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Quantum Computations are Products of Unitary 
Operators.

A Hamiltonian Generates the Unitary Transformations

• Entangled Qubits require exp(N) resources. 
• Underlying physics is hidden in the unitary operations.
• Non-unique depends on design of quantum computer
• Connects algorithms to implementations
• Provides route to alternative simulation approaches
• Explicit role of underlying Schrödinger equation

Goal: Robust method to find nontrivial H(t) to achieve U
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Heisenberg Spin Models

• Model of locally coupled spins in 1D, 2D, and 3D

• J’s (spin-spin couplings) remain fixed for duration of U

• Control magnetic and electric fields 

• Various limits describe candidate quantum computer designs

• Studied extensively in statistical physics
 

Ĥ0  Jx (i, j)̂ x (i)̂ x ( j) Jy (i, j)̂ y (i)̂ y ( j) Jz (i, j)̂ z (i)̂ z ( j)
i, j1

N

 

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
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Time-dependent Density Functional Theory of Qubits  

Ĥ0  Jx
̂ x (i)̂ x (i1) Jy

̂ y (i)̂ y(i1) Jz
||̂ z (i)̂ z (i1)

i1

N1

 Ĥ Int (t) h(i, t)̂ z (i)
i1

N



ĤKS,0  Jx
̂ x (i)̂ x (i1) Jy

̂ y(i)̂ y(i1)
i1

N1

 ĤKS,Int (t) h (i, t)̂ z (i)
i1

N



XXZ

XY

• Numerical scheme to invert mapping from one spin model to another

• 8 Qubits shown here > 3 Qubits in the literature

David G. Tempel and Alán Aspuru-Guzik Scientific Reports 2 (May 2012): 391

http://www.nature.com/srep/2012/120502/srep00391/full/srep00391.html
http://www.nature.com/srep/2012/120502/srep00391/full/srep00391.html
http://www.nature.com/srep/2012/120502/srep00391/full/srep00391.html
http://www.nature.com/srep/2012/120502/srep00391/full/srep00391.html
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Brute Force, J=0
2 Qubit Grover Algorithm Implementation

ĤQ 

4 I ̂ z (1)̂ z (2)̂ z (1)̂ z (2) 

ĤN 

4 I ̂ x (1)̂ x (2)̂ x (1)̂ x (2) 

ĤP(i)  

2 ̂ x (i)









Generate Unitary operations needed for Grover Algorithm
Each pulse last 1 unit of time
Results generalize to N qubits
Unrealistic but straightforward to work with

ĤQ 

8 I ̂ z (1)̂ z (2)̂ z (3)̂ z (1)̂ z (2)̂ z (2)̂ z (3)̂ z (3)̂ z (1)̂ z (1)̂ z (2)̂ z (3) 

ĤCNOT ,c1t3 

4 I ̂ z (3)̂ z (1)̂ z (3)̂ z (1)  3 Qubits

Very far from Z-only
Highly unphysical pulses 

Hadamard

Controlled-Z

Phase
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Z-Only Model Logical vs. Fundamental Qubits

















• J isotropic
• Since σz commutes with H(t), the total 

spin can not change.
• We must restrict ourselves to states 

with the same total spin
• J terms swap site spin values but 

conserve total spin
• Some states not accessible -> Not 

controllable
• J ≠0 continuously swaps and affects 

the phase.  By waiting long enough we 
achieve gates

Ĥ0  Jx̂ x (i)̂ x ( j) Jy̂ y (i)̂ y ( j) Jz̂ z (i)̂ z ( j)
i, j1

N

  hz(i, t) z(i)
i1

N



S.C. Benjamin PRA 64, 054303 (2001) 









J



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Effect of Constant Z Only Pulses 

Mag. σZ (1) Pulse Duration Phase |01>

0 8 1

0 2 -i

16 1 -0.92-0.37i

16 2 1/√2 (1+1)

σy and σx terms dominate time-
evolution

Applying unit σz to a single qubit 
affects the time scale and phases 
but not the general oscillatory 
pattern. The Waiting Game 

Ĥ (t)  Ĥ0  hz (i)̂ z (i, t)
iqubits


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Optimal Control Theory – Cost Functions

J3 ,,  

2Im dt
0

T

  t  i d
dt  Ĥ (t)   t 

J2     dt
0

T

  j j
2 t J1     T  Ô  T 

1. Target State
2. Flux constraint
3. Schrödinger Eq.
Minimize the sum of the cost functions.

1. 
0  0  ( 0 ) t   

0  T 

2.(k ) T   Ô 
k1  T 

3.
k  T   (k ) t   

k  0 

with  (k ) t    1
 j

Im (k ) t  ̂  (k1) t 

4.
k  0   (k ) t   

k  T 
5. Iterate 2-4

Zhu and Rabitz, J. Chem. Phys. 109, 385
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OCT Only Works So Well for the Heisenberg Z-Only 
Model

Jx=Jy=Jz=1
α=1
At t=0, h1=0.1  and h2=-0.1

Start State : 2
Target State : 3
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Conclusions

• Optimal Control Theory could allows us to design 
Hamiltonians that provide the sought after unitary 
operations.

• The z-only J always on Hamiltonian has limited 
accessible dynamics.

• Nevertheless, we can use control theory to optimize 
dynamics.
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