpha = \dot{\gamma}^0 \left(\frac{\tau^\alpha}{g^\alpha} \right)^{1/m}$ (Hutchinson, 1976)
- Slip resistance: $g^\alpha = \sqrt{(\tau^{*\alpha})^2 + (\tau_{obs}^\alpha)^2}$
 - ↳ Obstacle stress
 - ↳ Lattice friction

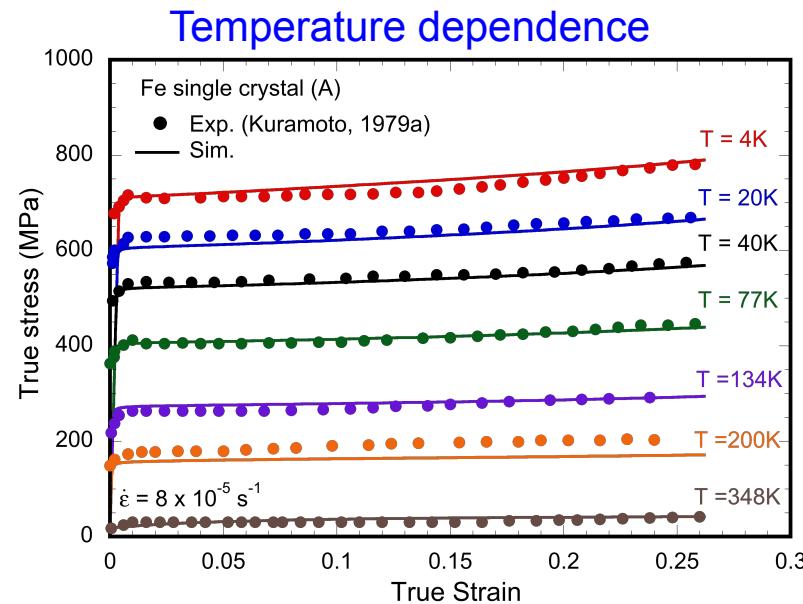
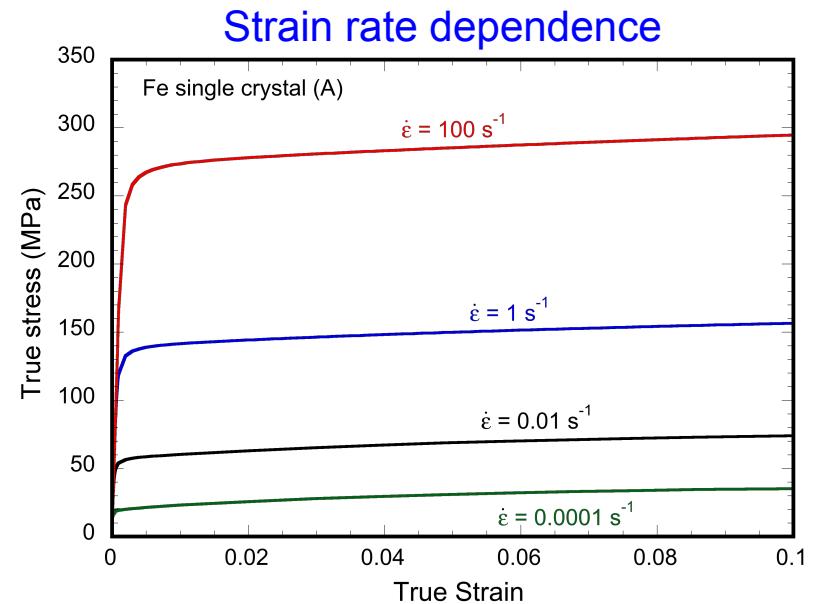
Lattice friction: $\tau^{*\alpha} = B(T, \dot{\gamma}^\alpha) [\tau_{cr} - c_2 \mathbf{P}_{tn}^\alpha : \sigma - c_3 \mathbf{P}_{nn}^\alpha : \sigma - c_4 \mathbf{P}_{tt}^\alpha : \sigma - c_5 \mathbf{P}_{mm}^\alpha : \sigma] - c_1 \mathbf{P}_{mt}^\alpha : \sigma$

$$B(T, \dot{\gamma}) = \left(1 - \left(\frac{k_B T}{H_0} \ln(\dot{\gamma}_0 / \dot{\gamma}) \right)^{1/q} \right)^{1/p}$$

Obstacle stress: $\tau_{obs}^\alpha = A \mu b \sqrt{\sum_{\beta=1}^{24} \rho^\beta}$ (Taylor, 1934)

$$\dot{\rho}^\alpha = \left(\kappa_1 \sqrt{\sum_{\beta=1}^{NS} \rho^\beta} - \kappa_2 \rho^\alpha \right) \cdot |\dot{\gamma}^\alpha| \quad (\text{Kocks, 1976})$$

