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Quantum Computations are Products of Unitary
Operators.

U =exp ij dtﬁ(t)

t0

A Hamiltonian Generates the Unitary Transformations

* Entangled Qubits require exp(N) resources.

* Underlying physics is hidden in the unitary operations.
* Non-unique depends on design of guantum computer
* Connects algorithms to implementations

* Provides route to alternative simulation approaches

* Explicit role of underlying Schrodinger equation

Goal: Robust method to find nontrivial H(t) to achieve U




Heisenberg Spin Models

Hy= J.(:))6 ()6 () +J, (i /) () ,())+. (5 ))5 ()6 (/) + Q_h(i,1)#G (i)

i,j=1

* Model of locally coupled spins in 1D, 2D, and 3D

* J’s (spin-spin couplings) remain fixed for duration of U

* Control magnetic and electric fields

* Various limits describe candidate quantum computer designs
* Studied extensively in statistical physics



Time-dependent Density Functional Theory of Qubits

N-1
XXZ H,=) J5 ()6 (i+1)+J'6 ()5, (i+1)+J5 ()5 (i+1)

i=1

XY Higo=2J5,(06,(+1)+J6 ()6, (+1)

ﬁm(t)=ih(i, 1 .(i)

N
HKS,Int ()= Zh'(i, t)éz (7)
i=1

David G. Tempel and Alan Aspuru-Guzik Scientific Reports 2 (May 2012): 391
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* Numerical scheme to invert mapping from one spin model to another

e 8 Qubits shown here > 3 Qubits in the literature
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Brute Force, J=0

2 Qubit Grover Algorithm Implementation TT>
Hadamard [—A[N = %([—6X(I)C§x(2)+c§x(l)+C§x(2)) T\L>

controlledz [, =2 (I +6_(1)6_(2)+5.(1)+5.(2)) NT)

Phase ]—A[ ,_—%6x(i) \L\L>

P(i)

Generate Unitary operations needed for Grover Algorithm
Each pulse last 1 unit of time

Results generalize to N qubits

Unrealistic but straightforward to work with

|:-|

H,=%(I1+3_(1)5.(2)3.(3)+3.(1)5.(2)+3.(2)3.(3)+6.(3)3.(1)+6_(1)+3_(2)+3.(3))
HCNOT 3 = %(I_62(3)62(1)-'_62(3)_62(1)) 3 Qubits

Very far from Z-only

Highly unphysical pulses S
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Z-Only Model Logical vs. Fundamental Qubits

By= Y 7.6,08,()+ 1.8, (06 () 1.6.08 )+ 26 00,0)

i,j=1

TTT> * Jisotropic

M * Since o, commutes with H(t), the total
> spin can not change.

’N,T> « We must restrict ourselves to states M)
with the same total spin 1
YTT) e cn W
* Jterms swap site spin values but v v

T»L»L> conserve total spin )

e Some states not accessible -> Not
*LT*L> controllable
W * J #0 continuously swaps and affects
) >
the phase. By waiting long enough we

TTT> achieve gates

S.C. Benjamin PRA 64, 054303 (2001)




Effect of Constant Z Only Pulses

H(O)=H,+ 2, h()S.G,0)

i€ qubits

o, and o, terms dominate time-
evolution

Applying unit o, to a single qubit
affects the time scale and phases
but not the general oscillatory

The Waiting Game pattern.
Mag.o, (1) Pulse | Duration | Phase [01>
0 8 1
0 2 i
16 1 -0.92-0.37i
16 2 1/V2 (1+1)
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Optimal Control Theory — Cost Functions

J[¥]=(¥(T)[O|¥(T)) . 6] =—] dio g2 (1)
1. Target State J3 [(D’ LP"C;O] -
2. Flux constraint

3. Schrodinger Eq. —2Im T dl‘<(D(l‘)‘(l'i _H(l‘))‘qj(l‘»

Minimize the sum of the cost functions.
0

1w (0) —1 ) (7)

3. 0% (1) —s 0 (0)
withe™ (1) = - Im(@" (7)
4.9 (0) —— ¥ (T)
5. Iterate 2-4

8 Zhu and Rabitz, J. Chem. Phys. 109, 385

N

0)

\P(k+1) ( t)>




OCT Only Works So Well for the Heisenberg Z-Only
Model

.Ix=.ly=Jz=1
a=1
At t=0, h,=0.1 and h,=-0.1

Start State : 2
Target State : 3
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Conclusions

* Optimal Control Theory could allows us to design
Hamiltonians that provide the sought after unitary
operations.

* The z-only J always on Hamiltonian has limited
accessible dynamics.

* Nevertheless, we can use control theory to optimize
dynamics.
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