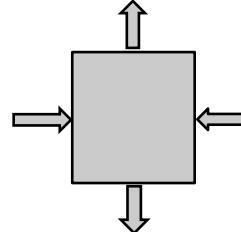
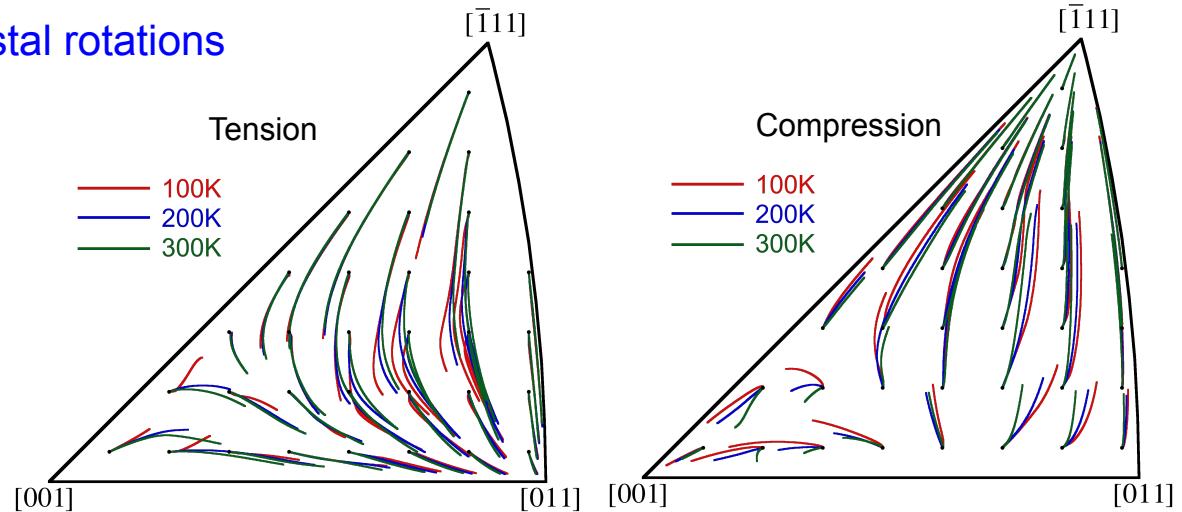
CP-FE simulations: α -Fe single crystals



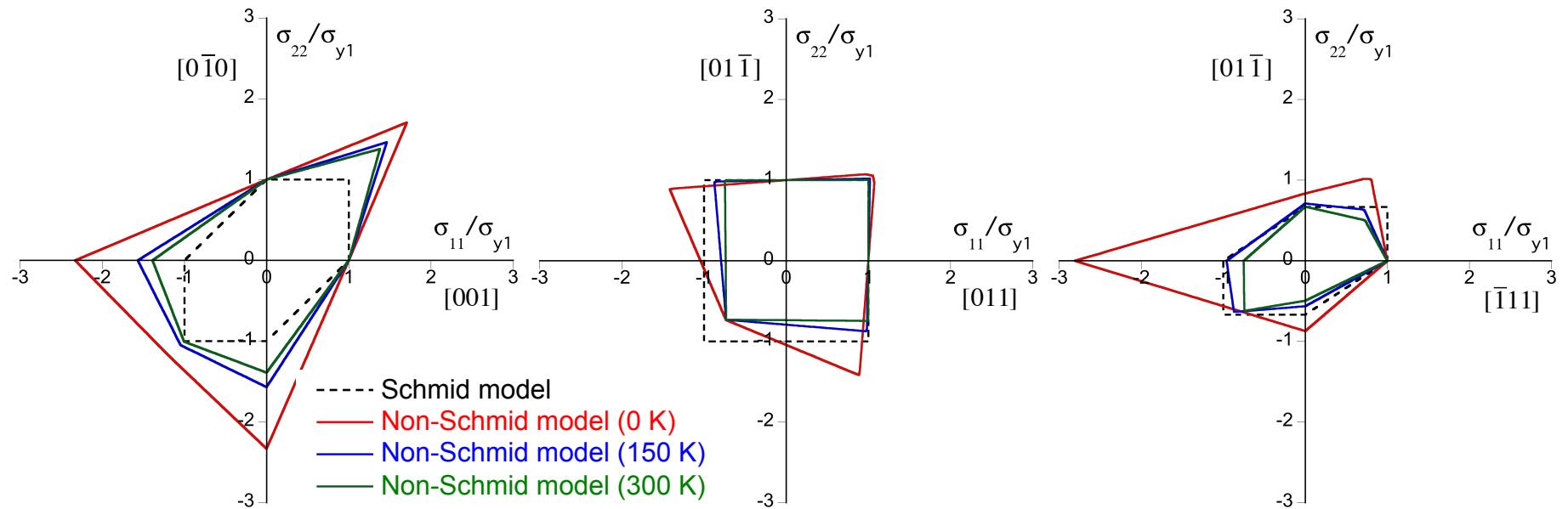
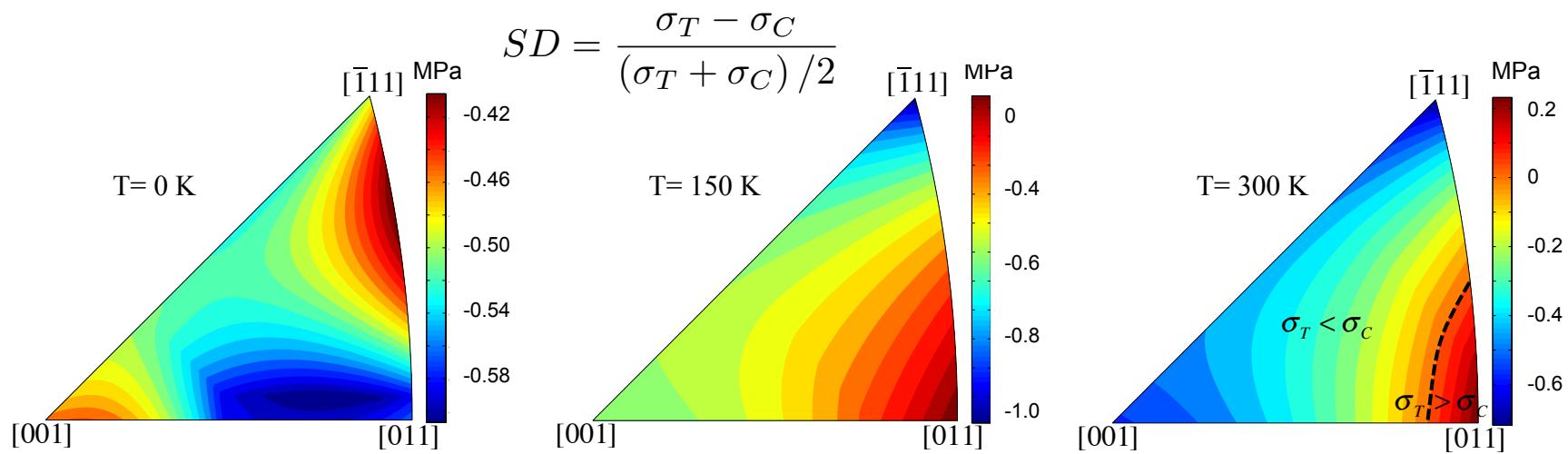
Crystal rotations

Isochoric deformation to 20% strain:

$$\dot{\epsilon} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1/2 & 0 \\ 0 & 0 & -1/2 \end{pmatrix} dt$$

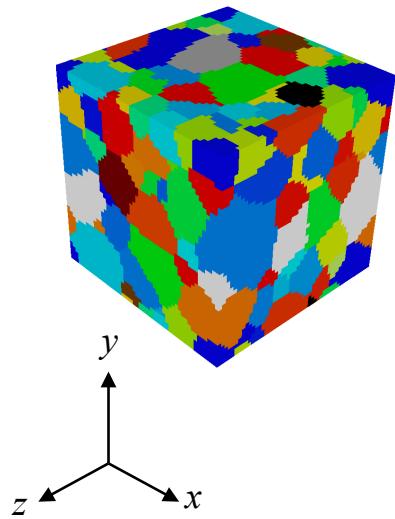


Single crystal deformations

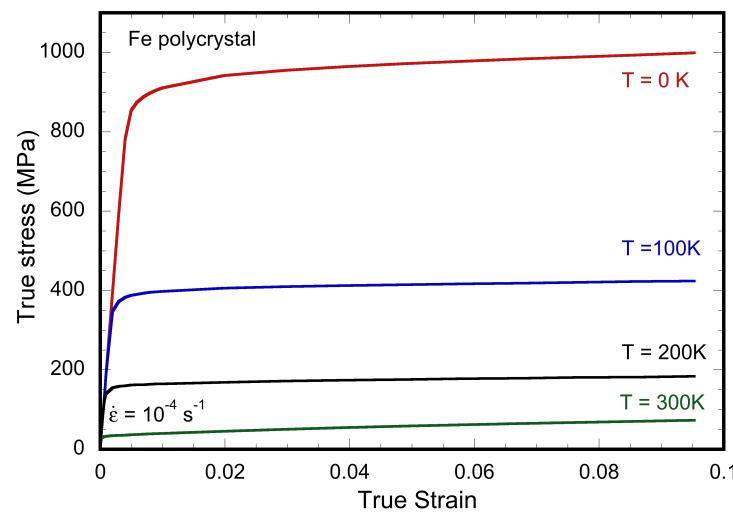
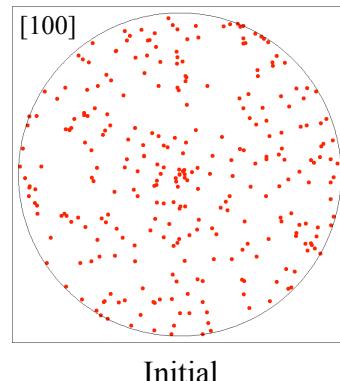
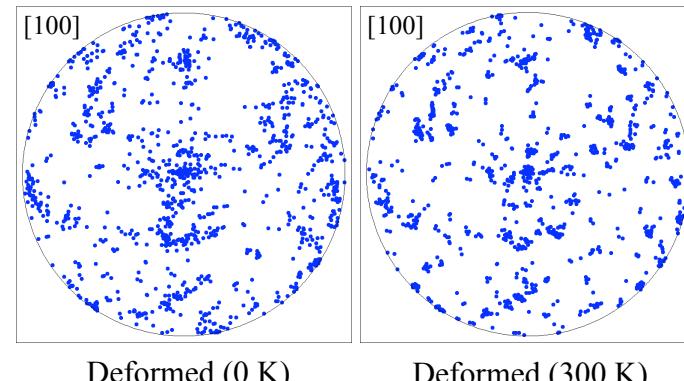


Polycrystal deformations

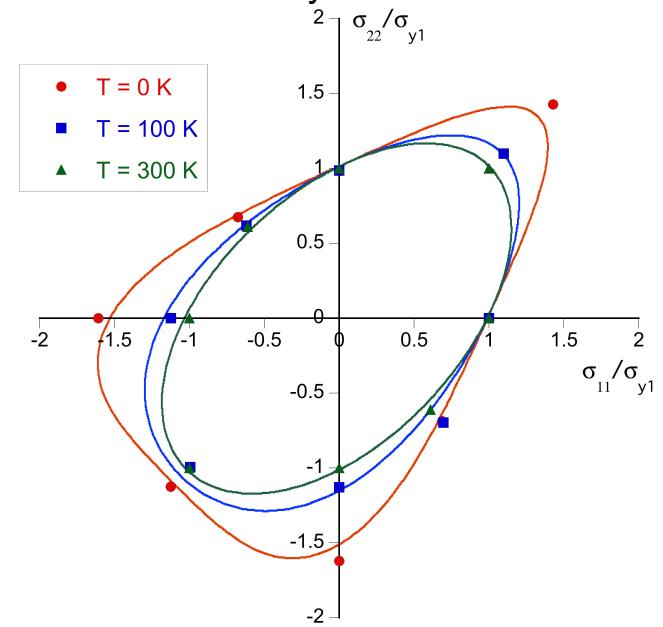
3-D FE model



Uniaxial tension: temperature dependence



Bi-axial yield surface



$$f(I_1, J_2, J_3) = \alpha_1 I_1 + \underbrace{(J_2^{3/2} + \alpha_2 J_3)^{1/3}}_{\text{'P dep.'}} \underbrace{(J_2^{3/2} + \alpha_2 J_3)^{1/3}}_{\text{'Shape'}}$$

I_1 : 1st stress invariant
 J_2 : 2nd invariant of deviatoric stress
 J_3 : 3rd invariant of deviatoric stress

The model captures temperature dependent stress-strain responses & texture evolution

Summary

- A new BCC plasticity model incorporating temperature, strain rate and non-Schmid effects for bcc iron is proposed.
- Atomistically-informed CP-FE model more accurately predicts temperature and strain rate effects as well as crystal orientation dependent yield stresses.
- Non-Schmid stresses affect stress-strain responses as well as texture evolutions. Non-Schmid effects are more significant at low temperatures and high strain rates.
- Proposed computational method provides a convenient and direct link from the fundamental dislocation physics to the continuum-scale plastic deformation of BCC metals at the grain scale.

THANK YOU !

hnlim@sandia.gov